Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1985 Sep;79(1):207–211. doi: 10.1104/pp.79.1.207

Displacement of Ca2+ by Na+ from the Plasmalemma of Root Cells 1

A Primary Response to Salt Stress?

Grant R Cramer 1,2, André Läuchli 1,2, Vito S Polito 1,2
PMCID: PMC1074853  PMID: 16664372

Abstract

A microfluorometric assay using chlorotetracycline (CTC) as a probe for membrane-associated Ca2+ in intact cotton (Gossypium hirsutum L. cv Acala SJ-2) root hairs indicated displacement of Ca2+ by Na+ from membrane sites with increasing levels of NaCl (0 to 250 millimolar). K+(86Rb) efflux increased dramatically at high salinity. An increase in external Ca2+ concentration (10 millimolar) mitigated both responses. Other cations and mannitol, which did not affect Ca2+-CTC chelation properties, were found to have no effect on Ca2+-CTC fluorescence, indicating a Na+-specific effect. Reduction of Ca2+-CTC fluorescence by ethyleneglycol-bis-(β-aminoethyl ether) N,N′-tetraacetic acid, which does not cross membranes, provided an indication that reduction by Na+ of Ca2+-CTC fluorescence may be occurring primarily at the plasmalemma. The findings support prior proposals that Ca2+ protects membranes from adverse effects of Na+ thereby maintaining membrane integrity and minimizing leakage of cytosolic K+.

Full text

PDF
207

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ben-Hayyim G., Kochba J. Aspects of Salt Tolerance in a NaCl-Selected Stable Cell Line of Citrus sinensis. Plant Physiol. 1983 Jul;72(3):685–690. doi: 10.1104/pp.72.3.685. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Boyer J. S. Plant productivity and environment. Science. 1982 Oct 29;218(4571):443–448. doi: 10.1126/science.218.4571.443. [DOI] [PubMed] [Google Scholar]
  3. Caswell A. H. Methods of measuring intracellular calcium. Int Rev Cytol. 1979;56:145–181. doi: 10.1016/s0074-7696(08)61822-7. [DOI] [PubMed] [Google Scholar]
  4. Chandler D. E., Williams J. A. Intracellular divalent cation release in pancreatic acinar cells during stimulus-secretion coupling. I. Use of chlorotetracycline as fluorescent probe. J Cell Biol. 1978 Feb;76(2):371–385. doi: 10.1083/jcb.76.2.371. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Epstein E., Norlyn J. D., Rush D. W., Kingsbury R. W., Kelley D. B., Cunningham G. A., Wrona A. F. Saline culture of crops: a genetic approach. Science. 1980 Oct 24;210(4468):399–404. doi: 10.1126/science.210.4468.399. [DOI] [PubMed] [Google Scholar]
  6. Epstein E. The essential role of calcium in selective cation transport by plant cells. Plant Physiol. 1961 Jul;36(4):437–444. doi: 10.1104/pp.36.4.437. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gains N. The limitations of chlorotetracycline as a fluorescent probe of divalent cations associated with membranes. Eur J Biochem. 1980 Oct;111(1):199–202. doi: 10.1111/j.1432-1033.1980.tb06093.x. [DOI] [PubMed] [Google Scholar]
  8. Hallett M., Schneider A. S., Carbone E. Tetracycline fluorescence as calcium-probe for nerve membrane with some model studies using erythrocyte ghosts. J Membr Biol. 1972;10(1):31–44. doi: 10.1007/BF01867846. [DOI] [PubMed] [Google Scholar]
  9. Lahaye P. A., Epstein E. Salt toleration by plants: enhancement with calcium. Science. 1969 Oct 17;166(3903):395–396. doi: 10.1126/science.166.3903.395. [DOI] [PubMed] [Google Scholar]
  10. Läuchli A., Epstein E. Transport of potassium and rubidium in plant roots: the significance of calcium. Plant Physiol. 1970 May;45(5):639–641. doi: 10.1104/pp.45.5.639. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. McFarlane J. C. Cation Penetration through Isolated Leaf Cuticles. Plant Physiol. 1974 May;53(5):723–727. doi: 10.1104/pp.53.5.723. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Williamson R. E., Ashley C. C. Free Ca2+ and cytoplasmic streaming in the alga Chara. Nature. 1982 Apr 15;296(5858):647–650. doi: 10.1038/296647a0. [DOI] [PubMed] [Google Scholar]
  13. Wolniak S. M., Hepler P. K., Jackson W. T. Detection of the membrane-calcium distribution during mitosis in Haemanthus endosperm with chlorotetracycline. J Cell Biol. 1980 Oct;87(1):23–32. doi: 10.1083/jcb.87.1.23. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Young D. H., Kauss H. Release of Calcium from Suspension-Cultured Glycine max Cells by Chitosan, Other Polycations, and Polyamines in Relation to Effects on Membrane Permeability. Plant Physiol. 1983 Nov;73(3):698–702. doi: 10.1104/pp.73.3.698. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES