Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1982 Aug;70(2):483–487. doi: 10.1104/pp.70.2.483

Organelle-Bound Malate Dehydrogenase Isoenzymes Are Synthesized as Higher Molecular Weight Precursors 1

Christine Gietl 1, Bertold Hock 1
PMCID: PMC1067174  PMID: 16662520

Abstract

Biosynthesis of malate dehydrogenase isoenzymes was studied in cotyledons of watermelons (Citrullus vulgaris Schrad., var. Stone Mountain). The glyoxysomal and mitochondrial isoenzymes are synthesized as higher molecular weight precursors which can be immunoprecipitated by mono-specific antibodies from the products of in vitro translation in reticulocyte lysates programed with cotyledonary mRNA and with the same size from enzyme extracts of pulse-labeled cotyledons. During translocation from the cytosol into the organelles, processing takes place. An 8 kilodalton extra sequence is cleaved from the glyoxysomal precursor and a 3.3 kilodalton extra sequence from the mitochondrial precursor producing the native subunits of 33 and 38 kilodaltons, respectively. The data support a post-translational translocation of the organelle-destined malate dehydrogenase isoenzymes. The in vitro translation of the cytosolic malate dehydrogenase I yields a product which has the same molecular weight as the subunit of the native isoenzyme (39.5 kilodaltons).

Full text

PDF
486

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Apel K. The protochlorophyllide holochrome of barley (Hordeum vulgare L.). Phytochrome-induced decrease of translatable mRNA coding for the NADPH: protochlorophyllide oxidoreductase. Eur J Biochem. 1981 Nov;120(1):89–93. doi: 10.1111/j.1432-1033.1981.tb05673.x. [DOI] [PubMed] [Google Scholar]
  2. Aziz L. E., Chien S. M., Patel H. V., Freeman K. B. A putative precursor of rat liver mitochondrial malate dehydrogenase. FEBS Lett. 1981 Oct 12;133(1):127–129. doi: 10.1016/0014-5793(81)80487-5. [DOI] [PubMed] [Google Scholar]
  3. Blobel G., Dobberstein B. Transfer of proteins across membranes. I. Presence of proteolytically processed and unprocessed nascent immunoglobulin light chains on membrane-bound ribosomes of murine myeloma. J Cell Biol. 1975 Dec;67(3):835–851. doi: 10.1083/jcb.67.3.835. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Blobel G. Intracellular protein topogenesis. Proc Natl Acad Sci U S A. 1980 Mar;77(3):1496–1500. doi: 10.1073/pnas.77.3.1496. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Campbell P. N., Blobel G. The role of organelles in the chemical modification of the primary translation products of secretory proteins. FEBS Lett. 1976 Dec 31;72(2):215–226. doi: 10.1016/0014-5793(76)80973-8. [DOI] [PubMed] [Google Scholar]
  6. Cleveland D. W., Fischer S. G., Kirschner M. W., Laemmli U. K. Peptide mapping by limited proteolysis in sodium dodecyl sulfate and analysis by gel electrophoresis. J Biol Chem. 1977 Feb 10;252(3):1102–1106. [PubMed] [Google Scholar]
  7. Dobberstein B., Blobel G., Chua N. H. In vitro synthesis and processing of a putative precursor for the small subunit of ribulose-1,5-bisphosphate carboxylase of Chlamydomonas reinhardtii. Proc Natl Acad Sci U S A. 1977 Mar;74(3):1082–1085. doi: 10.1073/pnas.74.3.1082. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Goldman B. M., Blobel G. Biogenesis of peroxisomes: intracellular site of synthesis of catalase and uricase. Proc Natl Acad Sci U S A. 1978 Oct;75(10):5066–5070. doi: 10.1073/pnas.75.10.5066. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Lazarow P. B. Properties of the natural precursor of catalase: implications for peroxisome biogenesis. Ann N Y Acad Sci. 1980;343:293–303. doi: 10.1111/j.1749-6632.1980.tb47259.x. [DOI] [PubMed] [Google Scholar]
  10. Marra E., Doonan S., Saccone C., Quagliariello E. Studies of the selective permeation of radioactively labelled aspartate aminotransferase isozymes into mitochondria in vitro. Eur J Biochem. 1978 Feb;83(2):427–435. doi: 10.1111/j.1432-1033.1978.tb12109.x. [DOI] [PubMed] [Google Scholar]
  11. Milstein C., Brownlee G. G., Harrison T. M., Mathews M. B. A possible precursor of immunoglobulin light chains. Nat New Biol. 1972 Sep 27;239(91):117–120. doi: 10.1038/newbio239117a0. [DOI] [PubMed] [Google Scholar]
  12. Passarella S., Marra E., Doonan S., Quagliariello E. Selective permeability of rat liver mitochondria to purified malate dehydrogenase isoenzymes in vitro. Biochem J. 1980 Nov 15;192(2):649–658. doi: 10.1042/bj1920649. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Riezman H., Weir E. M., Leaver C. J., Titus D. E., Becker W. M. Regulation of Glyoxysomal Enzymes during Germination of Cucumber: 3. IN VITRO TRANSLATION AND CHARACTERIZATION OF FOUR GLYOXYSOMAL ENZYMES. Plant Physiol. 1980 Jan;65(1):40–46. doi: 10.1104/pp.65.1.40. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Ruis H. The biosynthesis of catalase. Can J Biochem. 1979 Sep;57(9):1122–1130. doi: 10.1139/o79-144. [DOI] [PubMed] [Google Scholar]
  15. Walk R. A., Hock B. Cell-free synthesis of glyoxysomal malate dehydrogenase. Biochem Biophys Res Commun. 1978 Mar 30;81(2):636–643. doi: 10.1016/0006-291x(78)91583-8. [DOI] [PubMed] [Google Scholar]
  16. Yang N., Scandalios J. G. Cytoplasmic synthesis of soluble and mitochondrial malate dehydrogenase isozymes in maize. Arch Biochem Biophys. 1975 Dec;171(2):575–585. doi: 10.1016/0003-9861(75)90067-3. [DOI] [PubMed] [Google Scholar]
  17. Zimmermann R., Neupert W. Biogenesis of glyoxysomes. Synthesis and intracellular transfer of isocitrate lyase. Eur J Biochem. 1980 Nov;112(2):225–233. doi: 10.1111/j.1432-1033.1980.tb07198.x. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES