Skip to main content
Journal of Neurology, Neurosurgery, and Psychiatry logoLink to Journal of Neurology, Neurosurgery, and Psychiatry
. 1995 Mar;58(3):344–349. doi: 10.1136/jnnp.58.3.344

Multiple subpial transection: a review of 21 cases.

I M Sawhney 1, I J Robertson 1, C E Polkey 1, C D Binnie 1, R D Elwes 1
PMCID: PMC1073374  PMID: 7897419

Abstract

Multiple subpial transection (MST) is a novel technique in surgery for epilepsy, employed in patients where some or all of the epileptogenic zone cannot be resected because it lies in a vital cortical area. Twenty one patients subjected to MST were reviewed. Eighteen patients had medically intractable epilepsy and three patients had Landau-Kleffner syndrome. Their ages ranged from 6 to 47 (mean 15-9) and duration of epilepsy ranged from 0.33 to 42 (mean 8.6) years. Preoperative MRI showed focal abnormalities in eight cases. Detailed electrophysiological examination was carried out on all patients. Brain resection was performed in addition to MST in 12 patients. A further six patients underwent brain biopsy. Three patients with Landau-Kleffner syndrome were subjected neither to resection nor to biopsy. Histopathological examination showed Rasmussen's syndrome in six patients, cortical dysplasia in six, cerebral tumour in one, and non-specific changes in five. Multiple subpial transection was carried out mainly in precentral and postcentral regions. Eighteen patients have been followed up for one to five years, and three for 10 months. The three patients with Landau-Kleffner syndrome were mute before operation and have shown substantial recovery of speech. Of the other 18, 11 showed a worthwhile decrease in seizure frequency. None of the patients developed chronic neurological deficits attributable to MST. It is concluded that MST leads to worthwhile seizure control without major neurological deficit in patients who would otherwise be inoperable.

Full text

PDF
346

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Asanuma H. Recent developments in the study of the columnar arrangement of neurons within the motor cortex. Physiol Rev. 1975 Apr;55(2):143–156. doi: 10.1152/physrev.1975.55.2.143. [DOI] [PubMed] [Google Scholar]
  2. Asanuma H., Stoney S. D., Jr, Abzug C. Relationship between afferent input and motor outflow in cat motorsensory cortex. J Neurophysiol. 1968 Sep;31(5):670–681. doi: 10.1152/jn.1968.31.5.670. [DOI] [PubMed] [Google Scholar]
  3. Ayala G. F., Dichter M., Gumnit R. J., Matsumoto H., Spencer W. A. Genesis of epileptic interictal spikes. New knowledge of cortical feedback systems suggests a neurophysiological explanation of brief paroxysms. Brain Res. 1973 Mar 30;52:1–17. doi: 10.1016/0006-8993(73)90647-1. [DOI] [PubMed] [Google Scholar]
  4. Dichter M. A., Ayala G. F. Cellular mechanisms of epilepsy: a status report. Science. 1987 Jul 10;237(4811):157–164. doi: 10.1126/science.3037700. [DOI] [PubMed] [Google Scholar]
  5. Dichter M., Spencer W. A. Penicillin-induced interictal discharges from the cat hippocampus. I. Characteristics and topographical features. J Neurophysiol. 1969 Sep;32(5):649–662. doi: 10.1152/jn.1969.32.5.649. [DOI] [PubMed] [Google Scholar]
  6. Dichter M., Spencer W. A. Penicillin-induced interictal discharges from the cat hippocampus. II. Mechanisms underlying origin and restriction. J Neurophysiol. 1969 Sep;32(5):663–687. doi: 10.1152/jn.1969.32.5.663. [DOI] [PubMed] [Google Scholar]
  7. Goldensohn E. S., Zablow L., Salazar A. The penicillin focus. I. Distribution of potential at the cortical surface. Electroencephalogr Clin Neurophysiol. 1977 Apr;42(4):480–492. doi: 10.1016/0013-4694(77)90211-5. [DOI] [PubMed] [Google Scholar]
  8. HUBEL D. H., WIESEL T. N. Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. J Physiol. 1962 Jan;160:106–154. doi: 10.1113/jphysiol.1962.sp006837. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Honavar M., Janota I., Polkey C. E. Rasmussen's encephalitis in surgery for epilepsy. Dev Med Child Neurol. 1992 Jan;34(1):3–14. doi: 10.1111/j.1469-8749.1992.tb08558.x. [DOI] [PubMed] [Google Scholar]
  10. Lueders H., Bustamante L. A., Zablow L., Goldensohn E. S. The independence of closely spaced discrete experimental spike foci. Neurology. 1981 Jul;31(7):846–851. doi: 10.1212/wnl.31.7.846. [DOI] [PubMed] [Google Scholar]
  11. MATSUMOTO H., MARSAN C. A. CORTICAL CELLULAR PHENOMENA IN EXPERIMENTAL EPILEPSY: ICTAL MANIFESTATIONS. Exp Neurol. 1964 Apr;9:305–326. doi: 10.1016/0014-4886(64)90026-3. [DOI] [PubMed] [Google Scholar]
  12. MATSUMOTO H., MARSAN C. A. CORTICAL CELLULAR PHENOMENA IN EXPERIMENTAL EPILEPSY: INTERICTAL MANIFESTATIONS. Exp Neurol. 1964 Apr;9:286–304. doi: 10.1016/0014-4886(64)90025-1. [DOI] [PubMed] [Google Scholar]
  13. Morrell F., Whisler W. W., Bleck T. P. Multiple subpial transection: a new approach to the surgical treatment of focal epilepsy. J Neurosurg. 1989 Feb;70(2):231–239. doi: 10.3171/jns.1989.70.2.0231. [DOI] [PubMed] [Google Scholar]
  14. SPERRY R. W., MINER N., MYERS R. E. Visual pattern perception following sub-pial slicing and tantalum wire implantations in the visual cortex. J Comp Physiol Psychol. 1955 Feb;48(1):50–58. doi: 10.1037/h0043456. [DOI] [PubMed] [Google Scholar]
  15. SPERRY R. W., MINER N. Pattern perception following insertion of mica plates into visual cortex. J Comp Physiol Psychol. 1955 Dec;48(6):463–469. doi: 10.1037/h0046231. [DOI] [PubMed] [Google Scholar]
  16. Shimizu H., Suzuki I., Ishijima B., Karasawa S., Sakuma T. Multiple subpial transection (MST) for the control of seizures that originated in unresectable cortical foci. Jpn J Psychiatry Neurol. 1991 Jun;45(2):354–356. doi: 10.1111/j.1440-1819.1991.tb02486.x. [DOI] [PubMed] [Google Scholar]
  17. Tharp B. R. The penicillin focus: a study of field characteristics using cross-correlation analysis. Electroencephalogr Clin Neurophysiol. 1971 Jul;31(1):45–55. doi: 10.1016/0013-4694(71)90288-4. [DOI] [PubMed] [Google Scholar]
  18. Walden J., Straub H., Speckmann E. J. Epileptogenesis: contributions of calcium ions and antiepileptic calcium antagonists. Acta Neurol Scand Suppl. 1992;140:41–46. doi: 10.1111/j.1600-0404.1992.tb04469.x. [DOI] [PubMed] [Google Scholar]
  19. Wong R. K., Prince D. A., Basbaum A. I. Intradendritic recordings from hippocampal neurons. Proc Natl Acad Sci U S A. 1979 Feb;76(2):986–990. doi: 10.1073/pnas.76.2.986. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Neurology, Neurosurgery, and Psychiatry are provided here courtesy of BMJ Publishing Group

RESOURCES