Abstract
Eight cultivars Sorghum bicolor (L.) Moench were grown as callus cultures under induced, prolonged water stress (8 weeks), with polyethylene glycol in the medium. Concentrations of soluble carbohydrates and organic acids in callus were measured at the end of the growth period to determine differences in response to prolonged water stress. Sucrose, glucose, fructose, and malate were the predominant solutes detected in all callus at all water potentials. All cultivars had high levels of solutes in the absence of water stress and low levels in the presence of prolonged water stress. However, at low water potentials, low levels of solutes were observed in drought-tolerant cultivar callus and high solute levels were observed in drought-susceptible cultivar callus. Estimated sucrose concentrations were significantly higher in water-stressed, susceptible cultivar callus. Large solute concentrations in susceptible cultivar callus were attributed to osmotic adjustment and/or reduced growth during water stress.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bhaskaran S., Smith R. H., Newton R. J. Physiological changes in cultured sorghum cells in response to induced water stress : I. Free proline. Plant Physiol. 1985 Sep;79(1):266–269. doi: 10.1104/pp.79.1.266. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bressan R. A., Handa A. K., Handa S., Hasegawa P. M. Growth and water relations of cultured tomato cells after adjustment to low external water potentials. Plant Physiol. 1982 Nov;70(5):1303–1309. doi: 10.1104/pp.70.5.1303. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Handa S., Bressan R. A., Handa A. K., Carpita N. C., Hasegawa P. M. Solutes contributing to osmotic adjustment in cultured plant cells adapted to water stress. Plant Physiol. 1983 Nov;73(3):834–843. doi: 10.1104/pp.73.3.834. [DOI] [PMC free article] [PubMed] [Google Scholar]