Abstract
Agrobacterium tumefaciens is established as a vector for gene transfer in many dicotyledonous plants but is not accepted as a vector in monocotyledonous plants, especially in the important Gramineae. The use of Agrobacterium to transfer genes into monocot species could simplify the transformation and improvement of important crop plants. In this report we describe the use of Agrobacterium to transfer a gene into corn, the regeneration of plants, and detection of the transferred genes in the F1 progeny. Shoot apices of Zea mays L. variety Funk's G90 were cocultivated with A. tumefaciens EHA 1, which harbored the plasmid pGUS3 containing genes for kanamycin resistance (NPT II) and β-glucuronidase (GUS). Plants developed from these explants within 4 to 6 weeks. Fluorometric GUS assays of leaves and immature seeds from the plants exhibited low GUS activity. Both NOS and GUS gene fragments were amplified by polymerase chain reaction in the DNA isolated from the F1 generations of one of the original transformed plants. Southern analysis showed both GUS and NPT probes hybridized to DNA in several of the F1 progeny, demonstrating the incorporation of GUS and NPT II genes into high molecular weight DNA. These data establish successful gene transfer and sexual inheritance of the genes.
Full text
PDFImages in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bytebier B., Deboeck F., De Greve H., Montagu M. V., Hernalsteens J. P. T-DNA organization in tumor cultures and transgenic plants of the monocotyledon Asparagus officinalis. Proc Natl Acad Sci U S A. 1987 Aug;84(15):5345–5349. doi: 10.1073/pnas.84.15.5345. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Christou P., Platt S. G., Ackerman M. C. Opine synthesis in wild-type plant tissue. Plant Physiol. 1986 Sep;82(1):218–221. doi: 10.1104/pp.82.1.218. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fromm M. E., Morrish F., Armstrong C., Williams R., Thomas J., Klein T. M. Inheritance and expression of chimeric genes in the progeny of transgenic maize plants. Biotechnology (N Y) 1990 Sep;8(9):833–839. doi: 10.1038/nbt0990-833. [DOI] [PubMed] [Google Scholar]
- Gordon-Kamm W. J., Spencer T. M., Mangano M. L., Adams T. R., Daines R. J., Start W. G., O'Brien J. V., Chambers S. A., Adams W. R., Jr, Willetts N. G. Transformation of Maize Cells and Regeneration of Fertile Transgenic Plants. Plant Cell. 1990 Jul;2(7):603–618. doi: 10.1105/tpc.2.7.603. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Graves A. E., Goldman S. L., Banks S. W., Graves A. C. Scanning electron microscope studies of Agrobacterium tumefaciens attachment to Zea mays, Gladiolus sp., and Triticum aestivum. J Bacteriol. 1988 May;170(5):2395–2400. doi: 10.1128/jb.170.5.2395-2400.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grimsley N., Hohn B., Ramos C., Kado C., Rogowsky P. DNA transfer from Agrobacterium to Zea mays or Brassica by agroinfection is dependent on bacterial virulence functions. Mol Gen Genet. 1989 Jun;217(2-3):309–316. doi: 10.1007/BF02464898. [DOI] [PubMed] [Google Scholar]
- Hernalsteens J. P., Thia-Toong L., Schell J., Van Montagu M. An Agrobacterium-transformed cell culture from the monocot Asparagus officinalis. EMBO J. 1984 Dec 20;3(13):3039–3041. doi: 10.1002/j.1460-2075.1984.tb02254.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stomp A. M., Loopstra C., Chilton W. S., Sederoff R. R., Moore L. W. Extended Host Range of Agrobacterium tumefaciens in the Genus Pinus. Plant Physiol. 1990 Apr;92(4):1226–1232. doi: 10.1104/pp.92.4.1226. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Veluthambi K., Krishnan M., Gould J. H., Smith R. H., Gelvin S. B. Opines stimulate induction of the vir genes of the Agrobacterium tumefaciens Ti plasmid. J Bacteriol. 1989 Jul;171(7):3696–3703. doi: 10.1128/jb.171.7.3696-3703.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]