Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1985 Sep;79(1):103–107. doi: 10.1104/pp.79.1.103

Peroxidase Activity in Relation to Suberization and Respiration in White Spruce (Picea glauca [Moench] Voss) Seedling Roots 1

Anne M Johnson-Flanagan 1,2, John N Owens 1
PMCID: PMC1074835  PMID: 16664352

Abstract

Peroxidase (EC 1.11.1.7) activity is associated with suberization during endodermal development and metacutization in roots of white spruce (Picea glauca [Moench] Voss) seedlings. Histochemical analysis indicates a relationship between suberization and peroxidase activity, but peroxidase is ubiquitous. Increased peroxidase activity results from the induction of four anodic peroxidase isozymes in addition to quantitative increases in two anodic peroxidase isozymes. Four of these polymerized eugenol. Cold temperatures induce formation of two anodic isozymes and result in suberization. The increased peroxidase activity associated with suberization is correlated to residual respiration. In an attempt to elucidate this relationship, the effect of respiratory inhibitors on respiration and peroxidase activity are compared.

Full text

PDF
105

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Borchert R. Time course and spatial distribution of phenylalanine ammonia-lyase and peroxidase activity in wounded potato tuber tissue. Plant Physiol. 1978 Nov;62(5):789–793. doi: 10.1104/pp.62.5.789. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Harkin J. M., Obst J. R. Lignification in trees: indication of exclusive peroxidase participation. Science. 1973 Apr 20;180(4083):296–298. doi: 10.1126/science.180.4083.296. [DOI] [PubMed] [Google Scholar]
  3. Kolattukudy P. E. Biopolyester membranes of plants: cutin and suberin. Science. 1980 May 30;208(4447):990–1000. doi: 10.1126/science.208.4447.990. [DOI] [PubMed] [Google Scholar]
  4. Miller M. G., Obendorf R. L. Use of Tetraethylthiuram Disulfide to Discriminate between Alternative Respiration and Lipoxygenase. Plant Physiol. 1981 May;67(5):962–964. doi: 10.1104/pp.67.5.962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Rich P. R., Boveris A., Bonner W. D., Jr, Moore A. L. Hydrogen peroxide generation by the alternate oxidase of higher plants. Biochem Biophys Res Commun. 1976 Aug 9;71(3):695–703. doi: 10.1016/0006-291x(76)90887-1. [DOI] [PubMed] [Google Scholar]
  6. Rich P. R., Wiegand N. K., Blum H., Moore A. L., Bonner W. D., Jr Studies on the mechanism of inhibition of redox enzymes by substituted hydroxamic acids. Biochim Biophys Acta. 1978 Aug 7;525(2):325–337. doi: 10.1016/0005-2744(78)90227-9. [DOI] [PubMed] [Google Scholar]
  7. Schonbaum G. R. New complexes of peroxidases with hydroxamic acids, hydrazides, and amides. J Biol Chem. 1973 Jan 25;248(2):502–511. [PubMed] [Google Scholar]
  8. Sedmak J. J., Grossberg S. E. A rapid, sensitive, and versatile assay for protein using Coomassie brilliant blue G250. Anal Biochem. 1977 May 1;79(1-2):544–552. doi: 10.1016/0003-2697(77)90428-6. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES