Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1982 Jul;70(1):55–60. doi: 10.1104/pp.70.1.55

De Novo Purine Synthesis in Nitrogen-Fixing Nodules of Cowpea (Vigna unguiculata [L.] Walp.) and Soybean (Glycine max [L.] Merr.) 1

Craig A Atkins 1,2, Anne Ritchie 1,2, Peter B Rowe 1,2, Eric McCairns 1,2, Dorit Sauer 1,2
PMCID: PMC1067085  PMID: 16662479

Abstract

Partially purified, cell-free extracts from nodules of cowpea (Vigna unguiculata L. Walp. cv. Caloona) and soybean (Glycine max L. Merr. cv. Bragg) showed high rates of de novo purine nucleotide and purine base synthesis. Activity increased with rates of nitrogen fixation and ureide export during development of cowpea plants; maximum rates (equivalent to 1.2 micromoles N2 per hour per gram fresh nodule) being similar to those of maximum nitrogen fixation (1-2 micromoles N2 per hour per gram fresh nodule). Extracts from actively fixing nodules of a symbiosis not producing ureides, Lupinus albus L. cv. Ultra, showed rates of de novo purine synthesis 0.1% to 0.5% those of cowpea and soybean. Most (70-90%) of the activity was associated with the particulate components of the nodule, but up to 50% was released from this fraction by osmotic shock. The accumulated end products with particulate fractions were inosine monophosphate and aminoimidazole carboxamide ribonucleotide. Further metabolism to purine bases and ureides was restricted to the soluble fraction of the nodule extract. High rates of inosine monophosphate synthesis were supported by glutamine as amide donor, lower rates (10-20%) by ammonia, and negligible rates with asparagine as substrate.

Full text

PDF
58

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Atkins C. A., Pate J. S., Sharkey P. J. Asparagine metabolism-key to the nitrogen nutrition of developing legume seeds. Plant Physiol. 1975 Dec;56(6):807–812. doi: 10.1104/pp.56.6.807. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Hanks J. F., Tolbert N. E., Schubert K. R. Localization of enzymes of ureide biosynthesis in peroxisomes and microsomes of nodules. Plant Physiol. 1981 Jul;68(1):65–69. doi: 10.1104/pp.68.1.65. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Herridge D. F., Atkins C. A., Pate J. S., Rainbird R. M. Allantoin and Allantoic Acid in the Nitrogen Economy of the Cowpea (Vigna unguiculata [L.] Walp.). Plant Physiol. 1978 Oct;62(4):495–498. doi: 10.1104/pp.62.4.495. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. KAPOOR M., WAYGOOD E. R. Initial steps of purine biosynthesis in wheat germ. Biochem Biophys Res Commun. 1962 Sep 25;9:7–10. doi: 10.1016/0006-291x(62)90078-5. [DOI] [PubMed] [Google Scholar]
  5. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  6. Molloy G. R., Sitz T. O., Schmidt R. R. Evidence for continuous availability of the phosphoribosylglycinamide synthetase structural gene for transcription during the cell cycle of the eucaryote Chlorella. J Biol Chem. 1973 Mar 25;248(6):1970–1975. [PubMed] [Google Scholar]
  7. Pate J. S., Atkins C. A., White S. T., Rainbird R. M., Woo K. C. Nitrogen Nutrition and Xylem Transport of Nitrogen in Ureide-producing Grain Legumes. Plant Physiol. 1980 May;65(5):961–965. doi: 10.1104/pp.65.5.961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Rowe P. B., McCairns E., Madsen G., Sauer D., Elliott H. De novo purine synthesis in avian liver. Co-purification of the enzymes and properties of the pathway. J Biol Chem. 1978 Nov 10;253(21):7711–7721. [PubMed] [Google Scholar]
  9. Sutton W. D., Jepsen N. M., Shaw B. D. Changes in the Number, Viability, and Amino-acid-incorporating Activity of Rhizobium Bacteroids during Lupin Nodule Development. Plant Physiol. 1977 Apr;59(4):741–744. doi: 10.1104/pp.59.4.741. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Sutton W. D., Mahoney P. Preparation and Fractionation of Rhizobium Bacteroids by Zone Sedimentation through Sucrose Gradients. Plant Physiol. 1977 Nov;60(5):800–802. doi: 10.1104/pp.60.5.800. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Tatum C. M., Jr, Benkovic P. A., Benkovic S. J., Potts R., Schleicher E., Floss H. G. Stereochemistry of methylene transfer involving 5,10-methylenetetrahydrofolate. Biochemistry. 1977 Mar 22;16(6):1093–1102. doi: 10.1021/bi00625a010. [DOI] [PubMed] [Google Scholar]
  12. Triplett E. W., Blevins D. G., Randall D. D. Allantoic Acid Synthesis in Soybean Root Nodule Cytosol via Xanthine Dehydrogenase. Plant Physiol. 1980 Jun;65(6):1203–1206. doi: 10.1104/pp.65.6.1203. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Woo K. C., Atkins C. A., Pate J. S. Biosynthesis of Ureides from Purines in a Cell-free System from Nodule Extracts of Cowpea [Vigna unguiculata (L) Walp.]. Plant Physiol. 1980 Oct;66(4):735–739. doi: 10.1104/pp.66.4.735. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES