Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1990 Sep;94(1):127–131. doi: 10.1104/pp.94.1.127

Gibberellin A3 Is Biosynthesized from Gibberellin A20 via Gibberellin A5 in Shoots of Zea mays L. 1

Shozo Fujioka 1,2,3,2, Hisakazu Yamane 1,2,3, Clive R Spray 1,2,3, Bernard O Phinney 1,2,3, Paul Gaskin 1,2,3, Jake MacMillan 1,2,3, Nobutaka Takahashi 1,2,3
PMCID: PMC1077200  PMID: 16667678

Abstract

[17-13C,3H]-Labeled gibberellin A20 (GA20), GA5, and GA1 were fed to homozygous normal (+/+), heterozygous dominant dwarf (D8/+), and homozygous dominant dwarf (D8/D8) seedlings of Zea mays L. (maize). 13C-Labeled GA29, GA8, GA5, GA1, and 3-epi-GA1, as well as unmetabolized [13C]GA20, were identified by gas chromatography-selected ion monitoring (GC-SIM) from feeds of [17-13C, 3H]GA20 to all three genotypes. 13C-Labeled GA8 and 3-epi-G1, as well as unmetabolized [13C]GA1, were identified by GC-SIM from feeds of [17-13C, 3H]GA1 to all three genotypes. From feeds of [17-13C, 3H]GA5, 13C-labeled GA3 and the GA3-isolactone, as well as unmetabolized [13C]GA5, were identified by GC-SIM from +/+ and D8/D8, and by full scan GC-MS from D8/+. No evidence was found for the metabolism of [17-13C, 3H]GA5 to [13C]GA1, either by full scan GC-mass spectrometry or by GC-SIM. The results demonstrate the presence in maize seedlings of three separate branches from GA20, as follows: (a) GA20 → GA1 → GA8; (b) GA20 → GA5 → GA3; and (c) GA20 → GA29. The in vivo biogenesis of GA3 from GA5, as well as the origin of GA5 from GA20, are conclusively established for the first time in a higher plant (maize shoots).

Full text

PDF

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albone K. S., Gaskin P., Macmillan J., Phinney B. O., Willis C. L. Biosynthetic Origin of Gibberellins A(3) and A(7) in Cell-Free Preparations from Seeds of Marah macrocarpus and Malus domestica. Plant Physiol. 1990 Sep;94(1):132–142. doi: 10.1104/pp.94.1.132. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Davies L. J., Rappaport L. Metabolism of Tritiated Gibberellins in d-5 Dward Maize: II. [H]Gibberellin A(1), [H]Gibberellin A(3), and Related Compounds. Plant Physiol. 1975 Jul;56(1):60–66. doi: 10.1104/pp.56.1.60. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Davies L. J., Rappaport L. Metabolism of Tritiated Gibberellins in d-5 Dwarf Maize: I. In Excised Tissues and Intact Dwarf and Normal Plants. Plant Physiol. 1975 Apr;55(4):620–625. doi: 10.1104/pp.55.4.620. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Fujioka S., Yamane H., Spray C. R., Gaskin P., Macmillan J., Phinney B. O., Takahashi N. Qualitative and Quantitative Analyses of Gibberellins in Vegetative Shoots of Normal, dwarf-1, dwarf-2, dwarf-3, and dwarf-5 Seedlings of Zea mays L. Plant Physiol. 1988 Dec;88(4):1367–1372. doi: 10.1104/pp.88.4.1367. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Fujioka S., Yamane H., Spray C. R., Katsumi M., Phinney B. O., Gaskin P., Macmillan J., Takahashi N. The dominant non-gibberellin-responding dwarf mutant (D8) of maize accumulates native gibberellins. Proc Natl Acad Sci U S A. 1988 Dec;85(23):9031–9035. doi: 10.1073/pnas.85.23.9031. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Gräbner R., Schneider G., Sembdner G. Gibberelline. XLIII. Mitt. Fraktionierung von Gibberellinen, Gibberellinkonjugaten und anderen Phytohormonen durch DEAE-Sephadex-Chromatographie. J Chromatogr. 1976 Jun 9;121(1):110–115. doi: 10.1016/s0021-9673(00)82310-9. [DOI] [PubMed] [Google Scholar]
  7. Ikeda K., Weir E. C., Sakaguchi K., Burtis W. J., Zimering M., Mangin M., Dreyer B. E., Brandi M. L., Aurbach G. D., Broadus A. E. Clonal rat parathyroid cell line expresses a parathyroid hormone-related peptide but not parathyroid hormone itself. Biochem Biophys Res Commun. 1989 Jul 14;162(1):108–115. doi: 10.1016/0006-291x(89)91969-4. [DOI] [PubMed] [Google Scholar]
  8. Kwak R., Takeuchi F., Yamamoto N., Nakamura T., Kadoya S. [Intracranial physiological calcification on computed tomography (Part 2): Calcification in the choroid plexus of the lateral ventricles]. No To Shinkei. 1988 Aug;40(8):707–711. [PubMed] [Google Scholar]
  9. Rood S. B., Koshioka M., Douglas T. J., Pharis R. P. Metabolism of tritiated gibberellin a(20) in maize. Plant Physiol. 1982 Dec;70(6):1614–1618. doi: 10.1104/pp.70.6.1614. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. de Bottini G. A., Bottini R., Koshioka M., Pharis R. P., Coombe B. G. Metabolism of [H]Gibberellin A(5) by Immature Seeds of Apricot (Prunus armeniaca L.). Plant Physiol. 1987 Jan;83(1):137–142. doi: 10.1104/pp.83.1.137. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES