Skip to main content
Persoonia : Molecular Phylogeny and Evolution of Fungi logoLink to Persoonia : Molecular Phylogeny and Evolution of Fungi
. 2022 Aug 13;49:201–260. doi: 10.3767/persoonia.2022.49.07

Diversity of Sporocadaceae (pestalotioid fungi) from Rosa in China

C Peng 1, PW Crous 2,3,4, N Jiang 5, XL Fan 1, YM Liang 6, CM Tian 1,*
PMCID: PMC10792223  PMID: 38234377

Abstract

Rosa (Rosaceae) is an important ornamental and medicinal plant genus worldwide, with several species being cultivated in China. Members of Sporocadaceae (pestalotioid fungi) are globally distributed and include endophytes, saprobes but also plant pathogens, infecting a broad range of host plants on which they can cause important plant diseases. Although several Sporocadaceae species were recorded to inhabit Rosa spp., the taxa occurring on Rosa remain largely unresolved. In this study, a total of 295 diseased samples were collected from branches, fruits, leaves and spines of eight Rosa species (R. chinensis, R. helenae, R. laevigata, R. multiflora, R. omeiensis, R. rugosa, R. spinosissima and R. xanthina) in Gansu, Henan, Hunan, Qinghai, Shaanxi Provinces and the Ningxia Autonomous Region of China. Subsequently 126 strains were obtained and identified based on comparisons of DNA sequence data. Based on these results 15 species residing in six genera of Sporocadaceae were delineated, including four known species (Pestalotiopsis chamaeropis, Pes. rhodomyrtus, Sporocadus sorbi and Spo. trimorphus) and 11 new species described here as Monochaetia rosarum, Neopestalotiopsis concentrica, N. subepidermalis, Pestalotiopsis tumida, Seimatosporium centrale, Seim. gracile, Seim. nonappendiculatum, Seim. parvum, Seiridium rosae, Sporocadus brevis, and Spo. spiniger. This study also represents the first report of Pes. chamaeropis, Pes. rhodomyrtus and Spo. sorbi on Rosa. The overall data revealed that Pestalotiopsis was the most prevalent genus, followed by Seimatosporium, while Pes. chamaeropis and Pes. rhodomyrtus were the two most prevalent species. Analysis of Sporocadaceae abundance on Rosa species and plant organs revealed that spines of R. chinensis had the highest species diversity.

Citation: Peng C, Crous PW, Jiang N, et al. 2022. Diversity of Sporocadaceae (pestalotioid fungi) from Rosa in China. Persoonia 49: 201–260. https://doi.org/10.3767/persoonia.2022.49.07.

Keywords: Amphisphaeriales, Ascomycota, new taxa, phylogeny, taxonomy

INTRODUCTION

Sporocadaceae (Xylariales, Sordariomycetes) is a well-known fungal family containing pestalotioid fungi. Traditionally, pestalotioid fungi are circumscribed as a group of coelomycetous fungi having fusoid or nearly fusoid, multi-septate conidia, with appendages at one or both ends (Nag Raj 1993, Maharachchikumbura et al. 2014, Liu et al. 2019).

Pestalotioid fungi were previously classified in Amphisphaeriaceae, Amphisphaeriales (Eriksson 1986, Samuels et al. 1987). Subsequently, several studies suggested that Amphisphaeriales should not be accepted due to the lack of stable phylogenetic support, and hence it was treated as synonym of Xylariales (Eriksson 1987, Kang et al. 1999, Smith et al. 2003). Later, Senanayake et al. (2015) revised Xylariomycetidae and transferred several important genera of pestalotioid fungi from Amphisphaeriaceae to three new families, Bartaliniaceae, Discosiaceae and Pestalotiopsidaceae. Genera such as Bartalinia and Broomella were transferred to Bartaliniaceae, Discosia and Seimatosporium to Discosiaceae, and Neopestalotiopsis, Pestalotiopsis, Pseudopestalotiopsis, Monochaetia and Seiridium to Pestalotiopsidaceae. Crous et al. (2015a) introduced a new family Robillardaceae to accommodate Robillarda. Subsequently, Jaklitsch et al. (2016) grouped the pestalotioid fungi into a single family and revived the older family name Sporocadaceae. Therefore, Bartaliniaceae, Discosiaceae, Pestalotiopsidaceae and Robillardaceae became synonyms of Sporocadaceae. These families were classified in Amphisphaeriales which was resurrected instead of Xylariales (Senanayake et al. 2015). Recently, several studies treated Amphisphaeriales as a distinct order (Senanayake et al. 2015, Samarakoon 2016, Hongsanan et al. 2017, Wijayawardene et al. 2020) . Based on multi-locus phylogenetic analyses with morphological characters, Liu et al. (2019) confirmed the natural taxonomic status of Sporocadaceae, which currently contains 33 genera (Liu et al. 2019, Wijayawardene et al. 2020).

Sporocadaceae contains many important plant pathogens associated with diseases on a wide range of plant hosts worldwide (Maharachchikumbura et al. 2014, Liu et al. 2019, Norphanphoun et al. 2019). Within the family, pestalotiopsis-like taxa (Neopestalotiopsis, Pestalotiopsis and Pseudopestalotiopsis) are the group that has received the most attention (Maharachchikumbura et al. 2014, Wang et al. 2019b, Gualberto et al. 2021) . For example, N. mangiferae and N. palmarum cause leaf diseases on a variety of cash crops in Brazil, South Africa and India, weakening tree vigour, and even reducing yield in severe cases (Spaulding 1949, Mendes et al. 1998, Crous et al. 2000). Pestalotiopsis pini is an emerging pathogen causing shoot blight and stem necrosis on Pinus pinea (Silva et al. 2020), while in Australia, Pes. telopeae causes a serious leaf spot disease of Telopea spp. (Maharachchikumbura et al. 2014). Furthermore, pestalotiopsis-like fungi are widespread, occur on many hosts in Proteaceae, and are generally regarded to be saprobic or weakly pathogenic (Crous et al. 2013). Neopestalotiopsis protearum was recorded as causing leaf spots and blight on several Protea and Leucospermum hosts in Zimbabwe (Swart et al. 1999, Crous et al. 2011b). This species is also reported from Australia and Proteaceae in the Western Cape Province of South Africa (Crous et al. 2013). Neopestalotiopsis protearum is probably only a problem of commercial importance in summer rainfall areas and it has been intercepted at quarantine inspection points (Taylor 2000). Pestalotiopsis montellicoides was isolated from Protea cynaroides leaves from South Africa (Mordue 1986), and a Pestalotiopsis sp. (asexual Pestalosphaeria leucospermi), was described from living leaves of a Leucospermum sp. in New Zealand (Samuels et al. 1987). In Portugal and the Canary Islands, a species of Pestalotiopsis is commonly associated with tip blight and leaf spot symptoms on Protea, Leucospermum and Leucadendron species, although pathogenicity studies have not yet been conducted (Crous et al. 2013). Members of Pseudopestalotiopsis are cosmopolitan in distribution and have often been regarded as leaves spot pathogens occurring on a broad host range, e.g., Pse. elaeidis and Pse. theae cause foliar diseases in more than 60 hosts around the world in tropical and subtropical areas (Maharachchikumbura et al. 2014, Liu et al. 2019). In addition to pestalotiopsis-like species, the diseases caused by other groups of Sporocadaceae cannot be underestimated. Cypress canker is caused by several species of Seiridium (Bonthond et al. 2018), Allelochaeta is an important foliar pathogen of eucalypts (Crous et al. 2019b), and some species of Distononappendiculata and Truncatella cause diseases on a wide range of hosts (Crous et al. 2011a, 2013, Liu et al. 2019).

Sporocadaceae has an extremely rich species diversity in China. The investigation of the biodiversity of plant-associated pestalotioid fungi in China date back as far as 1886, when Patouillard collected and described many species from Yunnan (Patouillard 1886). With subsequent research, a total of 310 species belonging to 22 genera were reported in China, inhabiting many hosts, especially in Juglandaceae, Myrtaceae, Pinaceae, Podocarpaceae, Rhododendronaceae, Rosaceae, Theaceae and Vitaceae (Chen 2003, Ge et al. 2009, Liu et al. 2019). Most of the previous studies on Sporocadaceae in China focused on Pestalotiopsis. Previous investigations on Pestalotiopsis in China were summarised by Tai (1979), in which 38 species from 52 plant hosts were listed. A wider survey included 153 species obtained from at least 406 plant species, 67 of which are endemic to China (Ge et al. 2009). Hitherto 203 species have been reported in China, accounting for more than 65 % of the total records of this family in China. However, the distribution of 11 genera in China is still unknown, i.e., Ciliochorella, Clypeosphaeria, Diploceras, Disaeta, Distononappendiculata, Heterotruncatella, Hyalotiella, Morinia, Nonappendiculata, Parabartalinia and Xenseimatosporium. Furthermore, many species of Sporocadaceae can also cause serious plant diseases in China. Pseudopestalotiopsis camelliae-sinensis is responsible for grey blight of tea plants and causes serious losses in some tea-growing regions of China (Wang et al. 2019b), while Pes. apiculata causes severe top blight of cedar seedlings (Ge et al. 2009). Monochaetia kansensis and M. monochaeta cause leaf spots on a variety of Quercus and Castanea plants (Teng 1996, Chen et al. 2002, Chen 2003), and Truncatella laurocerasi causes grey blight and leaf spot on Eriobotrya in China (Tai 1979). Considering the importance of pestalotioid fungi, it is necessary to clarify the species diversity and distribution of Sporocadaceae in China in a modern taxonomic framework.

Rosa (Rosaceae) is widely distributed in tropical to cold temperate regions of the Northern Hemisphere, including approximately 200 species (Bruneau et al. 2007, Fougère-Danezan et al. 2015). China is the main distribution area of Rosa plants globally (Wu et al. 2003). There are currently 95 Rosa spp. in China (65 of which are endemic), accounting for about 41 % of the global total (Jin 2020). Rosa species are widely cultivated and are of immense economic importance in China (Liu 2016). As important ornamental plants, Rosa spp. play a key role in Chinese landscaping (Zhang et al. 2009). Furthermore, Rosa species are important raw materials for the spice and food industry, and a rose industry has been established in many parts of China, generating huge income for the local economy (Wang 2021). Most Rosa spp. can be used in traditional Chinese medicines, having great nutritional and medicinal value (Wang 2021). In addition to these, Rosa spp. are important resource species for ecological and vegetation restoration, having great ecological value in China, because many rose species have strong resistance to stress and can survive in harsh environments (Liu 2016).

Many fungal taxa such as Botryosphaeria dothidea, Botrytis cinerea, Chaetomella raphigera, Colletotrichum siamense, Cytospora spp., Diplocarpon rosae, Elsinoe rosarum and Lasiodiplodia theobromae have in the past been identified as the causal agents of various diseases of Rosa spp. in China, and severely limited their production. (Zhang et al. 2014, Bagsic et al. 2016, Chen et al. 2016, Debener 2019, Feng et al. 2019 Jia et al. 2019, Munoz et al. 2019, Pan et al. 2020). Members of Sporocadaceae have also been reported to cause diseases on Rosa spp. Examples include cankers caused by N. rosicola, dieback caused by Ciliochorella mangiferae and Robillarda sessilis, stem lesions caused by N. rosae and R. sessilis, and leaf spots caused by Diploceras discosioides, Discosia artocreas and Truncatella angustata (Weiss 1950, Mathur 1979, Peregrine & Ahmad 1982, Eken et al. 2009, Maharachchikumbura et al. 2014, Jiang et al. 2018). Furthermore, Rosa has proven to represent a rich niche of undescribed species of Sporocadaceae, with many remaining poorly identified, as the generic concepts have been in flux until recently (Liu et al. 2019). Therefore, conducting detailed surveys of pestalotioid fungi from Rosa spp. in China was necessary. The aims of the present study were thus to identify these fungi based on phylogenetic analyses and morphological comparisons, describe the species new to science, and gain a better understanding of the diversity and prevalence of Sporocadaceae associated with Rosa spp. in China.

MATERIALS AND METHODS

Sampling and isolation

A total of 295 Rosa samples (branches, fruits, leaves and spines) showing disease symptoms (Fig. 1) were collected from five provinces (Gansu, Henan, Hunan, Qinghai and Shaanxi) and the Ningxia Autonomous Region of China, which are the main production areas of Rosa plants in China. The Rosa species sampled include R. chinensis, R. helenae, R. laevigata, R. multiflora, R. omeiensis, R. rugosa, R. spinosissima and R. xanthina.

Fig. 1.

Fig. 1

Disease symptoms on Rosa associated with infection by Sporocadaceae. a–c. Leaves spots on Rosa rugosa caused by Pestalotiopsis rhodomyrtus; d–e. lesion developing on the fruits of Rosa laevigata infected by Seimatosporium nonappendiculatum; f. dying bush; g–h. dieback on (g) Rosa rugosa and (h) Rosa xanthina caused by Seiridium rosae and Sporocadus sorbi; i–j. sporocarps of Pestalotiopsis chamaeropis and Seimatosporium centrale on the spines of (i) Rosa rugosa and (j) Rosa chinensis.

A total of 126 strains were obtained by removing the spore mass from conidiomata and generating single spore colonies, or plating superficially sterilised diseased tissue on potato dextrose agar (PDA, 20 % diced potatoes, 2 % agar and 2 % glucose) and incubating Petri dishes at 25 °C in the dark for 2–3 d. When colonies just formed, they were hyphal-tipped and transferred to fresh PDA Petri dishes (Crous et al. 2019a). Type specimens of new species from this study were deposited in the Museum of the Beijing Forestry University (BJFC), and ex-type living cultures were deposited in the China Forestry Culture Collection Centre (CFCC), Beijing, China.

Morphological analyses

Cultures were incubated on PDA at 25 °C in a 12 h day/night regime (Crous et al. 2019a). After 15 d, colony diameters were measured and colony colours were rated according to Rayner (1970). Slide preparations were mounted in lactic acid or water, from colonies sporulating on PDA, autoclaved pine needles on 2 % tap water agar (Smith et al. 1996), and incubated at 25 °C under continuous nuv-light to promote sporulation. Sections through stromata were made by hand. Observations were made with a Leica DM 2500 dissecting microscope (Wetzlar, Germany), and with a Nikon Eclipse 80i compound microscope using differential interference contrast (DIC) illumination and images recorded on a Nis DS-Ri2 camera with the Nikon NisElements F4.30.01 software. Conidial length was measured from the base of the basal cell to the base of the apical appendage, and conidial width was measured at the widest point of the conidium (Bonthond et al. 2018). Taxonomic novelties were deposited in MycoBank (Crous et al. 2004).

DNA extraction, PCR amplification and sequencing

Total genomic DNA was extracted from axenic cultures using a modified cetyltrimethylammonium bromide (CTAB) protocol (Doyle & Doyle 1990). DNA products were stored at -20 °C. The extracted DNA was used as template for the polymerase chain reaction (PCR). PCR reaction primers (forward and reverse) of each fungal genus are found in Table 1. PCR parameters were initiated with 95 °C for 5 min, followed by 34 cycles of denaturation at 95 °C for 30 s, annealing at a suitable temperature for 30 s (56 °C for ITS and LSU, 52 °C for TEF, 52 °C for RPB2 and 60 °C for TUB), and extension at 72 °C for 30 s, and terminated with a final elongation step at 72 °C for 10 min. The final PCR products were examined by electrophoresis in 2 % agarose gels. The amplified PCR products were sent to a commercial sequencing provider (Tsingke Biotechnology Co. Ltd, Beijing, China).

Table 1.

PCR reaction primers (forward and reverse) for amplification of gene loci of each fungal genus.

Genus Loci used for amplification References
ITS LSU RPB2 TEF TUB
Monochaetia ITS1/ITS4 LROR/LR5 RPB2-5F2/fRPB2-7cR Liu et al. (2019), Jiang et al. (2021)
Neopestalotiopsis ITS1/ITS4 LROR/LR5 RPB2-5F2/fRPB2-7cR EF1-728F/EF-2 T1/Bt2b Liu et al. (2019), Norphanphoun et al. (2019), Jiang et al. (2021)
Pestalotiopsis ITS1/ITS4 LROR/LR5 RPB2-5F2/fRPB2-7cR EF1-728F/EF-2 T1/Bt2b Liu et al. (2019), Norphanphoun et al. (2019), Jiang et al. (2021)
Seimatosporium ITS1/ITS4 LROR/LR5 RPB2-5F2/fRPB2-7cR Goonasekara et al. (2016), Wijayawardene et al. (2016a), Liu et al. (2019)
Seiridium ITS1/ITS4 LROR/LR5 RPB2-5F2/fRPB2-7cR EF1-728F/EF-2 T1/Bt2b Jiang et al. (2019), Liu et al. (2019), Marin-Felix et al. (2019)
Sporocadus ITS1/ITS4 LROR/LR5 RPB2-5F2/fRPB2-7cR EF1-728F/EF-2 T1/Bt2b Liu et al. (2019)

Phylogenetic analyses

All nucleotide sequences generated from different primer pairs in this study were deposited in GenBank (Table 2). Sequences were BLASTn searched in NCBI to obtain the related sequences from recent publications and were analysed (Table 3). Sequences were aligned in MAFFT v. 7 at the web server (http://mafft.cbrc.jp/alignment/server) (Katoh & Standley 2013, Katoh et al. 2019) and manually adjusted in MEGA v. 6 (Tamura et al. 2013).

Table 2.

Isolates sequenced and used for phylogenetic analyses in the current study.

Species1 Culture no. Status2 Host Tissues Origin GenBank accession no.
ITS LSU RPB2 TEF TUB
Monochaetia rosarum CFCC55172 = ROC 099 T Rosa chinensis branches Nanyang, Henan MZ292088 OK560346 OL742111 OL814484 OM103654
CFCC55173 = ROC 100 Rosa chinensis branches Nanyang, Henan MZ292089 OK560347 OL742112 OL814485 OM103655
ROC 098 Rosa chinensis branches Nanyang, Henan MZ292090 OK560348 OL742113 OL814486 OM103656
ROC 101 Rosa chinensis branches Nanyang, Henan MZ292091 OK560349 OL742114 OL814487 OM103657
Neopestalotiopsis concentrica CFCC 55162 = ROC 53 T Rosa rugosa spines Xinyang, Henan OK560707 OK560440 OL742115 OM622433 OM117698
CFCC 55163 = ROC 64 Rosa chinensis spines Xinyang, Henan OK560708 OK560441 OL742116 OM622434 OM117699
ROC 135 Rosa chinensis spines Xinyang, Henan OK560709 OK560442 OL742117 OM622435 OM117700
ROC 136 Rosa chinensis spines Xinyang, Henan OK560710 OK560443 OL742118 OM622436 OM117701
ROC 137 Rosa chinensis spines Nanyang, Henan OK560711 OK560444 OL742119 OM622437 OM117702
ROC 138 Rosa chinensis spines Nanyang, Henan OK560712 OK560445 OL742120 OM622438 OM117703
ROC 140 Rosa chinensis spines Nanyang, Henan OK560713 OK560446 OL742121 OM622439 OM117704
ROC 141 Rosa chinensis spines Nanyang, Henan OK560714 OK560447 OL742122 OM622440 OM117705
ROC 142 Rosa chinensis spines Nanyang, Henan OK560715 OK560448 OL742123 OM622441 OM117706
N. subepidermalis CFCC 55160 = ROC 161 T Rosa rugosa spines Xinyang, Henan OK560699 OK560432 OM622425 OM117690
ROC 162 Rosa rugosa spines Xinyang, Henan OK560700 OK560433 OM622426 OM117691
CFCC 55161 = ROC 169 Rosa chinensis spines Xinyang, Henan OK560701 OK560434 OM622427 OM117692
ROC 170 Rosa chinensis spines Xinyang, Henan OK560702 OK560435 OM622428 OM117693
ROC 171 Rosa chinensis branches Xinyang, Henan OK560703 OK560436 OM622429 OM117694
ROC 172 Rosa chinensis branches Xinyang, Henan OK560704 OK560437 OM622430 OM117695
ROC 173 Rosa chinensis branches Xinyang, Henan OK560705 OK560438 OM622431 OM117696
ROC 174 Rosa chinensis spines Xinyang, Henan OK560706 OK560439 OM622432 OM117697
Pestalotiopsis chamaeropis CFCC 55156 = ROC 23-1 Rosa chinensis spines Tianshui, Gansu OK560574 OK560306 OL742124 OL814488 OM158138
ROC 270 Rosa chinensis spines Tianshui, Gansu OK560575 OK560307 OL742125 OL814489 OM158139
ROC 272 Rosa chinensis spines Tianshui, Gansu OK560576 OK560308 OL742126 OL814490 OM158140
ROC 273 Rosa chinensis spines Tianshui, Gansu OK560577 OK560309 OL742127 OL814491 OM158141
ROC 275 Rosa chinensis spines Tianshui, Gansu OK560578 OK560310 OL742128 OL814492 OM158142
CFCC 55157 = ROC 23-2 Rosa chinensis spines Tianshui, Gansu OK560579 OK560311 OL742129 OL814493 OM158143
ROC 276 Rosa chinensis spines Tianshui, Gansu OK560580 OK560312 OL742130 OL814494 OM158144
ROC 278 Rosa chinensis spines Tianshui, Gansu OK560581 OK560313 OL742131 OL814495 OM158145
ROC 279 Rosa chinensis spines Tianshui, Gansu OK560582 OK560314 OL742132 OL814496 OM158146
ROC 280 Rosa chinensis spines Tianshui, Gansu OK560583 OK560315 OL742133 OL814497 OM158147
ROC 281 Rosa chinensis spines Tianshui, Gansu OK560584 OK560316 OL742134 OL814498 OM158148
ROC 282 Rosa chinensis spines Tianshui, Gansu OK560585 OK560317 OL742135 OL814499 OM158149
ROC 283 Rosa chinensis spines Tianshui, Gansu OK560586 OK560318 OL742136 OL814500 OM158150
ROC 286 Rosa chinensis spines Tianshui, Gansu OK560587 OK560319 OL742137 OL814501 OM158151
ROC 289 Rosa chinensis spines Tianshui, Gansu OK560588 OK560320 OL742138 OL814502 OM158152
ROC 290 Rosa chinensis spines Tianshui, Gansu OK560589 OK560321 OL742139 OL814503 OM158153
ROC 292 Rosa chinensis spines Tianshui, Gansu OK560590 OK560322 OL742140 OL814504 OM158154
ROC 293 Rosa chinensis spines Tianshui, Gansu OK560591 OK560323 OL742141 OL814505 OM158155
Pes. rhodomyrtus ROC 056 Rosa rugosa leaves Nanyang, Henan OK560592 OL814506 OM158156
ROC 057 Rosa rugosa leaves Nanyang, Henan OK560593 OL814507 OM158157
ROC 058 Rosa rugosa leaves Nanyang, Henan OK560594 OL814508 OM158158
ROC 059 Rosa rugosa leaves Nanyang, Henan OK560595 OL814509 OM158159
ROC 060 Rosa rugosa leaves Nanyang, Henan OK560596 OL814510 OM158160
ROC 061 Rosa rugosa leaves Nanyang, Henan OK560597 OL814511 OM158161
ROC 062 Rosa rugosa leaves Nanyang, Henan OK560598 OL814512 OM158162
ROC 303 Rosa multiflora spines Gannan, Gansu OK560599 OL814513 OM158163
ROC 304 Rosa multiflora spines Gannan, Gansu OK560600 OL814514 OM158164
ROC 305 Rosa multiflora spines Gannan, Gansu OK560601 OL814515 OM158165
ROC 306 Rosa multiflora spines Gannan, Gansu OK560602 OL814516 OM158166
ROC 307 Rosa multiflora spines Gannan, Gansu OK560603 OL814517 OM158167
ROC 309 Rosa multiflora spines Gannan, Gansu OK560604 OL814518 OM158168
ROC 311 Rosa multiflora spines Gannan, Gansu OK560605 OL814519 OM158169
Pes. rhodomyrtus (cont.) ROC 356 Rosa chinensis branches Changsha, Hunan OK560606 OL814520 OM158170
ROC 357 Rosa chinensis branches Changsha, Hunan OK560607 OL814521 OM158171
ROC 358 Rosa chinensis branches Changsha, Hunan OK560608 OL814522 OM158172
ROC 359 Rosa chinensis branches Changsha, Hunan OK560609 OL814523 OM158173
Pes. tumida CFCC 55158 = ROC 110 T Rosa chinensis spines Tianshui, Gansu OK560610 OK560324 OL742142 OL814524 OM158174
ROC 109 Rosa chinensis spines Tianshui, Gansu OK560611 OK560325 OL742143 OL814525 OM158175
ROC 108 Rosa chinensis spines Tianshui, Gansu OK560612 OK560326 OL742144 OL814526 OM158176
CFCC 55159 = ROC 234 Rosa chinensis branches Tianshui, Gansu OK560613 OK560327 OL742145 OL814527 OM158177
ROC 235 Rosa chinensis branches Tianshui, Gansu OK560614 OK560328 OL742146 OL814528 OM158178
ROC 236 Rosa chinensis branches Tianshui, Gansu OK560615 OK560329 OL742147 OL814529 OM158179
ROC 237 Rosa chinensis spines Tianshui, Gansu OK560616 OK560330 OL742148 OL814530 OM158180
ROC 238 Rosa chinensis spines Tianshui, Gansu OK560617 OK560331 OL742149 OL814531 OM158181
ROC 240 Rosa chinensis branches Tianshui, Gansu OK560618 OK560332 OL742150 OL814532 OM158182
Seimatosporium centrale CFCC 55166 = ROC 003 T Rosa chinensis spines Tianshui, Gansu OK560629 OK560399 ON055447 OM986918 OM301641
ROC 001 Rosa chinensis spines Tianshui, Gansu OK560630 OK560400 ON055448 OM986919 OM301642
ROC 002 Rosa chinensis spines Tianshui, Gansu OK560631 OK560401 ON055449 OM986920 OM301643
CFCC 55169 =ROC 014 Rosa chinensis spines Baoji, Shaanxi OK560632 OK560402 ON055450 OM986921 OM301644
ROC 015 Rosa chinensis spines Baoji, Shaanxi OK560633 OK560403 ON055451 OM986922 OM301645
ROC 016 Rosa chinensis spines Baoji, Shaanxi OK560634 OK560404 ON055452 OM986923 OM301646
ROC 145 Rosa chinensis spines Tianshui, Gansu OK560635 OK560405 ON055453 OM986924 OM301647
ROC 146 Rosa chinensis spines Tianshui, Gansu OK560636 OK560406 ON055454 OM986925 OM301648
ROC 147 Rosa chinensis spines Tianshui, Gansu OK560637 OK560407 ON055455 OM986926 OM301649
Seim, gracile CFCC 55167 = ROC 004 T Rosa xanthina spines Tianshui, Gansu OK560638 OK560408 ON055456 OM986927 OM301650
ROC 005 Rosa xanthina spines Tianshui, Gansu OK560639 OK560409 ON055457 OM986928 OM301651
ROC 006 Rosa xanthina spines Tianshui, Gansu OK560640 OK560410 ON055458 OM986929 OM301652
ROC 007 Rosa xanthina spines Tianshui, Gansu OK560641 OK560411 ON055459 OM986930 OM301653
ROC 008 Rosa xanthina spines Tianshui, Gansu OK560642 OK560412 ON055460 OM986931 OM301654
ROC 009 Rosa xanthina spines Tianshui, Gansu OK560643 OK560413 ON055461 OM986932 OM301655
ROC 010 Rosa xanthina spines Tianshui, Gansu OK560644 OK560414 ON055462 OM986933 OM301656
ROC 011 Rosa xanthina spines Tianshui, Gansu OK560645 OK560415 ON055463 OM986934 OM301657
ROC 012 Rosa xanthina spines Tianshui, Gansu OK560646 OK560416 ON055464 OM986935 OM301658
Seim, nonappendiculatum CFCC 55168 = ROC 377 T Rosa laevigata fruits Guyuan, Ningxia OK560657 OK560427 ON055475 OM986946 OM301669
ROC 378 Rosa laevigata fruits Guyuan, Ningxia OK560658 OK560428 ON055476 OM986947 OM301670
ROC 379 Rosa laevigata fruits Guyuan, Ningxia OK560659 OK560429 ON055477 OM986948 OM301671
ROC 380 Rosa laevigata fruits Guyuan, Ningxia OK560660 OK560430 ON055478 OM986949 OM301672
ROC 381 Rosa laevigata fruits Guyuan, Ningxia OK560661 OK560431 ON055479 OM986950 OM301673
Seim, parvum CFCC 55164 = ROC 038 T Rosa spinosissima spines Huangnan, Qinghai OK560647 OK560417 ON055465 OM986936 OM301659
ROC 039 Rosa spinosissima spines Huangnan, Qinghai OK560648 OK560418 ON055466 OM986937 OM301660
ROC 040 Rosa spinosissima spines Huangnan, Qinghai OK560649 OK560419 ON055467 OM986938 OM301661
ROC 041 Rosa spinosissima spines Huangnan, Qinghai OK560650 OK560420 ON055468 OM986939 OM301662
ROC 042 Rosa spinosissima spines Huangnan, Qinghai OK560651 OK560421 ON055469 OM986940 OM301663
ROC 043 Rosa spinosissima spines Huangnan, Qinghai OK560652 OK560422 ON055470 OM986941 OM301664
CFCC 55165 =ROC 017 Rosa helenae spines Huangnan, Qinghai OK560653 OK560423 ON055471 OM986942 OM301665
ROC 018 Rosa helenae spines Huangnan, Qinghai OK560654 OK560424 ON055472 OM986943 OM301666
ROC 019 Rosa helenae spines Huangnan, Qinghai OK560655 OK560425 ON055473 OM986944 OM301667
ROC 020 Rosa helenae spines Huangnan, Qinghai OK560656 OK560426 ON055474 OM986945 OM301668
Seiridium rosae CFCC 55174 = ROC 208 T Rosa rugosa branches Guyuan, Ningxia OK560681 OK560394 OL742151 OL814533 OM313314
ROC 209 Rosa rugosa branches Guyuan, Ningxia OK560682 OK560395 OL742152 OL814534 OM313315
CFCC 55175 = ROC 267 Rosa rugosa branches Guyuan, Ningxia OK560683 OK560396 OL742153 OL814535 OM313316
ROC 268 Rosa rugosa branches Guyuan, Ningxia OK560684 OK560397 OL742154 OL814536 OM313317
Sporocadus brevis CFCC 55170 = ROC 091 T Rosa spinosissima spines Gannan, Gansu OK655780 OK560371 OL742155 OL814537 OM401659
ROC 092 Rosa spinosissima spines Gannan, Gansu OK655781 OK560372 OL742156 OL814538 OM401660
ROC 093 Rosa spinosissima spines Gannan, Gansu OK655782 OK560373 OL742157 OL814539 OM401661
Sporocadus brevis (cont.) ROC 094 Rosa spinosissima spines Gannan, Gansu OK655783 OK560374 OL742158 OL814540 OM401662
ROC 095 Rosa spinosissima spines Gannan, Gansu OK655784 OK560375 OL742159 OL814541 OM401663
Spo. sorbi ROC 105 Rosa xanthina branches Lanzhou, Gansu OK655785 OK560376 OL742160 OL814542 OM401664
ROC 102 Rosa xanthina branches Lanzhou, Gansu OK655786 OK560377 OL742161 OL814543 OM401665
ROC 103 Rosa xanthina branches Lanzhou, Gansu OK655787 OK560378 OL742162 OL814544 OM401666
ROC 159 Rosa xanthina spines Ganan, Gansu OK655788 OK560379 OL742163 OL814545 OM401667
ROC 160 Rosa xanthina spines Ganan, Gansu OK655789 OK560380 OL742164 OL814546 OM401668
ROC 161 Rosa xanthina spines Ganan, Gansu OK655790 OK560381 OL742165 OL814547 OM401669
Spo. spiniger ROC 119 T Rosa omeiensis spines Lanzhou, Gansu OK655791 OK560382 OL742166 OL814548 OM401670
ROC 120 Rosa omeiensis spines Lanzhou, Gansu OK655792 OK560383 OL742167 OL814549 OM401671
ROC 121 Rosa omeiensis spines Lanzhou, Gansu OK655793 OK560384 OL742168 OL814550 OM401672
ROC 122 Rosa omeiensis spines Lanzhou, Gansu OK655794 OK560385 OL742169 OL814551 OM401673
ROC 123 Rosa omeiensis spines Lanzhou, Gansu OK655795 OK560386 OL742170 OL814552 OM401674
ROC 124 Rosa omeiensis spines Lanzhou, Gansu OK655796 OK560387 OL742171 OL814553 OM401675
ROC 125 Rosa omeiensis spines Lanzhou, Gansu OK655797 OK560388 OL742172 OL814554 OM401676
Spo. trimorphus CFCC 55171 = ROC 112 Rosa xanthina branches Lanzhou, Gansu OK655798 OK560389 OL742173 OL814555 OM401677
ROC 113 Rosa xanthina branches Lanzhou, Gansu OK655799 OK560390 OL742174 OL814556 OM401678
ROC 114 Rosa xanthina branches Lanzhou, Gansu OK655800 OK560391 OL742175 OL814557 OM401679
ROC 115 Rosa xanthina branches Lanzhou, Gansu OK655801 OK560392 OL742176 OL814558 OM401680
ROC 116 Rosa xanthina branches Lanzhou, Gansu OK655802 OK560393 OL742177 OL814559 OM401681

1 Newly described taxa and deposited sequences are in bold.

2 T: ex-type.

Table 3.

Isolates from previous studies used in the phylogenetic analyses in the current study.

Species Strain number1 Status2 Country Substrate GenBank accession no. References
ITS LSU RPB2 TEF TUB
Allelochaeta acuta CPC 16629 Australia Eucalyptus dives MH554086 MH554297 MH555000 Crous et al. (2018)
All. elegans CBS 187.81 ET Australia Melaleuca lanceolata MH554014 MH554234 MH554927 Crous et al. (2018)
All. falcata CPC 13580 Australia Eucalyptus alligatrix MH554073 MH554284 MH554985 Crous et al. (2018)
CBS 131117 ET Australia Eucalyptus alligatrix MH553999 MH554217 MH554907 Crous et al. (2018)
All. fusispora CPC 17616 Australia Eucalyptus sp. MH554094 MH554304 MH555008 Crous et al. (2018)
CBS 810.73 IT Australia Eucalyptus polyanthemos MH554067 MH554279 MH554980 Crous et al. (2018)
All. kriegeriana CBS 188.81 Australia Callistemon sieberi MH554015 MH554235 MH554928 Crous et al. (2018)
All. neoacuta CBS 115131 T South Africa Eucalyptus smithii JN871200 JN871209 MH554998 Crous et al. (2018)
CBS 110733 South Africa Eucalyptus smithii JN871201 JN871210 MH554999 Crous et al. (2018)
All. neodilophospora CPC 17161 T Australia Callistemon pinifolius MH554090 MH554300 MH555004 Crous et al. (2018)
All. neoorbicularis CPC 13581 Australia Eucalyptus regnans MH554074 MH554285 MH554986 Crous et al. (2018)
All. obliquae CPC 20191 T Australia Eucalyptus obliqua MH554105 MH554315 MH555018 Crous et al. (2018)
All. orbicularis CBS 131118 ET Australia Corymbia henryi MH554000 MH554218 MH554908 Crous et al. (2018)
All. paraelegans CBS 150.71 T Australia Melaleuca ericifolia MH554007 MH554228 MH554923 Crous et al. (2018)
All. pseudowalkeri CPC 17043 T Australia Eucalyptus sp. MH554089 MH554299 MH555003 Crous et al. (2018)
All. sparsifoliae CPC 14529 Australia Eucalyptus sparsifolia MH554083 MH554294 MH554995 Crous et al. (2018)
CPC 14502 T Australia Eucalyptus sparsifolia MH554082 MH554293 MH554994 Crous et al. (2018)
Bartalinia bella CBS 125525 South Africa Maytenus abbottii GU291796 MH554214 MH554904 Liu et al. (2019)
CBS 464.61 T Brazil Air MH554051 MH554264 MH554964 Liu et al. (2019)
Bar. pini CBS 143891 T Uganda Pinus patula MH554125 MH554330 MH555033 Liu et al. (2019)
CBS 144141 USA Acacia koa MH554170 MH554364 MH555067 Liu et al. (2019)
Bar. robillardoides CBS 122705 ET Italy Leptoglossus occidentalis LT853104 KJ710438 LT853152 Liu et al. (2019)
CBS 122615 South Africa Cupressus lusitanica MH553989 MH554207 MH554897 Liu et al. (2019)
Beltrania pseudorhombica CPC 23656 China Pinus tabulaeformis MH554124 KJ869215 MH555032 Crous et al. (2014a),
Liu et al. (2019)
Bel. rhombica CBS 123.58 T Mozambique Sand near mangrove swamp MH553990 MH554209 MH554899 Liu et al. (2019)
Broomella vitalbae HPC 1154 MH554173 MH554367 Liu et al. (2019)
MFLUCC 13-0798 ET Italy Clematis vitalba NR 153610 KP757749 Liu et al. (2019)
Ciliochorella phanericola MFLUCC 12-0310 Thailand Dead leaves KF827444 KF827445 KF827479 Hyde et al. (2016)
MFLUCC 14-0984 T Thailand Phanera purpurea KX789680 KX789681 Hyde et al. (2016)
Clypeosphaeria uniseptata CBS 114967 Hong Kong, China Wood MH553979 MH554197 MH554878 Liu et al. (2019)
Diploceras hypericinum CBS 109058 New Zealand Hypericum sp. MH553955 MH554178 MH554852 Liu et al. (2019)
CBS 492.97 Netherlands Hypericum perforatum MH554054 MH554267 MH554967 Liu et al. (2019)
CBS 197.36 Switzerland Hypericum sp. MH554017 MH554237 MH554930 Liu et al. (2019)
CBS 143885 ET Netherlands Hypericum perforatum MH554108 MH554316 MH555019 Liu et al. (2019)
Disaeta arbuti CBS 143903 Australia Acacia pycnantha MH554148 MH554346 MH555050 Liu et al. (2019)
Discosia artocreas CBS 124848 ET Germany Fagus sylvatica MH553994 MH554213 MH554903 Liu et al. (2019)
Dis. brasiliensis NTCL095 Thailand Dead leaf KF827433 KF827437 KF827474 Liu et al. (2019)
NTCL097-2 Thailand Dead leaf KF827434 KF827438 KF827475 Liu et al. (2019)
NTCL094-2 Thailand Dead leaf KF827432 KF827436 KF827473 Liu et al. (2019)
Discosia sp. 6 CBS 241.66 South Africa Acacia karroo MH554022 MH554244 MH554933 Liu et al. (2019)
Discosia sp. 7 CBS 684.70 Netherlands Aesculus hippocastanu MH554064 MH554277 MH554978 Liu et al. (2019)
Distononappendiculata banksiae CPC 17658 Australia Banksia marginata MH554097 MH554307 MH555011 Liu et al. (2019)
CBS 131308 T Australia Banksia marginata JQ044422 JQ044442 MH554909 Liu et al. (2019)
CPC 20185 Australia Banksia marginata MH554104 MH554314 MH555017 Liu et al. (2019)
CBS 143906 Australia Banksia marginata MH554158 MH554354 MH555057 Liu et al. (2019)
Dist. casuarinae CBS 143884 T Australia Casuarina sp. MH554093 MH554303 MH555007 Liu et al. (2019)
Dist. verruca ta CBS 144032 T Australia Banksia repens MH554163 MH554359 MH555062 Liu et al. (2019)
Diversimediispora humicola CBS 302.86 T USA Soil MH554028 MH554247 MH554941 Liu et al. (2019)
Heterotruncatella lutea CBS 349.73 IT Australia Acacia pycnantha LT853099 DQ414533 LT853146 Liu et al. (2019)
Het. proteicola CBS 123029 South Africa Protea acaulis MH553993 MH554212 MH554902 Liu et al. (2019)
Het. restionacearum CBS 119210 South Africa Ischyrolepis cf. gaudichaudiana DQ278915 DQ278929 MH554892 Liu et al. (2019)
CBS 118150 South Africa Restio filiformis DQ278914 MH554203 MH554889 Liu et al. (2019)
Het. spadicea CBS 118148 South Africa Rhodocoma capensis DQ278913 DQ278928 MH554888 Liu et al. (2019)
CBS 118144 South Africa Ischyrolepis sp. DQ278921 DQ278926 MH554886 Liu et al. (2019)
Hyalotiella spartii MFLUCC 13-0397 T Italy Spartium junceum KP757756 KP757752 Li et al. (2015)
Hyalotiella transvalensis CBS 303.65 T South Africa Soil MH554029 MH554248 MH554942 Liu et al. (2019)
Hymenopleella austroafricana CBS 143886 T South Africa Gleditsia triacanthos MH554115 MH554320 MH555023 Liu et al. (2019)
CBS 144027 Zambia Combretum hereroense MH554119 MH554324 MH555027 Liu et al. (2019)
CBS 144026 South Africa Bridelia mollis MH554117 MH554322 MH555025 Liu et al. (2019)
Hym. endophytica EMLAS5-1 T Korea Abies firma KX216520 KX216518 Liu et al. (2019)
Hym. hippophaëicola CBS 113687 Sweden Hippophae rhamnoides MH553969 MH554188 MH554863 Jaklitsch et al. (2016)
CBS 140410 ET Austria Hippophae rhamnoides KT949901 MH554224 MH554919 Jaklitsch et al. (2016)
Hym. lakefuxianensis HKUCC 7303 T China Submerged wood AF452047 Liu et al. (2019)
Hym. polyseptata CBS 143887 T South Africa Combretum sp. MH554116 MH554321 MH555024 Liu et al. (2019)
Hym. subcylindrica CBS 164.77 India Cocos nucifera MH554009 MH554230 MH554925 Liu et al. (2019)
CBS 647.74 T India Gypsophilla seeds MH554062 MH554275 MH554976 Liu et al. (2019)
Immersidiscosia eucalypti MAFF 242781 Japan Unknown dead leaves AB594793 AB593725 Tanaka et al. (2011)
NBRC 104197 Japan Ardisia japonica AB594792 AB593724 Tanaka et al. (2011)
Lepteutypa fuckelii CBS 140409 NT Belgium Tilia cordata NR 154123 KT949902 MH554918 Liu et al. (2019)
Lep. sambuci CBS 131707 T UK Sambucus nigra NR 154124 MH554219 MH554911 Liu et al. (2019)
Microdochium lycopodinum CBS 125585 T Austria Lycopodium annotinum KP859016 KP858952 KP859125 Hernandez-Restrepo et al. (2016),
Liu et al. (2019)
Mic. phragmitis CBS 285.71 ET Poland Puccinia teleutosorus KP859013 KP858949 KP859122 Liu et al. (2019)
Mic. seminicola CBS 139951 T Switzerland Maize kernels NR 155375 KP858974 KP859147 Hernandez-Restrepo et al. (2016),
Liu et al. (2019)
Monochaetia camelliae PSH2000I-151 China Camellia hongkongensis AY682948 Liu et al. (2019)
PSH2000I-146 China Camellia pitardii AY682947 Liu et al. (2019)
Μ. castaneae CFCC 54354 = SM9-1 T China Castanea mollissima MW166222 Jiang et al. (2021)
SM9-2 China Castanea mollissima MW166223 Jiang et al. (2021)
Μ. dimorphospora NBRC 9980 Japan Castanea pubinervis LC146750 De Silva et al. (2018)
NNIBRFG396 Korea Fresh water MT271967 De Silva et al. (2018)
Μ. ilicis CBS 101009 Japan Air MH553953 MH554176 MH554849 Liu et al. (2019)
KUMCC 15-0520 T China llex sp. KX984153 Liu et al. (2019)
Μ. junipericola CBS:143391 Germany Juniperus communis MH107900 Liu et al. (2019)
Μ. kansensis ZJLQ468 China Pseudotaxus chienii KC345692 De Silva et al. (2018)
PSHI2004Endo1030 China Cyclobalaopsis sp. DQ534044 De Silva et al. (2018)
PSHI2004Endo1031 China Quercus aliena DQ534045 De Silva et al. (2018)
Μ. mochaeta CBS 315.54 England Quercus sp. MH554030 MH554249 MH554943 Liu et al. (2019)
CBS 658.95 Netherlands Quercus robur MH554063 MH554276 MH554977 Liu et al. (2019)
CBS 115004 Netherlands Quercus robur AY853243 MH554198 MH554879 Liu et al. (2019)
CBS 546.80 Netherlands Culture contaminant MH554056 MH554270 MH554969 Liu et al. (2019)
CBS 199.82 ET Italy Quercus pubescens MH554018 MH554238 MH554931 Liu et al. (2019)
M18 Italy Unknown plant JX262802 Liu et al. (2019)
Μ. quercus CBS 144034 = CPC 29514 T Mexico Quercus eduardi MH554171 MH554365 MH555068 De Silva et al. (2018)
CBS 144034 = CPC 29515 Mexico Quercus eduardi NR_161110 De Silva et al. (2018)
Μ. schimae SAUCC212201 T China Schima superba MZ577565 OK104874 OK104867 Zhang et al. (2022)
SAUCC212202 China Schima superba MZ577566 OK104875 OK104868 Zhang et al. (2022)
SAUCC212203 China Schima superba MZ577567 OK104876 OK104869 Zhang et al. (2022)
Μ. sinensis HKAS 10065 China Quercus sp. NR_161064 De Silva et al. (2019)
KUMCC 15-0517 China Quercus sp. MH 115996 De Silva et al. (2020)
Morinia acaciae CBS 100230 New Zealand Prunus salicina cv. ‘Omega’ MH553950 MH554174 MH554847 Liu et al. (2019)
CBS 137994 T France Acacia melanoxylon MH554002 MH554221 MH554914 Liu et al. (2019)
Mor. crini CBS 143888 T South Africa Crinum bulbispermum MH554118 MH554323 MH555026 Liu et al. (2019)
Mor. longiappendiculata CBS 117603 T Spain Calluna vulgaris AY929324 MH554202 MH554885 Collado et al. (2006),
Liu et al. (2019)
Mor. pestalozzioides F090354 ET Spain Sedum sediforme AY929325 Liu et al. (2019)
Neopestalotiopsis acrostichi MFLUCC 17-1754 T Thailand Acrostichum aureum MK764272 MK764316 MK764338 Norphanphoun et al. (2019)
MFLUCC 17-1755 Thailand Acrostichum aureum MK764273 MK764317 MK764339 Norphanphoun et al. (2019)
N. alpapicalis MFLUCC 17-2544 T Thailand Rhizophora mucronata MK357772 MK463547 MK463545 Kumar et al. (2019)
MFLUCC 17-2545 Thailand Rhizophora apiculata MK357773 MK463548 MK463546 Kumar et al. (2019)
N. aotearoa CBS 367.54 T New Zealand Canvas KM 199369 KM 199526 KM 199454 Maharachchikumbura et al. (2014)
N. asiatica MFLUCC 12-0286 T China Leaves JX398983 JX399049 JX399018 Maharachchikumbura et al. (2014)
N. australis CBS 114159 T Australia Telopea sp. KM 199348 KM 199537 KM 199432 Maharachchikumbura et al. (2014)
N. brachiata MFLUCC 17-1555 T Thailand Rhizophora apiculata MK764274 MK764318 MK764340 Norphanphoun et al. (2019)
N. brasiliensis COAD 2166 T Brazil Psidium guajava MG686469 MG692402 MG692400 Bezerra et al. (2018)
N. camelliae-oleiferae CSUFTCC81 T China Camellia oleifera OK493585 OK507955 OK562360 Li etal. (2021)
N. cavernicola KUMCC 20-0269 T China Cave rock surface MW545802 MW550735 MW557596 Liu et al. (2021)
N. chiangmaiensis MFLUCC 18-0113 Thailand Dead leaves MH388404 MH412725 Tibpromma et al. (2018)
N. chrysea MFLUCC 12-0261 T China Pandanus sp. JX398985 JX399051 JX399020 Maharachchikumbura et al. (2014)
N. clavispora MFLUCC 12-0281 T China Magnolia sp. JX398979 JX399045 JX399014 Maharachchikumbura et al. (2014)
N. cocoes MFLUCC 15-0152 Thailand Cocos nucifera KX789687 KX789689 Hyde et al. (2016)
N. coffeae-arabicae HGUP4019 T China Coffea arabica KF412649 KF412646 KF412643 Song et al. (2013)
N. cubana CBS 600.96 T Cuba Leaf litter KM 199347 KM116253 MH554973 KM 199521 KM 199438 Maharachchikumbura et al. (2014)
N. dendrobii MFLUCC 14-0106 Thailand Dendrobium cariniferum MK993571 MK975829 MK975835 Ma et al. (2019)
N. drenthii BRIP 72264a T Australia Macadamia integrifolia MZ303787 MZ344172 MZ312680 Prasannath et al. (2021)
N. egyptiaca CBS 140162 T Egypt Mangifera indica KP943747 KP943748 KP943746 Crous et al. (2015b)
N. ellipsospora CBS 115113 T China Dead plant material KM 199343 KM 199544 KM 199450 Maharachchikumbura et al. (2014)
MFLUCC 12-0283 China Dead plant material JX398980 JX399047 JX399016 Maharachchikumbura et al. (2014)
N. eucalypticola CBS 264.37 T Eucalyptus globulus KM 199376 KM116256 MH554935 KM199551 KM199431 Maharachchikumbura et al. (2014)
N. eucalyptorum CBS 147684 T Portugal Eucalyptus globulus MW794108 MW805397 MW802841 Diogo et al. (2021)
N. foedans CGMCC 3.9123 T China Mangrove plant JX398987 JX399053 JX399022 Maharachchikumbura et al. (2014)
N. formicarum CBS 362.72 T Cuba Plant debris MH860500 KM199517 KM 199455 Maharachchikumbura et al. (2014)
N. guajavae FMBCC 11.1 T Pakistan Psidium guajava MF783085 MH460868 MH460871 Ul Haq et al. (2021)
N. guajavicola FMBCC 11.4 T Pakistan Psidium guajava MH209245 MH460870 MH460873 Ul Haq et al. (2021)
N. hadrolaeliae COAD 2637 T Brazil Hadrolaelia jongheana MK454709 MK465122 MK465120 Freitas et al. (2019)
N. haikouensis SAUCC212271 T China Ilex chinensis OK087294 OK104877 OK104870 Zhang et al. (2022)
SAUCC212272 China Ilex chinensis OK087295 OK104878 OK104871 Zhang et al. (2022)
N. hispanica CBS 147686 T Portugal Eucalyptus globulus MW794107 MW805399 MW802840 Diogo et al. (2021)
N. honoluluana CBS 114495 T USA Telopea sp. KM 199364 KM 199548 KM199461 Maharachchikumbura et al. (2014)
N. hydeana MFLUCC 20-0132 T Thailand Artocarpus heterophyllus MW266069 MW251129 MW251119 Huanluek et al. (2021)
N. iberica CBS 147688 T Portugal Eucalyptus globulus MW794111 MW805402 MW802844 Diogo et al. (2021)
N. iraniensis CBS 137768 Iran Fragaria x ananassa KM074045 KM074051 KM074056 Norphanphoun et al. (2019)
N. javaensis CBS 257.31 T Indonesia Cocos nucifera KM 199357 KM 199543 KM 199437 Maharachchikumbura et al. (2014)
N. longiappendiculata CBS 147690 T Portugal Eucalyptus globulus MW794112 MW805404 MW802845 Diogo et al. (2021)
N. lusitanica CBS 147692 T Portugal Eucalyptus globulus MW794110 MW805406 MW802843 Diogo et al. (2021)
N. macadamiae BRIP 63737c T New South Wales Macadamia integrifolia KX186604 KX186627 KX186654 Akinsanmi et al. (2017)
N. maddoxii BRIP 72266a T Australia Macadamia integrifolia MZ303782 MZ344167 MZ312675 Prasannath et al. (2021)
N. magna MFLUCC 12-0652 T France Pteridium sp. KF582795 KF582791 KF582793 Maharachchikumbura et al. (2014)
N. mesopotamica CBS 336.86 T Iraq Pinus brutia KM 199362 KM116271 MH554944 KM 199555 KM199441 Maharachchikumbura et al. (2014)
N. musae MFLU 16-1279 T Thailand Musa sp. KX789683 KX789685 KX789686 Hyde et al. (2016)
N. natalensis CBS 138.41 T South Africa Acacia mollissima KM199377 KM 199552 KM 199466 Maharachchikumbura et al. (2014)
N. nebuloides BRIP 66617 T Australia Sporobolus elongatus MK966338 MK977633 MK977632 Crous et al. (2020)
N. olumideae BRIP 72273a T Australia Macadamia integrifolia MZ303790 MZ344175 MZ312683 Prasannath et al. (2021)
N. palmarum PSHI2004Endo458 Cuba Zalacca wallichiana DQ813426 DQ787836 Liu et al. (2010)
PSHI2004Endo454 Cuba Roystonea regia DQ813427 DQ787837 Liu et al. (2010)
N. pandanicola KUMCC 17-0175 Pandanus sp. MH388389 MH412720 Tibpromma et al. (2018)
N. pemambucana URM 7148-01 T Brazil Vismia guianensis KJ792466 KU306739 Silvério et al. (2016)
N. perukae FMBCC 11.3 T Pakistan Psidium guajava MH209077 MH523647 MH460876 Ul Haq et al. (2021)
N. petila MFLUCC 17-1738 T Thailand Rhizophora mucronata MK764275 MK764319 MK764341 Norphanphoun et al. (2019)
MFLUCC 17-1737 Thailand Rhizophora mucronata MK764276 MK764320 MK764342 Norphanphoun et al. (2019)
N. phangngaensis MFLUCC 18-0119 Pandanus sp. MH388354 MH388390 MH412721 Tibpromma et al. (2018)
N. piceana CBS 394.48 T UK Picea sp. KM 199368 KM199527 KM 199453 Maharachchikumbura et al. (2014)
N. protearum CBS 114178 T Zimbabwe Leucospermum cuneiforme JN712498 JN712564 MH554873 LT853201 KM 199463 Maharachchikumbura et al. (2014)
N. psidii FMBCC 11.2 T Pakistan Psidium guajava MF783082 MH460874 MH477870 Ul Haq et al. (2021)
N. rhapidis GUCC 21501 T China Rhododendron simsii MW931620 MW980442 MW980441 Yang et al. (2021)
N. rhizophorae MFLUCC 17-1551 T Thailand Rhizophora mucronata MK764277 MK764321 MK764343 Norphanphoun et al. (2019)
MFLUCC 17-1550 Thailand Rhizophora mucronata MK764278 MK764322 MK764344 Norphanphoun et al. (2019)
N. rhododendri GUCC 21504 T China Rhododendron simsii MW979577 MW980444 MW980443 Yang et al. (2021)
N. rosae CBS 101057 T New Zealand Rosa sp. KM 199359 KM 116245 MH554850 KM 199524 KM 199430 Maharachchikumbura et al. (2014)
CBS 124745 USA Paeonia suffruticosa KM 199360 KM 199524 KM 199430 Maharachchikumbura et al. (2014)
CRM-FRC Mexico Fragaria x ananassa MN385718 MN268532 MN268529 Rebollar-Alviter et al. (2020)
AC50 Italy Persea americana ON117810 ON107276 ON209165 Alberto et al. (2022)
N. rosicola CFCC 51992 T China Rosa chinensis KY885239 KY885243 KY885245 Jiang et al. (2018)
CFCC 51993 China Rosa chinensis KY885240 KY885244 KY885246 Jiang et al. (2018)
N. samaragenensis MFLUCC 12-0233 T Thailand Syzygium samarangense KM 199365 KM 199556 KM 199447 Norphanphoun et al. (2019)
N. saprophytica MFLUCC 12-0282 T China Magnolia sp. KY606286 JX399048 JX399017 Maharachchikumbura et al. (2014)
N. scalabiensis CAA1029 T Portugal Vaccinium corymbosum MW969748 MW959100 MW934611 Santos et al. (2022)
N. sichuanensis CFCC 54338 = SM15-1 T China Castanea mollissima MW166231 MW199750 MW218524 Jiang et al. (2021)
SM15-1C China Castanea mollissima MW166232 MW199751 MW218525 Jiang et al. (2021)
N. siciliana AC46 Italy Persea americana ON117813 ON107273 ON209162 Alberto et al. (2022)
AC48 Italy Persea americana ON117812 ON107274 ON209163 Alberto et al. (2022)
AC49 Italy Persea americana ON117811 ON107275 ON209164 Alberto et al. (2022)
N. sonneratae MFLUCC 17-1744 T Thailand Sonneronata alba MK764279 MK764323 MK764345 Norphanphoun et al. (2019)
MFLUCC 17-1745 Thailand Sonneronata alba MK764280 MK764324 MK764346 Norphanphoun et al. (2019)
Neopestalotiopsis sp.1 VRes4 Colombia Scab disease of Guava KR493566 KR493638 Kumar et al. (2019)
Neopestalotiopsis sp.2 BPca2 Colombia Scab disease of Guava KR493559 KR493627 KR493666 Kumar et al. (2019)
Neopestalotiopsis sp.3 VrleP Colombia Scab disease of Guava KR493520 KR493660 KR493719 Kumar et al. (2019)
Neopestalotiopsis sp.4 VTman4 Colombia Scab disease of Guava KR493554 KR493611 KR493724 Kumar et al. (2019)
Neopestalotiopsis sp.5 BVayr1 Colombia Scab disease of Guava KR493545 KR493629 KR493739 Kumar et al. (2019)
Neopestalotiopsis sp.6 BRIP 63740a Australia Dry flower KX186617 KX186628 KX186656 Kumar et al. (2019)
Neopestalotiopsis sp.7 BRIP 63745a Australia Dry flower KX186614 KX186633 KX186660 Kumar et al. (2019)
Neopestalotiopsis sp.8 CBS 119.75 India Achras sapota KM 199356 KM199531 KM 199439 Kumar et al. (2019)
Neopestalotiopsis sp.9 CM M1363 Brazil Opuntia stricta KY549599 KY549596 KY549634 Kumar et al. (2019)
Neopestalotiopsis sp.10 LC6489 China Camellia sp. KX895020 KX895239 KX895353 Kumar et al. (2019)
Neopestalotiopsis sp.11 MFLUCC 12-0614 Midi-pyrénées Unidentified host KX816919 KX816889 KX816947 Kumar et al. (2019)
Neopestalotiopsis sp.12 MMf0011 Japan Lilium speciosum LC184188 LC184190 LC184189 Kumar et al. (2019)
Neopestalotiopsis sp.13 SC2A3 China Tea plant KU252210 KU252390 KU252477 Kumar et al. (2019)
Neopestalotiopsis sp.14 CBS 164.42 France Sand dune KM 199367 KM 199520 KM 199434 Kumar et al. (2019)
Neopestalotiopsis sp.15 CBS 266.80 India Vitis vinifera KM 199352 KM 199532 Kumar et al. (2019)
Neopestalotiopsis sp.16 CBS 360.61 Guinea Cinchona sp. KM 199346 KM 199522 KM 199440 Kumar et al. (2019)
Neopestalotiopsis sp.17 CBS 361.61 Netherlands Cissus sp. KM 199355 KM 199549 KM 199460 Kumar et al. (2019)
N. steyaertii IMI 192475 Australia Eucalyptus viminalis KF582796 KF582792 KF582794 Maharachchikumbura et al. (2014)
N. surinamensis CBS 450.74 T Suriname Soil KM 199351 KM 116258 MH554962 KM199518 KM 199465 Maharachchikumbura et al. (2014)
N. thailandica MFLUCC 17-1730 T Thailand Rhizophora mucronata MK764281 MK764325 MK764347 Norphanphoun et al. (2019)
N. umbrinospora MFLUCC 12-0285 T China Dead leaves JX398984 JX399050 JX399019 Norphanphoun et al. (2019)
N. vaccinii CAA1059 T Portugal Vaccinium corymbosum MW969747 MW959099 MW934610 Santos et al. (2022)
N. vacciniicola CAA1055 T Portugal Vaccinium corymbosum MW969751 MW959103 MW934614 Santos et al. (2022)
N. versicolor CBS 303.49 China Myrica rubra MH856535 Vu et al. (2019)
N. vheenae BRIP 72293a T Australia Macadamia integrifolia MZ303792 MZ344177 MZ312685 Prasannath et al. (2021)
N. vitis MFLUCC 15-1265 China Vitis vinifera KU140694 KU140676 KU140685 Jayawardena et al. (2016)
N. zakeelii BRIP 72282a T Australia Macadamia integrifolia MZ303789 MZ344174 MZ312682 Prasannath et al. (2021)
N. zimbabwana CBS H-21769 Zimbabwe Leucospermum cunciforme JX556249 MH554855 KM 199545 KM 199456 Maharachchikumbura et al. (2014)
Nonappendiculata quercina CBS 116061 T Italy Quercus suber MH553982 MH554199 MH554882 Liu et al. (2019)
CBS 270.82 Italy Quercus pubescens MH554025 MH554246 MH554937 Liu et al. (2019)
Parabartalinia lateralis CBS 399.71 T South Africa Acacia karroo MH554043 MH554256 MH554954 Liu et al. (2019)
Pestalotiopsis abietis CFCC 53011 T China Abies fargesii MK397013 MK622277 MK622280 Gu et al. (2021)
CFCC 53012 China Abies fargesii MK397014 MK622278 MK622281 Gu et al. (2021)
CFCC 53013 China Abies fargesii MK397015 MK622279 MK622282 Gu et al. (2021)
Pes. adusta ICMP 6088 T Fiji Refrigerator door PVC gasket JX399006 JX399070 JX399037 Norphanphoun et al. (2019)
CBS 263.33 Netherlands Rhododendron ponticum KM199316 KM 199489 KM199414 Norphanphoun et al. (2019)
Pes. aggestorum LC6301 T China Camellia sinensis KX895015 KX895234 KX895348 Liu et al. (2017)
Pes. anacardiacearum IFRDCC 2397 T China Mangifera indica KC247154 KC247156 KC247155 Maharachchikumbura et al. (2013b)
Pes. arceuthobii CBS 433.65 USA Arceuthobium campylopodum MH554046 MH554481 MH554722 Maharachchikumbura et al. (2014)
CBS 434.65 T USA Arceuthobium campylopodum KM 199341 KM199516 KM199427 Maharachchikumbura et al. (2014)
Pes. arengae CBS 331.92 T Singapore Arenga undulatifolia KM 199340 KM199515 KM 199426 Maharachchikumbura et al. (2014)
Pes. australasiae CBS 114126 T New Zealand Knightia sp. KM 199297 KM116218 MH554867 KM 199499 KM 199409 Maharachchikumbura et al. (2014)
CBS 114141 Australia Protea cv. ’Pink Ice’ KM 199298 KM199501 KM199410 Maharachchikumbura et al. (2014)
Pes. australis CBS 114193 T Australia Grevillea sp. KM 199332 KM116197 MH554875 KM 199475 KM 199383 Maharachchikumbura et al. (2014)
CBS 119350 South Africa Brabejum stellatifolium KM 199333 KM 199476 KM 199384 Maharachchikumbura et al. (2014)
MEAN 1096 = CPC 36750 = Portugal Pinus pinea MT374679 MT374692 MT374704 Silva et al. (2020)
CBS 146843
MEAN 1109 Portugal Pinus pinea MT374683 MT374708 Silva et al. (2020)
MEAN 1110 Portugal Pinus pinea MT374684 MT374696 MT374709 Silva et al. (2020)
MEAN 1111 Portugal Pinus pinea MT374685 MT374697 MT374710 Silva et al. (2020)
MEAN 1112 Portugal Pinus pinea MT374686 MT374698 MT374711 Silva et al. (2020)
Pes. biciliata CBS 124463 T Slovakia Platanus x hispanica KM 199308 KM 199505 KM 199399 Maharachchikumbura et al. (2014)
CBS 236.38 Italy Paeonia sp. KM 199309 KM 199506 KM199401 Maharachchikumbura et al. (2014)
MEAN 1168 Portugal Pinus pinea MT374690 MT374702 MT374715 Maharachchikumbura et al. (2014)
Pes. brachiata LC2988 T China Camellia sp. KX894933 KX895150 KX895265 Maharachchikumbura et al. (2014)
Pes. brassicae CBS 170.26 T New Zealand Brassica napus KM 199379 KM 199558 Maharachchikumbura et al. (2014)
Pes. camelliae CBS 443.62 Turkey Camellia sinensis KM 199336 KM199512 KM 199424 Zhang et al. (2012b)
MFLUCC 12-0277 T China Camellia japonica JX399010 JX399074 JX399041 Zhang et al. (2012b)
Pes. camelliae-oleiferae CSUFTCC08 T China Camellia oleifera OK493593 OK507963 OK562368 Li et al. (2021)
CSUFTCC09 China Camellia oleifera OK493594 OK507964 OK562369 Li et al. (2021)
CSUFTCC10 China Camellia oleifera OK493595 OK507965 OK562370 Li et al. (2021)
Pes. chamaeropis CBS 113607 KM 199325 KM 199472 KM 199390 Maharachchikumbura et al. (2014)
CBS 186.71 T Italy Chamaerops humilis KM 199326 KM 199473 KM199391 Maharachchikumbura et al. (2014)
Pes. chiaroscuro BRIP 72970 T Australia Sporobolus natalensis OK422510 Crous et al. (2022)
Pes. clavata MFLUCC 12-0268 T China Buxus sp. JX398990 JX399056 JX399025 Maharachchikumbura et al. (2012)
Pes. colombiensis CBS 118553 T Colombia Eucalyptus eurograndis KM 199307 KM 199488 KM 199421 Maharachchikumbura et al. (2014)
Pes. digitalis ICMP 5434 T New Zealand Digitalis purpurea KP781879 KP781883 Liu et al. (2015)
Pes. diploclisiae CBS 115587 T Hong Kong, China Diploclisia glaucescens KM 199320 KM 199486 KM199419 Maharachchikumbura et al. (2014)
Pes. disseminata CBS 118552 New Zealand Eucalyptus botryoides MH553986 MH554410 MH554652 Maharachchikumbura et al. (2014)
CBS 143904 New Zealand Persea americana MH554152 MH554587 MH554825 Maharachchikumbura et al. (2014)
MEAN 1165 Portugal Pinus pinea, blighted shoot MT374687 MT374699 MT374712 Silva et al. (2020)
MEAN 1166 Portugal Pinus pinea, blighted shoot MT374688 MT374700 MT374713 Silva et al. (2020)
Pes. distincta LC3232 T China Camellia sinensis KX894961 KX895178 KX895293 Silva et al. (2020)
LC8184 China Camellia sinensis KY464138 KY464148 KY464158 Silva et al. (2020)
Pes. diversiseta MFLUCC 12-0287 T China Rhododendron sp. JX399009 JX399073 JX399040 Maharachchikumbura et al. (2012)
Pes. doitungensis MFLUCC 14-0115 T Thailand Dendrobium sp. MK993574 MK975832 MK975837 Ma et al. (2019)
Pes. dracaenicola MFLUCC 18-0913 T Thailand Dracaena sp. MN962731 MN962732 MN962733 Chaiwan et al. (2020)
Pes. dracontomelonis MFLUCC 10-0149 T Thailand Dracontomelon dao KP781877 KP781880 Liu et al. (2015)
Pes. ericacearum IFRDCC 2439 T China Rhododendron delavayi KC537807 KC537814 KC537821 Zhang et al. (2013b)
Pes. etonensis BRIP 66615 T Australia Sporobolus jacquemontii MK966339 MK977635 MK977634 Crous et al. (2020)
Pes. formosana NTUCC 17-009 T Taiwan,China On dead grass MH809381 MH809389 MH809385 Ariyawansa & Hyde (2018)
Pes. furcata MFLUCC 12-0054 T Thailand Camellia sinensis JQ683724 JQ683740 JQ683708 Maharachchikumbura et al. (2013a)
Pes. gaultheriae IFRD 411-014 T China Gaultheria forrestii KC537805 KC537812 KC537819 Zhang et al. (2013)
Pes. gibbosa NOF3175 T Canada Gaultheria shallon LC311589 LC311591 LC311590 Watanabe et al. (2018)
Pes. grevilleae CBS 114127 T Australia Grevillea sp. KM 199300 KM116212 MH554868 KM 199504 KM 199407 Maharachchikumbura et al. (2014)
Pes. hawaiiensis CBS 114491 T USA Leucospermum cv. ’Coral’ KM 199339 KM199514 KM 199428 Maharachchikumbura et al. (2014)
Pes. hispanica CBS 115.391 T Spain Protea cv. ’Susara’ MH553981 MH554399 MH554640 Liu etal. (2019)
Pes. hollandica CBS 265.33 T Netherlands Sciadopitys verticillata KM 199328 KM 116228 MH554936 KM199481 KM 199388 Maharachchikumbura et al. (2014)
MEAN 1091 = CPC 36745 = Portugal Pinus pinea, blighted shoot MT374678 MT374691 MT374703 Maharachchikumbura et al. (2014)
CBS 146839
Pes. humicola CBS 115450 T Hong Kong, China Ilex cinerea KM199319 KM 116208 MH554881 KM 199487 KM199418 Maharachchikumbura et al. (2014)
CBS 336.97 Papua New Guinea Soil KM 199317 KM 199484 KM 199420 Maharachchikumbura et al. (2014)
Pes. hunanensis CSUFTCC15 T China Camellia oleifera OK493599 OK507969 OK562374 Li et al. (2021)
CSUFTCC18 China Camellia oleifera OK493600 OK507970 OK562375 Li et al. (2021)
CSUFTCC19 China Camellia oleifera OK493601 OK507971 OK562376 Li et al. (2021)
Pes. hydei MFLUCC 20-0135 T Thailand Litsea petiolata NR_172003 MW251113 MW251112 Huanluek et al. (2021)
Pes. inflexa MFLUCC 12-0270 T China Unidentified tree JX399008 JX399072 JX399039 Maharachchikumbura et al. (2012)
Pes. intermedia MFLUCC 12-0259 T China Unidentified tree JX398993 JX399059 JX399028 Maharachchikumbura et al. (2012)
Pes. italiana MFLUCC 12-0657 T Italy Cupressus glabra KP781878 KP781881 KP781882 Liu et al. (2015)
Pes. jesteri CBS 109350 T Papua New Guinea Fragraea bodenii KM 199380 KM 199554 KM 199468 Strobel et al. (2000)
Pes. jiangxiensis LC4399 T China Camellia sp. KX895009 KX895227 KX895341 Liu et al. (2017)
Pes. jinchanghens LC6636 T China Camellia sinensis KX895028 KX895247 KX895361 Liu et al. (2017)
Pes. kandelicola NCYUCC 19-0355 Taiwan,China Kandelia candel MT560722 MT563101 MT563099 Hyde et al. (2020)
NCYUCC 19-0354 Taiwan,China Kandelia candel MT560723 MT563102 MT563100 Hyde et al. (2020)
Pes. kenyana CBS 442.67 T Kenya Coffea sp. KM 199302 KM 116234 MH554958 KM 199502 KM 199395 Maharachchikumbura et al. (2014)
Pes. knightiae CBS 114138 T New Zealand Knightia sp. KM199310 KM116227 MH554870 KM 199497 KM 199408 Maharachchikumbura et al. (2014)
Pes. leucadendri CBS 121417 T South Africa Leucadendron sp. MH553987 MH554412 MH554654 Liu et al. (2019)
Pes. licualicola HGUP 4057 T China Licuala grandis KC492509 KC481684 KC481683 Geng et al. (2013)
Pes. linearis MFLUCC 12-0271 T China Trachelospermum sp. JX398992 JX399058 JX399027 Maharachchikumbura et al. (2012)
Pes. longiappendiculata LC3013 T China Camellia sinensis KX894939 KX895156 KX895271 Liu et al. (2017)
Pes. lushanensis LC4344 T China Camellia sp. KX895005 KX895223 KX895337 Liu et al. (2017)
Pes. macadamiae BRIP 63738b T Australia Macadamia integrifolia KX186588 KX186621 KX186680 Akinsanmi et al. (2017)
Pes. malayana CBS 102220 T Malaysia Macaranga triloba KM 199306 KM 199482 KM199411 Maharachchikumbura et al. (2014)
Pes. monochaeta CBS 144.97 T Netherlands Quercus robur KM 199327 KM 199479 KM 199386 Maharachchikumbura et al. (2014)
Pes. nanjingensis CSUFTCC16 T China Camellia oleifera OK493602 OK507972 OK562377 Li et al. (2021)
CSUFTCC20 China Camellia oleifera OK493603 OK507973 OK562378 Li et al. (2021)
CSUFTCC04 China Camellia oleifera OK493604 OK507974 OK562379 Li et al. (2021)
Pes. nanningensis CSUFTCC10 T China Camellia oleifera OK562371 OK507966 OK562371 Li et al. (2021)
CSUFTCC11 China Camellia oleifera OK562372 OK507967 OK562372 Li et al. (2021)
CSUFTCC12 China Camellia oleifera OK562373 OK507968 OK562373 Li et al. (2021)
Pes. neolitseae NTUCC 17-011 T Taiwan,China Neolitsea villosa MH809383 MH809391 MH809387 Ariyawansa & Hyde (2018)
Pes. novae-hollandiae CBS 130973 T Australia Banksia grandis KM 199337 KM199511 KM 199425 Maharachchikumbura et al. (2014)
Pes. oryzae CBS 353.69 T Denmark Oryza sativa KM 199299 KM116221 MH554947 KM 199496 KM 199398 Maharachchikumbura et al. (2014)
Pes. pallidotheae MAFF 240993 T Japan Pieris japonica NR111022 LC311585 LC311584 Watanabe et al. (2010)
Pes. pandanicola MFLUCC 16-0255 T Thailand Pandanus sp. MH388361 MH388396 MH412723 Li etal. (2021)
Pes. papuana CBS 331.96 T Papua New Guinea Soil KM 199321 KM199491 KM199413 Maharachchikumbura et al. (2014)
Pes. parva CBS 114972 Hong Kong, China Leaf MH553980 MH554397 MH704625 Maharachchikumbura et al. (2014)
CBS 278.35 T Leucothoe fontanesiana KM199313 KM 116205 MH554939 KM 199509 KM 199405 Maharachchikumbura et al. (2014)
Pes. photinicola GZCC 16-0028 T China Photinia serrulata KY092404 KY047662 KY047663 Chen etal. (2017)
Pes. pini MEAN 1092 = CPC 36746 = Portugal Pinus pinea MT374680 MT374693 MT374705 Silva et al. (2020)
CBS 146840
MEAN 1094 = CPC 36748 = T Portugal Pinus pinea MT374681 MT374694 MT374706 Silva et al. (2020)
CBS 146841
MEAN 1095 = CPC 36749 = Portugal Pinus pinea MT374682 MT374695 MT374707 Silva et al. (2020)
CBS 146842
MEAN 1167 Portugal Pinus pinaster MT374689 MT374701 MT374714 Silva et al. (2020)
Pes. pinicola KUMCC 19-0183 T China Pinus armandii MN412636 MN417509 MN417507 Tibpromma et al. (2019)
Pes. portugallica CBS 684.85 New Zealand Camellia japonica MH554065 MH554501 MH554741 Maharachchikumbura et al. (2014)
CBS 393.48 T Portugal KM 199335 KM 116233 MH554951 KM199510 KM 199422 Maharachchikumbura et al. (2014)
Pes. rhizophorae MFLUCC 17-0416 T Thailand Rhizophora apiculata MK764283 MK764327 MK764349 Norphanphoun et al. (2019)
Pes. rhododendri IFRDCC 2399 T China Rhododendron sinogrande KC537804 KC537811 KC537818 Norphanphoun et al. (2019)
CBS 144024 Zimbabwe Pinus sp. MH554109 MH554543 MH554782 Norphanphoun et al. (2019)
Pes. rhodomyrtus HGUP 4230 T China Rhodomyrtus tomentosa KF412648 KF412645 KF412642 Norphanphoun et al. (2019)
LC3413 China Camellia sinensis KX894981 KX895198 KX895313 Norphanphoun et al. (2019)
Pes. rosea MFLUCC 12-0258 T China Pinus sp. JX399005 JX399069 JX399036 Maharachchikumbura et al. (2012)
Pes. scoparia CBS 176.25 T Chamaecyparis sp. KM 199330 KM 199478 KM 199393 Maharachchikumbura et al. (2014)
Pes. sequoiae MFLUCC 13-0399 T Italy Sequoia sempervirens KX572339 Maharachchikumbura et al. (2014)
Pes. shorea MFLUCC 12-0314 T Thailand Shorea obtusa KJ503811 KJ503817 KJ503814 Song et al. (2013)
Pestalotiopsis 7 FL 2019 CBS 110326 USA Pinus sp. MH553957 MH554375 MH554616 Silva et al. (2020)
Pestalotiopsis 7 FL 2019 CBS 127.80 Chile Pinus radiata MH553995 MH554422 MH554664 Silva et al. (2020)
Pes. spathulata CBS 356.86 T Chile Guevina avellana KM 199338 KM199513 KM 199423 Maharachchikumbura et al. (2014)
Pes. spathuliappendiculata CBS 144035 T Australia Phoenix canariensis MH554172 MH554366 MH554607 MH554845 Liu et al. (2019)
Pes. telopeae CBS 114137 Australia Protea cv. ’Pink Ice’ KM 199301 KM 199559 KM 199469 Maharachchikumbura et al. (2014)
CBS 114161 T Australia Telopea sp. KM 199296 KM 199500 KM 199403 Maharachchikumbura et al. (2014)
Pes. terricola CBS 141.69 T Pacific Islands Soil MH554004 MH554438 MH554680 Maharachchikumbura et al. (2014)
Pes. thailandica MFLUCC 17-1616 T Thailand Rhizophora apiculata MK764285 MK764329 MK764351 Maharachchikumbura et al. (2014)
Pes. trachycarpicola IFRDCC 2440 T China Trachycarpus fortunei JQ845947 JQ845946 JQ845945 Zhang et al. (2012a)
Pes. unicolor MFLUCC 12-0275 China Unidentified tree JX398998 JX399063 JX399029 Maharachchikumbura et al. (2012)
MFLUCC 12-0276 T China Rhododendron sp. JX398999 JX399030 Maharachchikumbura et al. (2012)
Pes. verruculosa MFLUCC 12-0274 T China Rhododendron sp. JX398996 JX399061 Maharachchikumbura et al. (2012)
Pes. cf. verruculosa CBS 365.54 Netherlands Chamaecyparis lawsoniana MH554037 MH554472 MH554713 Maharachchikumbura et al. (2012)
Pes. yanglingensis LC3412 China Camellia sinensis KX894980 KX895197 KX895312 Liu et al. (2017)
LC4553 T China Camellia sinensis KX895012 KX895231 KX895345 Liu et al. (2017)
Pes. yunnanensis HMAS 96359 T China Podocarpus macrophyllus AY373375 Wei et al. (2013)
Phlogicylindrium eucalypti CBS 120080 T Australia Eucalyptus globulus NR_132813 DQ923534 MH554893 Liu et al. (2019)
Phlogicylindrium eucalyptorum CBS 120221 T Australia Eucalyptus globus EU040223 MH554204 MH554894 Liu et al. (2019)
Phlogicylindrium uniforme CBS 131312 T Australia Eucalyptus globus JQ044426 JQ044445 MH554910 Crous et al. (2011a)
Pseudopestalotiopsis cocos CBS 272.29 T Indonesia Cocos nucifera KM 199378 KM 116276 MH554938 Maharachchikumbura et al. (2014)
Pse. elaeidis CBS 413.62 IT Nigeria Elaeis guineensis MH554044 MH554257 MH554955 Liu et al. (2019)
Pse. indica CBS 459.78 T India Rosa sinensis KM 199381 MH554263 MH554963 Maharachchikumbura et al. (2014)
Pseudosarcostroma osyridicola CBS 103.76 T France Osyris alba MH553954 MH554177 MH554851 Liu et al. (2019)
Robillarda africana CBS 122.75 T South Africa KR873253 KR873281 MH554896 Crous et al. (2015a)
Rob. australiana CBS 143882 T Australia MH554091 MH554301 MH555005 Liu et al. (2019)
Rob. roystoneae CBS 115445 T Hong Kong, China Roystonea regia KR873254 KR873282 MH554880 Crous et al. (2015a)
Rob. sessilis CBS 114312 ET Germany Dust KR873256 KR873284 MH554877 Liu et al. (2019)
Rob. terrae CBS 587.71 T India Soil KJ710484 KJ710459 MH554971 Crous et al. (2015a)
Sarcostroma australiense CBS 144160 T Australia Daviesia latifolia MH554138 MH554340 MH555044 Liu et al. (2019)
Sar. diversiseptatum CBS 189.81 T Australia Correa reflexa MH554016 MH554236 MH554929 Liu et al. (2019)
Sar. grevilleae CBS 143418 Australia Grevillea sp. MH554006 MH554227 MH554922 Liu et al. (2019)
Sar. leucospermi CBS 111290 T South Africa Leucospermum cv. ‘High Gold’ MH554081 MH554292 MH554993 Liu et al. (2019)
CBS 111309 South Africa Leucospermum cv. ‘High Gold’ MH554079 MH554290 MH554991 Liu et al. (2019)
Sar. longiappendiculatum CBS 111308 South Africa Leucospermum cv. ‘High Gold’ MH554080 MH554291 MH554992 Liu et al. (2019)
Sar. paragrevilleae CBS 114142 T Australia Grevillea sp. MH553974 MH554193 MH554871 Liu et al. (2019)
Sar. proteae CBS 113610 T Australia Protea magnifica MH553968 MH554187 MH554862 Liu et al. (2019)
CBS 114189 Australia Protea magnifica MH553976 MH554195 MH554874 Liu et al. (2019)
Sar. restionis CBS 118153 South Africa Ischyrolepis cf. sieben DQ278923 DQ278925 MH554890 Liu et al. (2019)
CBS 282.65 UK Pteridium aquilinum AB594804 AB593736 MH554940 Liu et al. (2019)
CBS 118154 T South Africa Restio filiformis DQ278922 DQ278924 MH554891 Liu et al. (2019)
CBS 111311 New Zealand MH553958 MH554180 MH554854 Liu et al. (2019)
CBS 114130 South Africa Leucospermum sp. MH553973 MH554192 MH554869 Liu et al. (2019)
Seimatosporium botan HMUC-sei-302PD Chile Vitis vinifera JN088482 Hatakeyama & Harada (2004)
NBRC 104200 = H4619 T Japan Paeonia suffruticosa AB594799 AB593731 LC047770 Hatakeyama & Harada (2004)
Seim, discosioides NBRC 104201 Canada Punica granatum AB594800 AB593732 Tanaka et al. (2011)
Seim, elegans NBRC 32674 Japan Melaleuca ericifolia AB594801 AB593733 Wijayawardene et al. (2016a)
Seim, eucalypti CPC 156 South Africa Eucalyptus smithii JN871200 JN871209 Wijayawardene et al. (2016a)
Seim, falcatum CPC 13578 Australia Eucalyptus sp. JN871204 JN871213 Wijayawardene et al. (2016a)
Seim, ficeae MFLUCC 15-0519 T Italy Rubus sp. KR092800 KR920686 Wijayawardene et al. (2016a)
Seim, foliicola NBRC 32676 Japan Juniperus phoenicea AB594802 AB593734 Wijayawardene et al. (2016a)
Seim, germanicum CBS 437.87 T Germany MH554047 MH554259 MH554957 MH554482 MH554723 Liu et al. (2019)
Seim, glandigenum NBRC 32677 Japan Fagus sylvatica AB594803 AB593735 Liu et al. (2019)
Seim, grevilleae ICMP 10981 South Africa Protea sp. AF405304 AF382372 Wijayawardene et al. (2016a)
Seim, hakeae NBRC 32678 Japan Pteridium aquilinum AB594804 AB593736 Wijayawardene et al. (2016a)
Seim, hypericinum NBRC 32647 Japan Hypericum sp. AB594805 AB593737 Wijayawardene et al. (2016a)
Seim, luteosporum Napa754 USA Prunus persica KY706283 KY706308 KY706333 KY706258 Liu et al. (2019)
CBS 142599 T USA Vitis vinifera KY706284 KY706309 KY706334 KY706259 Liu et al. (2019)
Seim, mariae NBRC 32681 Japan Correa reflexa AB594807 AB593740 Wijayawardene et al. (2016a)
Seim, marivanicum IRAN 2310CT = CBS 143781 T Iran Vitis vinifera MW361952 MW361960 MW375358 MW375352 Moghadam et al. (2022)
IRAN 2300C = CBS 143780 Iran Vitis vinifera MW361951 MW361959 MW375357 MW375351 Moghadam et al. (2022)
Seim, obtusum CPC 12935 T Australia Corymbia henryi JN871206 JN871215 Barber et al. (2011)
Seim, parasiticum NBRC 32682 Japan Physocarpus amurensis AB594808 AB593741 Wijayawardene et al. (2016a)
Seim, pezizoides 71TB Unknown Unknown KF573991 Lawrence et al. (2018)
Seim, physocarpi CBS 139968 = T Russia Physocarpus opulifolius KT198722 KT198723 MH554917 MH554434 MH554676 Liu et al. (2019)
MFLUCC 14-0625
CBS 789.68 = NBRC 32682 Netherlands Physocarpus amurensis MH554066 MH554278 MH554979 MH554502 MH554742 Liu et al. (2019)
Seim, pistaciae CBS 138865 = CPC 24455 T Iran Pistacia vera KP004463 KP004491 MH554915 MH554432 MH554674 Crous et al. (2014b)
CPC 24457 Iran Pistacia vera MH554126 MH554331 MH555035 MH554561 MH554799 Crous et al. (2014b)
Seim, pseudorosae MFLUCC 14-0468 T Italy Rosa villosa KU359035 Li et al. (2016)
Seim, quercinum MFLUCC 14-1198 T Germany Quercus robur KU974965 KU974964 Goonasekara et al. (2016)
Seim, restionis CBS 118154 South Africa Restio filiformis DQ278922 DQ278924 Lawrence et al. (2018)
Seim, rhombisporium MFLUCC 15-0727 T Italy Vaccinium myrtillus KR092792 KR092780 Wijayawardene et al. (2016a)
Seim, rosae CBS 139823 = MFLUCC 14-0621 ET Russia Rosa kalmiussica KT198726 KT198727 LT853153 LT853203 LT853253 Liu et al. (2019)
Seim, soli CBS 941.69 T Denmark Soil MH554071 MH554282 MH554983 MH554507 Liu et al. (2019)
Seim, vitifusiforme CBS 142600 T USA Vitis vinifera KY706296 KY706321 KY706346 KY706271 Lawrence et al. (2018)
Napa751 USA Vitis vinifera KY706289 KY706314 KY706339 KY706264 Lawrence et al. (2018)
Seim, vitis MFLUCC 14-0051 T Italy Vitis vinifera KR920363 KR920362 Senanayake et al. (2015)
Seim, vitis-viniferae CBS 123004 T Spain Vitis vinifera MH553992 MH554211 MH554901 MH554418 MH554660 Liu et al. (2019)
CBS 116499 Iran Vitis vinifera MH553984 MH554201 MH554884 MH554402 MH554643 Liu et al. (2019)
Seim, walken CPC 17644 Australia Eucalyptus sp. JN871207 JN871216 Barber et al. (2011)
Seiridium aquaticum MFLUCC 17-0474 T China Decaying wood MK828605 Luo et al. (2019)
S-136 China Decaying wood MK828606 Luo et al. (2019)
Seir. camelliae MFLUCC 12-0647 T China Camellia reticula JQ683725 JQ683741 JQ683709 Maharachchikumbura et al. (2015)
Seir. cancrinum CBS 226.55 = IMI 052256 T Kenya Cupressus macrocarpa LT853089 MH554241 LT853137 LT853186 LT853236 Bonthond et al. (2018)
CBS 907.85 South Africa Cupressus lustinaca LT853090 LT853138 LT853187 LT853237 Bonthond et al. (2018)
Seir. Cardinale CBS 909.85 T South Africa Cupressus lustinaca LT853064 LT853113 LT853161 LT853211 Marin-Felix et al. (2019)
CBS 910.85 South Africa Cupressus sempervirens LT853065 LT853114 LT853162 LT853212 Marin-Felix et al. (2019)
CBS 523.82 New Zealand Cupressocyparis sp. LT853062 LT853111 LT853159 LT853209 Marin-Felix et al. (2019)
Seir. ceratosporum PHSI2001Pathcw07 China Vitis vinifera AY687314 Jiang et al. (2019)
Seir. chinense CFCC 53031 T China Trachycarpus fortunei MK353158 MK351796 MK351799 MK351802 Jiang et al. (2019)
CFCC 53032 China Trachycarpus fortunei MK353159 MK351797 MK351800 MK351803 Jiang et al. (2019)
CFCC 53033 China Trachycarpus fortunei MK353160 MK351798 MK351801 MK351804 Jiang et al. (2019)
Seir. cupressi CBS 122616 Greece Cupressus sp. LT853082 LT853130 LT853179 LT853229 Jiang et al. (2019)
CBS 224.55 = IMI 052254 ET Kenya Cupressus macrocarpa LT853083 LT853131 LT853180 LT853230 Jiang et al. (2019)
Seir. eucalypti CBS 343.97 ET Australia Eucalyptus delegatensis LT853099 MH554251 LT853146 LT853196 LT853246 Jiang et al. (2019)
Seir. kartense CBS 142629 = CPC 20183 T Australia Eucalyptus cladocalyx LT853100 LT853147 LT853197 LT853247 Bonthond et al. (2018)
Seir. kenyanium CBS 228.55 = IMI 052257 T Kenya Juniperus procera LT853098 MH554242 LT853145 LT853195 LT853245 Jiang et al. (2019)
Seir. marginatum CBS 140403 ET France Rosa canina KT949914 MH554223 LT853149 LT853199 LT853249 Jaklitsch et al. (2016)
Seir. neocupressi CBS 142625 = CPC 23786 T Italy Cupressus sempervirens LT853079 MH554329 LT853127 LT853176 LT853226 Bonthond et al. (2018)
CBS 142626 Italy Cupressus sempervirens LT853080 LT853128 LT853177 LT853227 Bonthond et al. (2018)
Seir. papillatum CBS 340.97 = VPRI 20827 T Australia Eucalyptus delegatensis LT853102 DQ414531 LT853150 LT853200 LT853250 Jiang et al. (2019)
Seir. pezizoides CBS 145115 Italy Vitis vinifera MK079342 MK058475 MK058480 MK058485 Marin-Felix et al. (2019)
Seir. phylicae CBS 133587 = CPC 19964 T Tristan da Cunha Phylica arborea LT853091 LT853139 LT853188 Crous et al. (2012)
CPC 19962 Tristan da Cunha Phylica arborea LT853092 LT853140 LT853189 Crous et al. (2012)
Seir. podocarpi CBS 137995 T South Africa Podocarpus latifolus LT853101 LT853148 LT853198 LT853248 Crous et al. (2014a)
Seir. pseudocardinale MFLUCC 13-0525 Italy Cupressus arizonica KU848210 Wijayawardene et al. (2016b)
CBS 122613 = CMW 1648 Portugal Cupressus sp. LT853096 MH554206 LT853143 LT853193 LT853243 Wijayawardene et al. (2016b)
Seir. rosarum MFLUCC 17-0654 T Italy Rosa sp. MG828961 Wanasinghe et al. (2018)
Seir. spyridicola CBS 142628 T Australia Spyridium globosum LT853095 LT853142 LT853192 LT853242 Bonthond et al. (2018)
Seir. unicorne CBS 120306 South Africa Cupressus sempervirens LT853087 LT853135 LT853184 LT853234 Bonthond et al. (2018)
CBS 538.82 = NBRC 32684 T New Zealand Cryptomeria japonica LT853088 MH554269 LT853136 LT853185 LT853235 Bonthond et al. (2018)
Seir. venetum MFLU 14-0265 T Italy Cornus mas KT438836 KT438837 Maharachchikumbura et al. (2015)
Sporocadus biseptatus CBS 110324 = MYC 754 T MH553956 MH554179 MH554853 MH554374 MH554615 Liu et al. (2019)
Spo. cornicola CBS 143889 = CPC 23235 Germany Cornus sanguinea MH554121 MH554326 MH555029 MH554555 MH554794 Liu et al. (2019)
MFLUCC 14-0448 T Italy Cornus sanguinea KU974967 Liu et al. (2019)
Spo. cornii MFLUCC 14-0467 T Italy Cornus sp. KT162918 KR559739 Moghadam et al. (2022)
Spo. cotini CBS 139966 = T Russia Cotinus coggygria MH554003 MH554222 MH554916 MH554433 MH554675 Liu et al. (2019)
MFLUCC 14-0623
Spo. incanus CBS 123003 T Spain Prunus dulcis MH553991 MH554210 MH554900 MH554417 MH554659 Liu et al. (2019)
Spo. italicus MFLUCC 14-1196 T Italy Crategus sp. MF614829 MF614829 Moghadam et al. (2022)
Spo. kurdistanicus IRAN 2356C = CBS 143778 T Iran Vitis vinifera MW361950 MW361958 MW375356 MW375350 Moghadam et al. (2022)
IRAN 2355C Iran Vitis vinifera MW361949 Moghadam et al. (2022)
IRAN 2354C Iran Vitis vinifera MW361948 MW361957 MW375355 MW375349 Moghadam et al. (2022)
IRAN 2313C = CBS 143777 Iran Vitis vinifera MW361947 MW361956 MW375354 MW375348 Moghadam et al. (2022)
Spo. lichenicola CBS 354.90 = NBRC 32677 Germany Fagus sylvatica MH554035 MH554252 MH554948 MH554470 MH554711 Liu et al. (2019)
CPC 24528 Germany Juniperus communis MH554127 MH554332 MH555036 MH554562 MH554800 Liu et al. (2019)
NBRC 32625 = IMI 079706 ET UK Rosa canina MH883643 MH883646 MH883647 MH883644 MH883645 Liu et al. (2019)
Spo. mali CBS 446.70 T Netherlands Malus sylvestris MH554049 MH554261 MH554960 MH554484 MH554725 Liu et al. (2019)
Spo. microcyclus CBS 424.95 T Germany Sorbus aria MH554045 MH554258 MH554956 MH554480 MH554721 Liu et al. (2019)
CBS 887.68 = NBRC 32680 Netherlands Ribes sp. MH554068 MH554280 MH554981 MH554504 MH554744 Liu et al. (2019)
Spo. multiseptatus CBS 143899 = CPC 26606 T Serbia Viburnum sp. MH554141 MH554343 MH555047 MH554576 MH554814 Liu et al. (2019)
Spo. pseudocorni MFLU 13-0529 T Italy Cornus sp. KU359033 Moghadam et al. (2022)
Spo. rosarum CBS 113832 = UPSC2172 Sweden Rosa canina MH553970 MH554189 MH554864 MH554388 MH554629 Liu et al. (2019)
MFLUCC 15-0563 T Italy Rosa canina MG828960 MG829071 Liu et al. (2019)
MFLUCC 14-0466 T Italy Rosa canina KT284775 KT281912 Liu et al. (2019)
Spo. rosigena CBS 116498 Iran Vitis vinifera MH553983 MH554200 MH554883 MH554401 MH554642 Liu et al. (2019)
CBS 129166 = MSCL 860 Latvia Rhododendron MH553996 MH554215 MH554905 MH554423 MH554665 Liu et al. (2019)
CBS 182.50 Netherlands Pyrus communis MH554013 MH554233 MH554926 MH554447 MH554689 Liu et al. (2019)
CBS 250.49 Netherlands Rubus fruticosus MH554023 MH554245 MH554934 MH554457 MH554699 Liu et al. (2019)
CBS 466.96 Netherlands Rubus sp. MH554052 MH554265 MH554965 MH554487 MH554728 Liu et al. (2019)
MFLU 16-0239 T Italy Rosa canina MG828958 MG829069 Liu et al. (2019)
Spo. rotundatus CBS 616.83 T Canada Arceuthobium pussilum MH554060 MH554273 MH554974 MH554496 MH554737 Liu et al. (2019)
Spo. sorbi CBS 160.25 MH554008 MH554229 MH554924 MH554442 MH554684 Liu et al. (2019)
MFLUCC 14-0469 T Italy Sorbus torminalis KT284774 KT281911 Liu et al. (2019)
Spotocadus sp. CBS 506.71 Italy Euphorbia sp. MH554055 MH554268 MH554968 MH554490 MH554731 Liu et al. (2019)
Spo. trimorphus CBS 114203 = UPSC2430 T Sweden Rosa canina MH553977 MH554196 MH554876 MH554395 MH554636 Liu et al. (2019)
Strickeria kochii CBS 140411 ET Austria Robinia pseudoacacia NR_154423 KT949918 MH554920 Liu et al. (2019)
Synnemapestaloides juniperi CBS 477.77 T France Juniperus phoenicea MH554053 MH554266 MH554966 Liu et al. (2019)
Syn. rhododendri MAFF 239201 T Japan Rhododendron brachycarpum LC047753 LC047744 Liu et al. (2019)
MAFF 243052 Japan Rhododendron brachycarpum LC047757 LC047748 Liu et al. (2019)
Truncatella angustata CBS 398.71 Turkey Soil MH554042 MH554255 MH554953 Liu et al. (2019)
CBS 231.77 Turkey Gossypium sp. MH554021 MH554243 MH554932 Liu et al. (2019)
CPC 21354 France Vitis vinifera cv. ‘Prunelard’ MH554111 MH554317 MH555020 Liu et al. (2019)
CBS 642.97 Switzerland Heterodera carotae MH554061 MH554274 MH554975 Liu et al. (2019)
CBS 393.80 Chile Gevuina avellana MH554041 MH554254 MH554952 Liu et al. (2019)
CBS 938.70 Netherlands Prunus laurocerasus MH554070 MH554281 MH554982 Liu et al. (2019)
CBS 356.33 Prunus sp. MH554036 MH554253 MH554949 Liu et al. (2019)
CBS 144025 NT France Vitis vinifera cv. ‘Prunelard MH554112 MH554318 MH555021 Liu et al. (2019)
CBS 338.32 Netherlands Lupinus sp. MH554033 MH554250 MH554945 Liu et al. (2019)
CBS 165.25 Prunus armeniaca MH554010 MH554231 Liu et al. (2019)
undetermined sp. 1 CBS 113991 Sweden Salix caprea MH553971 MH554190 MH554865 Liu et al. (2019)
undetermined sp. 2 CBS 387.77 Finland Skin of man MH554040 KM 116277 MH554950 Liu et al. (2019)
Xenoseimatosporium quercinum MFLUCC 14-1198 T Germany Quercus robur NR_155804 NG_059681 Liu et al. (2019)
CBS 129171 Rhododendron sp. MH553997 MH554216 MH554906 Liu et al. (2029)

1 BRIP: Queensland Plant Pathology Herbarium, Australia; CBS: Culture collection of the Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands; CFCC: China Forestry Culture Collection Center, China; CMW: Culture Collection of the Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa; CPC: Culture collection of Pedro Crous, housed at the Westerdijk Institute; HGUP: Plant Pathology Herbarium of Guizhou University; HHUF: herbarium of Hirosaki University; HKUCC: The University of Hong Kong Culture Collection; HPC: Herbarium of Pedro Crous, housed at the Westerdijk Institute; ICMP: International Collection of Micro-organisms from Plants, Landcare Research, Private Bag 92170, Auckland, New Zealand; IFRDCC: International Fungal Research and Development Culture Collection; IMI: International Mycological Institute, CABI-Bioscience, Egham, Bakeham Lane, United Kingdom; LC: working collection of Lei Cai, housed at the Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; MAFF: Ministry of Agriculture, Forestry and Fisheries, Tsukuba, Ibaraki, Japan; MEAN: culture collection of INIAV Institute, Oeiras, Portugal; MFLUCC: Mae Fah Luang University Culture Collection; NOF: The Fungus Culture Collection of the Northern Forestry Centre, Alberta, Canada; MSCL: Microbial Strain Collection of Latvia; NBRC: Biological Resource Center; NTUCC: National Taiwan University Culture Collection, Taiwan; UPSC: Uppsala University Culture Collection of Fungi, Sweden; VPRI: Victorian Plant Disease Herbarium, Australia.

2 Status: status of the strains. ET: ex-epitype; IT: ex-isotype; NT: ex-neotype; R: reference strain; ST: ex-syntype; T: ex-type.

3 MFLUCC 15-0563: Type of Seimatosporium rosigenum, MFLUCC 14-0466: Type of Seimatosporium pseudorosarum.

Seven phylogenetic analyses were conducted based on both individual and combined loci for one family (Sporocadaceae) and six genera (Monochaetia, Neopestalotiopsis, Pestalotiopsis, Seimatosporium, Seiridium and Sporocadus). Maximum Parsimony (MP) was used to construct phylogenies using PAUP v. 4.0b10 (Swofford 2003), Maximum Likelihood (ML) was executed in RAxML (Dean et al. 2014) implemented in raxmlGUI v. 1.5b1 (Silvestro & Michalak 2012) and MrBayes v. 3.1.2 was used for Bayesian analyses (BA) (Huelsenbeck & Ronquist 2001).

Trees were visualised with FigTree v. 1.4.0 (http://tree.bio.ed.ac.uksoftware/figtree/), and additional layout was done with Adobe Illustrator CS v. 5. Maximum-likelihood bootstrap values (MLBP) and Maximum-parsimony bootstrap values (MPBP) equal or greater than 50 % are provided for each tree. Bayesian posterior probabilities (BYPP) > 0.90 are indicated as thickened lines.

Prevalence

To determine the prevalence of Sporocadaceae genera and species on Rosa spp. and plant parts (branches, fruits, leaves or spines), the Isolation Rate (RI) was calculated for each species with the formula: RI % = (NS / NI) × 100, where NS was the number of isolates from the same genera or species, and NI was the total number of isolates from each Rosa sp. or plant part. The overall RI was calculated using the NI value equal to the total number of isolates obtained from Rosa plants (Vieira et al. 2014, Fu et al. 2019, Guo et al. 2020).

RESULTS

Phylogenetic analyses

The concatenated DNA sequence dataset (ITS, LSU and RPB2) was used to infer delimitation at the family level. The concatenated alignment had a total length of 2419 characters including alignment gaps (659 for ITS, 890 for LSU and 832 for RPB2). Of these, 1 401 characters were constant, 144 variable characters were parsimony-uninformative and 874 characters were parsimony informative. The ML search resolved a best tree with an InL of -36418.696700. The BA lasted for 1 855 000 generations and the 50 % consensus tree and posterior probabilities were calculated from 2 784 trees from two runs. The ML tree confirmed the same tree topology and the clades as those presented in the Bayesian phylogeny (Fig. 2).

Fig. 2.

Fig. 2

Fig. 2

Fig. 2

Phylogenetic tree of Sporocadaceae (50 % majority rule consensus) based on maximum likelihood (ML) analysis of the combined LSU, ITS and RPB2 sequence alignment. Nodes are labelled with bootstrap values from RAxML/Bayesian posterior probabilities. Nodes receiving below 50 bootstrap values and 0.5 probability values are not labelled. The scale bar represents the expected number of changes per site. Genera in this study are delimited in coloured boxes and isolates collected in this study are in bold. Ex-type strains are represented in bold.

Following alignment of Monochaetia, the ITS sequence data with a total of 599 characters including gaps, of which 496 characters were constant, 15 variable characters were parsimony uninformative, and 88 characters were variable and parsimony informative. The parsimony analysis resulted in 1 000 equally parsimonious trees, one of which is in Fig. 3 (CI = 0.780, RI = 0.887, RC = 0.692, HI = 0.220). The topology of the phylogenetic trees generated from the MP, ML and BA methods were congruent.

Fig. 3.

Fig. 3

Phylogenetic tree of Monochaetia resulting from maximum likelihood (ML) analysis of the ITS sequence alignment. Nodes are labelled with bootstrap values from RAxML/Parsimony bootstrap/Bayesian posterior probabilities values. Nodes receiving below 50 bootstrap values and 0.5 probability values are not labelled. The scale bar represents the expected number of changes per site. Ex-type strains are represented in bold; strains obtained in the current study in blue. The flower symbol represents species that have been recorded from Rosa.

In the phylogenetic tree constructed for Neopestalotiopsis and Pestalotiopsis, sequences of the combined ITS, TEF and TUB were aligned. In Neopestalotiopsis, the alignment comprises 2 263 characters including alignment gaps after alignment (580 for ITS, 592 for TEF and 787 for TUB). Of these, 1647 characters were constant, 383 variable characters were parsimonyuninformative and 233 characters were parsimony informative. The MP analysis resulted in a single equally most parsimonious tree (CI = 0.672, RI = 0.659, RC = 0.442, HI = 0.328). In Pestalotiopsis, the alignment comprises 2 183 characters including alignment gaps after alignment (590 for ITS, 670 for TEF and 909 for TUB), of which 1165 characters were constant, 384 variable characters were parsimony-uninformative and 634 characters were parsimony informative. The MP analysis resulted in a single equally most parsimonious tree (CI = 0.565, RI = 0.845, RC = 0.478, HI = 0.435). MP was similar to the topology from ML and BA (Fig. 4, 5).

Fig. 4.

Fig. 4

Fig. 4

The best Maximum Likelihood tree from the multi-gene alignment (ITS, TUB and TEF) for the Neopestalotiopsis. Nodes are labelled with bootstrap values from RAxML/Parsimony bootstrap/Bayesian posterior probabilities values. Nodes receiving below 50 bootstrap values and 0.5 probability values are not labelled. The scale bar represents the expected number of changes per site. Ex-type strains are represented in bold; strains obtained in the current study in blue. The flower symbol represents species that have been recorded from Rosa.

Fig. 5.

Fig. 5

Fig. 5

The best Maximum Likelihood tree from the multi-gene alignment (ITS, TUB and TEF) for the Pestalotiopsis. Nodes are labelled with bootstrap values from RAxML/Parsimony bootstrap/Bayesian posterior probabilities values. Nodes receiving below 50 bootstrap values and 0.5 probability values are not labelled. The scale bar represents the expected number of changes per site. Ex-type strains are represented in bold; strains obtained in the current study in blue. The flower symbol represents species that have been recorded from Rosa.

In Seimatosporium, the combined ITS + LSU dataset had an aligned length of 1495 characters in the dataset (601 for ITS and 887 for LSU), of which 1 181 characters are constant, 118 are variable and parsimony-uninformative, and 196 are parsimony informative. Maximum Parsimony analysis yielded 750 equally parsimonious trees (CI = 0.674, RI = 0.738, RC = 0.497, HI = 0.326), and a strict consensus tree is shown in Fig. 6.

Fig. 6.

Fig. 6

The best Maximum Likelihood tree from the multi-gene alignment (ITS and LSU) for the Seimatosporium. Nodes are labelled with bootstrap values from RAxML/Parsimony bootstrap/Bayesian posterior probabilities values. Nodes receiving below 50 bootstrap values and 0.5 probability values are not labelled. The scale bar represents the expected number of changes per site. Ex-type strains are represented in bold; strains obtained in the current study in blue. The flower symbol represents species that have been recorded from Rosa.

In Seiridium, the combined ITS, RPB2, TEF and TUB dataset consists of 2 897 characters including alignment gaps (598 for ITS, 818 for RPB2, 606 for TEF and 829 for TUB), of which 1 637 are constant, 454 are variable parsimony uninformative characters and 806 are parsimony-informative characters. The MP analysis resulted in a single equally most parsimonious tree (CI = 0.664, RI = 0.689, RC = 0.457, HI = 0.336) (Fig. 7).

Fig. 7.

Fig. 7

The best Maximum Likelihood tree from the multi-gene alignment (ITS, RPB2, TEF and TUB) for the Seiridium. Nodes are labelled with bootstrap values from RAxML/Parsimony bootstrap/Bayesian posterior probabilities values. Nodes receiving below 50 bootstrap values and 0.5 probability values are not labelled. The scale bar represents the expected number of changes per site. Ex-type strains are represented in bold; strains obtained in the current study in blue. The flower symbol represents species that have been recorded from Rosa.

In Sporocadus, the combined sequences of ITS, LSU, RPB2, TEF and TUB were aligned. The combined data comprises 3619 characters including alignment gaps (566 for ITS, 900 for LSU, 869 for RPB2, 496 for TEF and 760 for TUB). Of these, 2 671 characters were constant, 263 variable characters were parsimony-uninformative and 685 characters were parsimony informative. The MP analysis resulted in a single equally most parsimonious tree (CI = 0.657, RI = 0.808, RC = 0.531, HI = 0.343) (Fig. 8).

Fig. 8.

Fig. 8

The best Maximum Likelihood tree from the multi-gene alignment (ITS, LSU, RPB2, TEF and TUB) for the Sporocadus. Nodes are labelled with bootstrap values from RAxML/Parsimony bootstrap/Bayesian posterior probabilities values. Nodes receiving below 50 bootstrap values and 0.5 probability values are not labelled. The scale bar represents the expected number of changes per site. Ex-type strains are represented in bold; strains obtained in the current study in blue. The flower symbol represents species that have been recorded from Rosa.

All the MP analyses resulted in a tree with the same topology and terminal clades as the ML and BA trees. The new species from the present study appeared in distinct clades with high bootstrap support.

Taxonomy

Based on the morphology and multi-locus phylogeny, 126 isolates were assigned to 15 species belonging to six genera in Sporocadaceae, including 11 species newly described below.

Monochaetia rosarum C. Peng & C.M. Tian, sp. nov. — MycoBank MB 843811; Fig. 9

Fig. 9.

Fig. 9

Monochaetia rosarum (BJFC-S1877, holotype). a. Disease symptoms; b–c. habit of conidiomata on branch; d. colonies on PDA at 3 d (left) and 15 d (right); e. longitudinal section through conidioma; f. conidiomata on PDA; g–i. conidiogenous cells with attached conidia; k. conidia. — Scale bars: b–c, e = 50 μm; f = 200 μm; g–k = 10 μm.

Etymology. The species epithet reflects the name of the host plant genus Rosa.

Typus. China, Henan Province, Nanyang City, Neixiang county, Baotianman Nature Reserve, N33°29'29" E111°55'50", alt. 1311 m, on branches of R. chinensis, 7 Aug. 2020, C.M. Tian, Y.M. Liang & C. Peng (holotype BJFC-S1877, ex-type culture CFCC 55172 = ROC 099).

Symptoms appeared as circular to irregular, red or dark brown and raised, dehiscent lesions on twigs and branches (Fig. 9b–c). Sexual morph not observed. Asexual morph: Acervular conidiomata visible on the host, globose or irregular, superficial to semiimmersed, scattered or aggregated, black or red, 76–118 μm diam. Conidiophores septate and branched, hyaline, smooth-walled or verruculose. Conidiogenous cells annellidic, discrete or integrated, cylindrical, subcylindrical, hyaline or pale brown, smooth, 6.5–14(–15) × (1–)1.5–2 μm (av. = 10.7 ± 2.84 × 1.7 ± 0.26 μm). Conidia fusoid, straight or slightly curved, 4-septate, wall smooth, not constricted at the septa, (17.5–)18–20(–21) × 5–6(–7) μm (av. = 19.5 ± 0.95 × 5.4 ± 0.37 μm); basal cell obconic with or without truncate base, thin-walled, hyaline, 2.5–3(–3.5) μm (av. = 2.6 ± 0.27 μm) long; three median cells, doliiform or subcylindrical, mid-brown, thick-walled, the first median cell from base (3–)3.5–5 μm (av. = 4.2 ± 0.42 μm) long, the second cell (2.5–)3–3.5(–4.5) μm (av. = 3.4 ± 0.27 μm) long, the third cell (3–)3.5–4(–5) μm (av. = 3.7 ± 0.36 μm) long, together (10.5–)11.5–12.5(–13) μm (av. = 12.1 ± 0.47 μm) long; apical cell conic with an acute apex, thin-walled, hyaline, 2–2.5(–3) μm (av. = 2.4 ± 0.31 μm) long; apical appendage single, tubular, attenuated, unbranched, variously bent; (8–)9–12(–12.5) μm (av. = 10.8 ± 1.36 μm) long; basal appendage single, unbranched, centric, 4.5–6(–6.5) μm (av. = 5.5 ± 0.48 μm); mean conidium length/width ratio = 3.25 : 1.

Culture characteristics — On PDA, colonies slowly growing, up to 10 mm diam after 3 d and reaching 38–40 mm after 15 d, white to pale grey with a uniform texture, with an irregular margin, lacking aerial mycelium, becoming greyish and yellowish after 30 d, reverse yellowish brown. Conidiomata globose, distributed irregularly on the medium surface, exuding globose, dark brown to black conidial masses.

Additional materials examined. China, Henan Province, Nanyang City, Neixiang county, Baotianman Nature Reserve, N33°29'68" E111°55'16", alt. 1329 m, on branches of R. chinensis, 7 Aug. 2020, C.M. Tian, Y.M. Liang & C. Peng (BJFC-S1878, cultures CFCC 55173 = ROC 100, ROC 98, ROC 101).

Notes — Monochaetia rosarum forms an independent clade and is phylogenetically distinct from M. kansensis (Fig. 3). Monochaetia rosarum can be distinguished from M. kansensis in ITS loci by 13 bp differences (from 561 characters, with 97.6 % sequence identity, including 3 bp gaps). In addition, M. rosarum differs from M. kansensis in producing thinner conidia (5–6 μmvs 6–8 μm). Furthermore, the apical and basal appendages of M. rosarum are significantly shorter than those of M. kansensis (9–12 μm vs 15–26 μm and 4.5–6 μm vs 10–38 μm).

Four Monochaetia species have been reported from Rosa spp., i.e., M. concentrica, M. rosae-caninae, M. seiridioides and M. turgida (Guba 1961, Tai 1979, Nag Raj 1993, Chen 2003). These four species are easily distinguishable from our new species based on conidial dimensions. Monochaetia concentrica and M. seiridioides have longer conidia than M. rosarum (20–26 μm vs 18–20 μm and 26–28 μm vs 18–20 μm). Monochaetia turgida has wider conidia than M. rosarum (7.6–8.3 μm vs 5–6 μm).

Although M. rosarum and M. rosae-caninae have similar conidial width (5–6 μm vs 5–7 μm), the conidia of M. rosarum is significantly longer than those of M. rosae-caninae (18–20 μm vs 16–18 μm). In addition, M. rosarum is similar to M. camelliae in conidial dimensions (18–20 × 5–6 μm vs 18–20 × 4–7 μm), the latter having been previously reported from Camellia, Eucalyptus and Peltophorum. However, based on the combined gene phylogenetic analysis, M. rosarum is separated from M. camelliae and the apical appendages of M. rosarum are shorter than those of M. camelliae (9–12 μm vs 12–14 μm).

Key to Monochaetia species on Rosa spp.

  • 1. Conidial length more than 20 μm 2 . . . . . . . . . . . . . . . . . . . 2

  • 1. Conidial length less than 20 μm 3 . . . . . . . . . . . . . . . . . . . . 3

  • 2. Conidia 20–26 × 6.5–8.5 μm, apical appendage 15 μm long . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. concentrica

  • 2. Conidia 26–28 × 6–7 μm, apical appendage 12 μm long . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .M. seiridioides

  • 3. Conidial width more than 8 μm . . . . . . . . . . . . . M. turgida

  • 3. Conidial width less than 8 μm . . . . . . . . . . . . . . . . . . . . . 4

  • 4. Conidia 16–18 × 5–7 μm . . . . . . . . . . . .M. rosae-caninae

  • 4. Conidia 18–20 × 5–6 μm . . . . . . . . . . . . . . . .M. rosarum

Neopestalotiopsis concentrica C. Peng & C.M. Tian, sp. nov. — MycoBank MB 843813; Fig. 10

Fig. 10.

Fig. 10

Neopestalotiopsis concentrica (BJFC-S1882, holotype). a–b. Appearance of conidiomata on host substrate; c. conidiomata on PDA; d. colonies on PDA at 3 d (left) and 15 d (right); e–l. conidiogenous cells with attached conidia; m. conidia. — Scale bars: c = 200 μm; e–l = 10 μm.

Etymology. Name refers to the concentric circles formed by colonies on PDA.

Typus. China, Henan Province, Xinyang City, Jigong Mountain, N31°49'3" E114°4'33", alt. 717 m, on spines of R. rugosa, 6 Aug. 2020, C. Peng & S. Jia (holotype BJFC-S1882, ex-type culture CFCC 55162 = ROC 053).

Sexual morph not observed. Asexual morph: Acervular conidiomata globose or irregular, superficial to semi-immersed, scattered or aggregated, visible as black acervuli on the host, 93–117 μm diam. Conidiophores often reduced to conidiogenous cells. Conidiogenous cells discrete, ampulliform or irregular, variable in size, (3–)3.5–14.5(–15) × 3–5(–5.5) μm (av. = 7.8 ± 4.96 × 4.0 ± 1.21 μm), hyaline to subhyaline. Conidia fusoid, ellipsoid, straight to slightly curved, 4-septate, 14–18.5(–19) × 4.5–5(–6) μm (av. = 15.7 ± 1.06 × 4.9 ± 0.69 μm); basal cell conic to obconic with a truncate base, hyaline and thin-walled, 3–3.5(–4.0) μm (av. = 4.3 ± 0.21 μm) long; three median cells doliiform, (9–)9.5–10.5(–11) μm (av. = 10.0 ± 0.96 μm) long, wall rugose, versicoloured, septa darker than the rest of the cell, second cell from the base pale brown, 3–3.5 μm (av. = 3.3 ± 0.28 μm) long; third cell honey brown, 3–4 μm (av. = 3.74 ± 0.44 μm) long; fourth cell brown, 3–3.5 μm (av. = 3.1 ± 0.31 μm) long; apical cell (2.5–)3–3.5(–4) μm (av. = 3.4 ± 0.86 μm) long, hyaline, cylindrical, thinand smooth-walled; with 2–3 tubular apical appendages (mostly three), branched or unbranched, filiform, 19–26(–26.5) μm (av. = 22.6 ± 2.14 μm) long; basal appendage single, tubular, unbranched, centric, (3–)3.5–5.5(–6.0) μm (av. = 4.1 ± 0.95 μm) long.

Culture characteristics — Colony on PDA with flattened mycelium, white, smoke grey in the centre, reverse with smoke grey pigments formed a concentric ring pattern, reaching at 58–62 mm diam in 15 d at 28 °C. Conidiomata globose, irregularly distributed on the medium surface, exuding globose, dark brown to black conidial masses.

Additional materials examined. China, Henan Province, Xinyang City, Jigong Mountain, N31°49'1" E114°4'12", alt. 723 m, on spines of R. chinensis, 6 Aug. 2020, C. Peng & S. Jia (BJFC-S1883, living culture CFCC 55163 = ROC 064, ROC 135, ROC 136); Henan Province, Nanyang City, Xinyang City, Shihe District, N31°49'8" E114°3'58", alt. 727 m, on spines of R. chinensis, 6 Aug. 2020, C. Peng & S. Jia (BJFC-S1884, cultures ROC 137, ROC 138, ROC 140, ROC 141, ROC 142).

Notes — This species is most closely related to N. ellipsospora, N. rhapidis and N. samarangensis (Fig. 4), but distinguished from N. ellipsospora by 15 bp difference in the concatenated alignment (two in the ITS region (482/484, 99.5 % with no gaps), nine TEF (531/540, 98.3 % with four gaps) and four TUB (436/440, 99.0 % with four gaps)), from N. rhapidis by 13 bp difference (six in the ITS region (507/513, 98.8 % with no gaps), three TEF (499/502, 99.4 % with three gaps) and four TUB (743/747, 99.4 % with no gaps)) and from N. samarangensis by 12 bp difference (three in the ITS region (481/484, 99.3 % with two gaps), three TEF (537/540, 99.4 % with three gaps) and six TUB (434/440, 98.6 % with no gaps)). Moreover, N. concentrica differs from these two species in morphology, namely by having longer apical appendages than N. ellipsospora (19–26 μm vs 5–12 μm), N. rhapidis (19–26 μm vs 11–16 μm) and N. samarangensis (19–26 μm vs 12–18 μm). However, its conidia are shorter than those of N. ellipsospora (14–18.5 μm vs 19–25 μm), N. rhapidis (14–18.5 μm vs 22–25.5 μm) and N. samarangensis (14–18.5 μm vs 18–21 μm).

Neopestalotiopsis concentrica is phylogenetically and morphologically distinct from N. clavispora, N. palmarum, N. rosae, N. rosicola and N. versicolor, which were previously also reported from Rosa (Liu et al. 2010, Feng et al. 2014, Maharachchikumbura et al. 2014, Jiang et al. 2018, Vu et al. 2019). Its conidia are smaller than N. clavispora (14–18.5 × 4.5–5 μm vs 20–24 × 6.5–8.5 μm), N. palmarum (14–18.5 × 4.5–5 μm vs 19–23.6 × 5.6–6.6 μm), N. rosae (14–18.5 × 4.5–5 μm vs 22–37 × 7.5–9.5 μm), N. rosicola (14–18.5 × 4.5–5 μm vs 20.2–25.5 × 5.5–8 μm) and N. versicolor (14–18.5 × 4.5–5 μm vs 21.2–28.3 × 7.1–8.3 μm).

Neopestalotiopsis subepidermalis C. Peng & C.M. Tian, sp. nov. — MycoBank MB 843812; Fig. 11

Fig. 11.

Fig. 11

Neopestalotiopsis subepidermalis (BJFC-S1879, holotype). a. Appearance of conidiomata on host substrate; b. colonies on PDA at 3 d (left) and 15 d (right); c. conidiomata on PDA; d–g. conidiogenous cells with attached conidia; h. conidia. — Scale bars: c = 200 μm; d–h = 10 μm.

Etymology. Referring to the conidioma occurring under the epidermis of spines, not breaking through the epidermis.

Typus. China, Henan Province, Xinyang City, Jigong Mountain, N31°49'15" E114°3'31", alt. 163.4 m, on spines of R. rugosa, 5 Aug. 2020, C. Peng & S. Jia (holotype BJFC-S1879, ex-type culture CFCC 55160 = ROC 161, ROC 162).

Sexual morph not observed. Asexual morph: Acervular conidiomata globose or irregular, superficial to semi-immersed, scattered or aggregated, visible as black acervuli on the host, 80–122 μm diam. Conidiophores septate, branched, subcylindrical, hyaline to subhyaline, often reduced to conidiogenous cells. Conidiogenous cells discrete, collarette present and not flared, cylindrical, hyaline to subhyaline, (5.5–)6–18(–18.5) Sexual morph not observed. 3–5 μm (av. = 11.2 ± 2.90 × 3.8 ± 0.60 μm). Conidia fusoid, ellipsoid, straight to slightly curved, 4-septate, (19.5–)20–25(–26) × 7.5–9(–9.5) μm (av. = 22.6 ± 2.10 × 8.4 ± 0.95 μm); basal cell conic to obconic with a truncate base, hyaline and thin-walled, 4.0–5.5 μm (av. = 4.6 ± 0.64 μm) long; three median cells doliiform, 14–16 μm (av. = 15.0 ± 1.06 μm) long, wall rugose, versicoloured, septa darker than the rest of the cell, second cell from the base pale brown, (4.5–)5–6 μm (av. = 5.7 ± 0.44 μm) long; third cell honey brown, (4.5–)5–6 μm (av. = 5.4 ± 0.36 μm) long; fourth cell brown, (3.5–)4–5 μm (av. = 4.5 ± 0.72 μm) long; apical cell 3–3.5(–4) μm (av. = 3.2 ± 0.27 μm) long, hyaline, cylindrical, thinand smooth-walled; with 2–4 tubular apical appendages, branched or unbranched, filiform, (26.5–) 27–32.5(–33.5) μm (av. = 29.2 ± 1.79 μm) long; basal appendage single, tubular, unbranched, centric, (6.5–)7–7.5(–8) μm (av. = 7.3 ± 0.58 μm) long.

Culture characteristics — Colonies on PDA with aerial mycelium white, fluffy, reverse yellowish pigment accumulation in the centre, surrounded by amber, pure white at the colony margin, reaching at 58–60 mm diam in 15 d at 28 °C. Conidiomata globose, irregularly distributed on the medium surface, exuding globose, dark brown to black conidial masses.

Additional materials examined. China, Henan Province, Xinyang City, Jigong Mounta, N31°49'20" E114°32'6", alt. 220.1 m , on spines of R. chinensis, 5 Aug. 2020, C. Peng & S. Jia (BJFC-S1880, cultures CFCC 55161 = ROC 169, ROC 170); Henan Province, Xinyang City, Shihe District, N31°49'23" E114°3'24", alt. 199.6 m, on branches and spines of R. chinensis, 5 Aug. 2020, C. Peng & S. Jia (BJFC-S1881, cultures ROC 171, ROC 172, ROC 173, ROC 174).

Notes — The eight strains of N. subepidermalis in the present study form a well-supported independent clade distinct from known Neopestalotiopsis species (ML/MP/BI = 87/84/0.98). Neopestalotiopsis subepidermalis is most closely related to N. camelliae-oleiferae, N. mesopotamica, N. rosae and N. vacciniicola (Fig. 4), but differs from them in concatenated alignment. A comparison of the ITS region showed one nucleotide difference (453/454, 99.7 % with two gaps) with N. camelliaeoleiferae, three nucleotide differences (526/529, 99.4 % with a single gap) with N. mesopotamica, two nucleotide differences (524/526, 99.6 % with no gaps) with N. rosae, one nucleotide differences (519/520, 99.8 % with a single gap) with N. vacciniicola. Comparison of the TEF region revealed 15 bp differences (520/535, 97.1 % with no gaps) with N. camelliae-oleiferae, three bp differences (469/472, 99.5 % with no gaps) with N. mesopotamica, two bp differences (479/481, 99.5 % with no gaps) with N. rosae, 13 bp differences (462/475, 97.2 % with no gaps) with N. vacciniicola. Comparison of the TUB region revealed two bp differences (400/402, 99.5 % with no gaps) with N. camelliae-oleiferae, eight bp differences (723/731, 98.9 % with no gaps) with N. mesopotamica, 11 bp differences (736/747, 98.5 % with no gaps) with N. rosae, seven bp differences (412/419, 98.3 % with no gaps) with N. vacciniicola. Neopestalotiopsis rosae was also recorded from Rosa, but the morphological characteristics of N. rosae, in which the apical appendages do not arise from the apical crest are distinct from N. subepidermalis and other taxa in this genus (Maharachchikumbura et al. 2014). In addition, N. subepidermalis differs from the three other species in the dimensions of its conidia and apical appendages: the conidia of N. subepidermalis are shorter than N. mesopotamica (20–25 μm vs 26–32 μm), but longer than those of N. vacciniicola (20–25 μm vs 14.5–15.2 μm). Furthermore, the apical appendages of N. subepidermalis are significantly longer than those of N. camelliae-oleiferae (27–32.5 μm vs 15.5–18.5 μm) and N. vacciniicola (27–32.5 μm vs 4.3–24.3 μm).

Based on the phylogeny, N. subepidermalis is distinct from N. clavispora, N. palmarum, N. rosicola and N. versicolor, the four Neopestalotiopsis species associated with Rosa besides N. rosae (Liu et al. 2010, Feng et al. 2014, Jiang et al. 2018, Vu et al. 2019) (Fig. 4). Furthermore, N. subepidermalis differs from N. clavispora and N. versicolor in having the longer basal appendage (7–7.5 μm vs 3–5.5 μm and 7–7.5 μm vs 2.4–6.8 μm), while N. subepidermalis has longer apical appendages than N. rosicola and N. palmarum (27–32.5 μm vs 17–22.8 μm and 27–32.5 μm vs 11.8–18.9 μm).

Key to Neopestalotiopsis species on Rosa spp.

  • 1. Conidial width less than 6 μm . . . . . . . . . . . . . . . . . . . . . . 2

  • 1. Conidial width more than 6 μm . . . . . . . . . . . . . . . . . . . . . 3

  • 2. Conidia 14–18.5 × 4.5–5 μm, apical appendage 19–26 μm long . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . N. concentrica

  • 2. Conidia 19–23.6 × 5.6–6.6 μm, apical appendage 11.8–18.9 μm long . . . . . . . . . . . . . . . . . . . . . . . . . . . . . N. palmarum

  • 3. Basal appendages less than 5.5 μm . . . . . . . . . . . . . . . . . 4

  • 3. Basal appendages more than 5.5 μm . . . . . . . . . . . . . . . . 5

  • 4. Conidia 20–24 × 6–8 μm, apical appendages 22–32 μm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . N. clavispora

  • 4. Conidia 21.2–28.3 × 7.1–8.3 μm, apical appendage 18.9–30.7 μm long . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . N. versicolor

  • 5. Apical appendages do not arise from the apical crest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . N. rosae

  • 5. Apical appendages arise from the apical crest . . . . . . . . . 6

  • 6. Conidia 20.2–25.5 × 5.5–8.0 μm, apical appendages 17.0–22.8 μm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . N. rosicola

  • 6. Conidia 20–25 × 7.5–9 μm, apical appendages 27–32.5 μm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . N. subepidermalis

Pestalotiopsis chamaeropis Maharachch. et al., Stud. Mycol. 79: 158. 2014 — Fig. 12

Fig. 12.

Fig. 12

Pestalotiopsis chamaeropis (BJFC-S1885). a. Appearance of conidiomata on host substrate; b. colonies on PDA at 3 d (left) and 15 d (right); c. conidiomata on PDA; d–i. conidiogenous cells with attached conidia; j. conidia. — Scale bars: c = 200 μm; d–i = 10 μm.

Sexual morph not observed. Asexual morph: Acervular conidiomata globose or irregular, superficial to semi-immersed, scattered or aggregated, visible as black acervuli on the host. Conidiophores septate, branched, subcylindrical, hyaline, verruculose. Conidiogenous cells discrete, cylindrical, hyaline, smooth-walled, collarette present and not flared, with prominent periclinal thickening, (5.5–)7–8.5(–10) × 2–4(–4.5) μm (av. = 7.6 ± 1.32 × 3.4 ± 0.66 μm). Conidia fusoid, ellipsoid, straight to slightly curved, 4-septate, (25–)26–27.5(–28) × 7–8.5(–9) μm (av. = 27 ± 0.54 × 7.9 ± 0.56 μm); basal cell obconic with a truncate base, hyaline, thin-walled, 4.5–5.5(–6) μm (av. = 5.1 ± O. 36 μm) long; three median cells doliiform to subcylindrical, (15–)16.5–17(–18) μm (av. = 16.7 ± 0.52 μm) long, wall verruculose, concolourous, but occasionally the two upper median cells are slightly darker than the lower median cell, brown, second cell from the base 3.5–6(–6.5) μm (av. = 5.2 ± 0.81 μm) long, third cell (3–)5–6(–6.5) μm (av. = 5.4 ± 0.35 μm) long, fourth cell (3.5–)5.5–6(–6.5) μm (av. = 5.7 ± 0.42 μm) long; apical cell 3.5–5(–6) μm (av. = 4.4 ± 0.57 μm) long, hyaline, subcylindrical, thinand smooth walled; with 2–3 tubular apical appendages (mostly three), arising from the apical crest, unbranched, filiform, variable in size, 6–24(–24.5) μm (av. = 16.4 ± 3.66 μm) long; basal appendage single, tubular, unbranched, centric, 5.5–8(–8.5) μm (av. = 6.7 ± 1.07 μm) long.

Culture characteristics — Colony on PDA with fluffy mycelium, panniform, aerial mycelium white, reverse white or light yellow, being yellow at the centre and white at the edge. Colony 60–66 mm diam in 15 d at 28 °C. Conidiomata globose, irregularly distributed on the medium surface, exuding globose, dark brown to black conidial masses.

Materials examined. China, Gansu Province, Tianshui City, Maiji District, Maiji Mountain, N34°20'35" E106°0'22", alt. 1509 m, on spines of R. chinensis, 18 Aug. 2020, C. Peng & S. Jia (BJFC-S1885, cultures CFCC 55156 = ROC 23-1, ROC 270, ROC 272, ROC 273, ROC 275); Gansu Province, Tianshui City, Maiji District, Maiji Mountain, N34°20'52" E106°0'16", alt. 1508 m, on spines of R. chinensis, 18 Aug. 2020, C. Peng & S. Jia (BJFC-S1886, cultures CFCC 55157 = ROC 23-2, ROC 276, ROC 278, ROC 279, ROC 280); Gansu Province, Tianshui City, Maiji District, Maiji Mountain, N34°20'17" E106°0'36", alt. 1500 m, on spines of R. chinensis, 19 Aug. 2020, C. Peng & S. Jia (BJFC-S1887, cultures ROC 281, ROC 282, ROC 283, ROC 286); ibid. (cultures ROC 289, ROC 290, ROC 292, ROC 293).

Notes — Pestalotiopsis chamaeropis was first described from leaves of Chamaerops humilis in Italy and subsequently reported on a wide range of hosts (e.g., Camellia sinensis, Pieris japonica, Prostanthera rotundifolia, Vandopsis spp. and Vitis vinifera) (Maharachchikumbura et al. 2014, Moslemi & Taylor 2015, Liu et al. 2017, Ran et al. 2017, Jayawardena et al. 2018, Nozawa et al. 2019, Wang et al. 2019b). In this study, 18 isolates clustered together with the ex-type culture of Pes. chamaeropis (CBS 186.71) in the multi-locus phylogenetic tree (Fig. 5). This is the first report of this fungus on R. chinensis. Compared with the description of the ex-type isolate CBS 186.71, CFCC 55156 has smaller conidiogenous cells (7–8.5 × 2–4 μm vs 20–50 × 2–5 μm).

Pestalotiopsis rhodomyrtus Y Song et al., Phytotaxa 126: 27. 2013 — Fig. 13

Fig. 13.

Fig. 13

Pestalotiopsis rhodomyrtus (BJFC-S1888). a. Disease symptoms; b–c. appearance of conidiomata on host substrate; d. conidiomata on PDA; d–h. conidiogenous cells with attached conidia; i. conidia. — Scale bars: d = 200 μm; e–i = 10 μm.

Sexual morph not observed. Asexual morph: Acervular conidiomata globose or irregular. superficial to semi-immersed, scattered or aggregated, visible as black acervuli on the host, 86–99 μm. Conidiophores branched, subcylindrical, hyaline. Conidiogenous cells discrete, cylindrical or ampulliform, hyaline, smooth-walled, collarette present and not flared, with prominent periclinal thickening, (5–)6.5–10(–11.5) × (1.5–)2–3 μm (av. = 8.4 ± 1.35 × 2.7 ± 0.67 μm). Conidia fusoid, ellipsoid, straight to slightly curved, 4-septate, (17.5–)19–26 × (5–) 5.5–6.5(–7) μm (av. = 22.7 ± 1.21 × 5.9 ± 0.52 μm); basal cell obconic with a truncate base, hyaline, minutely verruculose and thin-walled, 3–5(–5.5) μm (av. = 4.2 ± 0.52 μm) long; three median cells doliiform to subcylindrical, (11–)12–18.5(–19.5) μm (av. = 14.9 ± 1.46 μm) long, wall verruculose, concolourous, pale brown, second cell from the base (3–)4.5–5.5 μm (av. = 4.8 ± 0.36 μm) long, third cell (3–)3.5–5(–5.5) μm (av. = 4.6 ± 0.54 μm), fourth cell 4–5.5(–6) μm (av. = 4.9 ± 0.38 μm); apical cell (3–)3.5–5.5 μm (av. = 4.4 ± 0.85 μm) long, hyaline, cylindrical to subcylindrical, thin and smooth walled; with 2–3 tubular apical appendages (mostly three), arising from the apical crest, unbranched, filiform, flexuous, (9–)11.5–20(–21.5) μm (av. = 15.7 ± 1.58 μm) long; one basal appendage, tubular, centric appendage tubular, branched or unbranched, (5.5–)6–7.5 μm (av. = 6.9 ± 1.74 μm) long.

Culture characteristics — Colonies on PDA flat with entire margin, aerial mycelium white, cottony, fluffy; reverse white in the centre and faint yellow margin, colony diam 59–63 mm diam in 15 d. Conidia in mass black. Conidiomata globose, irregularly distributed on the medium surface, exuding globose, black conidial masses.

Materials examined. China, Henan Province, Nanyang City, Neixiang county, Mahuang Village, N33°20'14" E114°52'1", alt. 266 m, on leaves of R. rugosa, 7 Aug. 2020, Y.M. Liang & C. Peng (BJFC-S1888, cultures ROC 056, ROC 057, ROC 058); ibid. (cultures ROC 059, ROC 060, ROC 061, ROC 062); Gansu Province, Gannan Tibetan Autonomous Prefecture, Lintan County, Yeliguan, N34°53'48" E103°35'2", alt. 2740 m, on spines of R. multiflora, 18 Aug. 2020, C. Peng & S. Jia (BJFC-S1889, cultures ROC 303, ROC 304, ROC 305, ROC 306); ibid. (cultures ROC 307, ROC 309, ROC 311); Hunan Province, Changsha City, Changsha County, N28°58'52" E113°34'38", alt. 61 m, on branches of R. chinensis, 10 Nov. 2020, C.M. Tian & N. Jiang (BJFC-S1890, cultures ROC 356, ROC 357, ROC 358, ROC 359).

Notes — Pestalotiopsis rhodomyrtus was initially described from Rhodomyrtus tomentosa in Guangxi Province, China (Song et al. 2013). In addition, this species was discovered on Camellia sinensis (Liu et al. 2017, Wang et al. 2019a). In this study, 18 isolates were identified as belonging to this species (Fig. 5) and this is the first report of this fungus on the host genus Rosa.

Compared with the description of the ex-type isolate HGUP 4230, isolate ROC 056 has longer apical and basal appendages (11.5–20 μm vs 7.5–14.9 μm and 6–7.5 μm vs 2.8–4.9 μm).

Pestalotiopsis tumida C. Peng & C.M. Tian, sp. nov. — MycoBank MB 843814; Fig. 14

Fig. 14.

Fig. 14

Pestalotiopsis tumida (BJFC-S1891 holotype). a. Disease symptoms; b. appearance of conidiomata on host substrate; c–d. conidiomata on PDA; e. colonies on PDA at 3 d (left) and 15 d (right); f. conidiomata on Rosa chinensis; g–k. conidiogenous cells with attached conidia; l. conidia. — Scale bars: c–d = 200 μm; f–l = 10 μm.

Etymology. Name refers to the basal appendage that is occasionally swollen at the tip.

Typus. China, Gansu Province, Tianshui City, Maiji District, Maiji Mounta, N34°20'32" E106°0'29", alt. 1601 m, on spines of R. chinensis, 15 Aug. 2020, C. Peng & S. Jia (holotype BJFC-S1891, ex-type cultures CFCC 55158 = ROC 110, ROC 108, ROC 109).

Sexual morph not observed. Asexual morph: Acervular conidiomata globose or irregular. superficial to semi-immersed, scattered or aggregated, visible as black acervuli on the host. Conidiophores branched, subcylindrical, hyaline. Conidiogenous cells discrete, cylindrical or ampulliform, hyaline, smooth-walled, collarette present and not flared, with prominent periclinal thickening, (7–)8–11.5(–12) × (1.5–)2–4.5 μm (av. = 10.4 ± 2.23 × 2.9 ± 0.83 μm). Conidia fusoid, ellipsoid, straight to slightly curved, 4-septate, (19–)19.5–23.5(–24) × 6.5–7.5 μm (av. = 21.4 ± 1.33 × 6.9 ± 0.58 μm); basal cell obconic with a truncate base, hyaline, minutely verruculose and thin-walled, (2.5–)3–4.5 μm (av. = 3.9 ± 0.58 μm) long; three median cells doliiform to subcylindrical, (14–)14.5–18(–18.5) μm (av. = 16.6 ± 1.68 μm) long, wall verruculose, concolourous, light brown, second cell from the base (3.5–)4–5 μm (av. = 4.6 ± 0.36 μm) long, third cell (4–)4.5–6.5 μm (av. = 5.3 ± 0.68 μm), fourth cell (4.5–)5.5 μm (av. = 5.1 ± 0.34 μm); apical cell 4.5–6 μm (av. = 5.1 ± 0.49 μm) long, hyaline, cylindrical to subcylindrical, thinand smooth walled; with 2–3 tubular apical appendages (mostly three), arising from the apical crest, unbranched, filiform, flexuous, (10–)10.5–15.5(–16) μm (av. = 13.1 ± 2.07 μm) long; 1–2 basal appendages, tubular, centric appendage tubular, branched or unbranched, occasionally swollen at the tip, (6.5–)7–19(–19.5) μm (av. = 10.9 ± 3.44 μm) long, excentric appendage tubular, 6.5–7.5(–8) μm (av. = 7.3 ± 0.26 μm) long.

Culture characteristics — Colonies on PDA with aerial mycelium white, fluffy, reverse yellow pigment accumulation in the centre, surrounded by amber, pure white at the colony margin. Colony 56–60 mm diam in 15 d at 28 °C. Conidiomata globose, irregularly distributed on the medium surface, exuding globose, black conidial masses.

Additional materials examined. China, Gansu Province, Tianshui City, Maiji District, Maiji Mounta, N34°20'36" E106°0'23", alt. 1557 m, on branches and spines of R. chinensis, 15 Aug. 2020, C. Peng & S. Jia (BJFC-S1892, cultures CFCC 55159 = ROC 234, ROC 235, ROC 236, ROC 237); ibid. (cultures ROC 238, ROC 240).

Notes — Pestalotiopsis tumida formed a distinct clade (ML/ MP/BI = 100/100/1) in the multi-locus analyses and is sister to Pes. intermedia and Pes. linearis. Pestalotiopsis tumida (Fig. 5) can be distinguished from Pes. intermedia and Pes. linearis in ITS (two different unique fixed alleles in Pes. intermedia (531/533, 99.5 % with a single gap) and two in Pes. linearis (536/538, 99.5 % with no gaps)), TEF loci (six different unique fixed alleles in Pes. intermedia (526/532, 98.6 % with no gaps) and four in Pes. linearis (528/532, 99.2 % with no gaps)) and TUB loci (10 different unique fixed alleles in Pes. intermedia (443/553, 97.7 % with four gaps) and 18 in Pes. linearis (415/433, 95.7 % with three gaps)). Moreover, the conidial morphology of Pes. tumida is significantly different from these two species. Pestalotiopsis tumida differs from Pes. intermedia and Pes. linearis by shorter conidia (Pes. tumida: 19.5–23.5 μm vs Pes. intermedia: 24–28 μm, Pes. linearis: 24–33 μm). In addition, it is different from Pes. linearis in bearing shorter apical appendages (10.5–15.5 μm vs 24–33 μm) and longer basal appendages (7–19 μm vs 4–7 μm).

There are 11 species of Pestalotiopsis that have been recorded from Rosa, namely Pes. adusta, Pes. algeriensis, Pes. aquatica, Pes. lespedezae, Pes. longisetula, Pes. macrochaeta, Pes. maculans, Pes. oleandri, Pes. populi-nigrae, Pes. rosae and Pes. suffocata (Riley 1960, Guba 1961, Mathur 1979, Rai 1990, Zhu et al. 1991, Nag Raj 1993, Mendes et al. 1998, Sameva 2004, Wei et al. 2005, Kobayashi 2007, Ge et al. 2009). Pestalotiopsis tumida can be easily distinguished from Pes. adusta, Pes. algeriensis, Pes. aquatica, Pes. longisetula and Pes. oleandri by the colour of its median conidial cells. The median conidial cells of these five species are versicolourous while the three median conidial cells of Pes. tumida are concolourous. Pestalotiopsis tumida can be distinguished from other Rosa associated species by the size of its conidia and length of appendages (Table 4). Furthermore, the basal appendage of Pes. tumida is occasionally swollen at the tip, a unique morphological character that distinguishes it from other species that have been recorded from Rosa.

Table 4.

Synopsis of Pestalotiopsis species with concolourous median conidium cells from Rosa.

Species Conidia length (μm) Conidia width (μm) Middle cells length (μm) Length of apical appendages (μm) Length of basal appendages (μm) Host Country References
Pestalotiopsis lespedezae 20.2–25 7.5–8.8 13.8–17.5 15–27.5 5–6.3 Rosa canina India Mathur (1979)
Pes. macrochaeta 24.8–33 6.6–7.6 13.0–21.2 15.3–34.2 7.1–11.8 Rosa sp. Brazil Mendes al. (1998)
Pes. maculans 19–27.5 6–8 10–15.5 16–24 4.2–5 Rosa sp. Bulgaria Sameva ((2004)
Pes. populi-nigrae 21.2–28.3 7.1–8.3 14.2–16.5 21.2–31.9 2.4–7.1 Rosa hybrida Japan Kobayashi (2007)
Pes. rosae 20.5–28.8 5–6.3 11.8–16.3 10–25 4–5.3 Rosa sp. China Ge et al. (2009)
Pes. suffocata 20.8–28.6 5.8–7.1 13.6–18.8 15.6–35.1 1.3–3.5 Rosa sp. China Ge et al. (2009)
Pes. tumida 19.5–23.5 6.5–7.5 14.5–18 10.5–15.5 7–19 Rosa chinensis China Present study

* Newly described taxon is in bold.

Key to Pestalotiopsis species on Rosa spp.

  • 1. Median conidial cells versicolourous . . . . . . . . . . . . . . . 2

  • 1. Median conidial cells concolourous . . . . . . . . . . . . . . . . 6

  • 2. Length of apical appendages less than 12 μm . . . . . . . . 3

  • 2. Length of apical appendages more than 12 μm . . . . . . 5

  • 3. Basal appendages less than 3.5 μm . . . . . . . . . . . . . . . 4

  • 3. Basal appendages more than 3.5 μm . . Pes. algeriensis

  • 4. Conidia not or slightly constricted at the septa, 16–22 × 5–7 μm, apical appendages 5–12 μm .... Pes. adusta

  • 4. Conidia constricted at the septa, 18.9–28.3 × 4.7–7.1 μm, apical appendages 16.5–28.3 μm . . . . . . . Pes. oleandri

  • 5. Conidia 20.6–28.2 × 7.2–8.2 μm, apical appendages 12.8–23 μm, basal appendages 2–4 μm . . . . . . Pes. aquatica

  • 5. Conidia 20.6–25.7 × 6.4–7.7 μm, apical appendages 20.6–36 μm, basal appendages 5.1–7.7 μm . Pes. longisetula

  • 6. Basal appendages less than 5 μm . . . . . . . . . . . . . . . . 7

  • 6. Basal appendages more than 5 μm . . . . . . . . . . . . . . . . 9

  • 7. Conidia 3–7.514.94-septate . . . . . . . . . . . . . . . . . . . . Pes. rosae

  • 7. Conidia 4-septate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

  • 8. Conidia 21.8–28.3 × 6.6–8.3 μm, apical appendages 21.2–31.9 μm, basal appendages 1.5–3 μm Pes. populi-nigrae

  • 8. Conidia 19–27.5 × 6–8 μm, apical appendages 16–24 μm, basal appendages 4.2–5 μm . . . . . Pes. maculans

  • 9. Conidial length less than 26 μm . . . . . . . . . . . . . . . . . 10

  • 9. Conidial length more than 26 μm . . . . . . . . . . . . . . . . . 12

  • 10. Basal appendages occasionally swollen at the tip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Pes. tumida

  • 10. Basal appendages not occasionally swollen at the tip 11

  • 11. Conidia 19.7–26.3 × 4.9–6.7 μm, apical appendages 7.5–14.9 μm, basal appendages 2.8–4.9 μm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pes. rhodomyrtus

  • 11. Conidia 20–25 × 7.5–8.5 μm, apical appendages 15–22.5 μm, basal appendages 3.7–7.5 μm Pes. lespedezae

  • 12. Basal appendages less than 5.5 μm .... Pes. suffocata

  • 12. Basal appendages more than 5.5 μm . . . . . . . . . . . . . . 13

  • 13. On PDA, reverse of colonies cinnamon-rufous, conidia 24.8–33 × 6.6–7.6 μm, apical appendages 15.3–34.2 μm, basal appendages 7.1–11.8 μm . . . . . . . . . Pes. macrochaeta

  • 13. On PDA, reverse of colonies white, conidia 26–27.5 × 7–8.5 μm, apical appendages 6–24 μm, basal appendages 5.5–8 μm . . . . . . . . . . . . . . . . . . . . . . Pes. chamaeropis

Seimatosporium centrale C. Peng & C.M. Tian, sp. nov. — MycoBank MB 843816; Fig. 15

Fig. 15.

Fig. 15

Seimatosporium centrale (BJFC-S1893, holotype). a–b. Disease symptoms; c. appearance of conidiomata on host substrate; d. conidiomata on PDA; e. colonies on PDA at 3 d (left) and 15 d (right); f. longitudinal section through conidiomata; g–k. conidiogenous cells with attached conidia; l. conidia. — Scale bars: c–d = 200 μm; f = 20 μm; g–l = 10 μm.

Etymology. Name refers to conidiomata produced in the centre of the colonies on PDA.

Typus. China, Gansu Province, Tianshui City, Maiji District, Dongcha Town, N34°19'34" E106°34'27", alt. 1120 m, on spines of R. chinensis, 16 July 2019, C.M. Tian, Y.M. Liang & C. Peng (holotype BJFC-S1893, ex-type cultures CFCC 55166 = ROC 003, ROC 001, ROC 002).

Sexual morph not observed. Asexual morph: Acervular conidiomata solitary to gregarious, immersed to semi-immersed, unilocular, subglobose, visible as black acervuli on the spines of R. chinensis. Conidiophores branched at the base, hyaline. Conidiogenous cells discrete or integrated, cylindrical, subcylindrical or irregular, hyaline, smooth, thick-walled, (6–)7.5–21.5(–23.5) × (2–)2.5–3(–3.5) μm (av. = 14.4 ± 3.23 × 2.7 ± 0.35 μm). Conidia straight or slightly curved, fusoid, cylindrical or subcylindrical, concolourous, 3-septate, mostly constricted at the septa, transverse septa fairly thick, smooth-walled, (18.5–) 19.5–23.5(–24) × (5–)5.5–7 μm (av. = 20.9 ± 1.58 × 6.1 ± 0.52 μm); basal cell obconic with a truncate base, hyaline to pale brown, (4–)4.5–5.5(–6) μm (av. = 5.0 ± 0.64 μm) long; middle cells cylindrical, pale brown, second cell from base (4–)4.5–5.5 μm (av. = 5.0 ± 0.39 μm), third cell from base (4.5–)5–6(–6.5) μm (av. = 5.4 ± 0.58 μm), together (9.5–)10–11.5(–12) μm (av. = 10.7 ± 0.88 μm) long; apical cell conical, pale brown, (3.5–)4–5 μm (av. = 4.2 ± 0.32 μm); apical appendage single, unbranched, centric, occasionally excentric, 3.5–5.5(–7) μm (av. = 4.9 ± 0.67 μm) long; basal appendage single, unbranched, excentric, (3–)4.5–5(–6) μm (av. = 5.0 ± 0.27 μm) long; mean conidium length/width ratio = 3.40 : 1.

Culture characteristics — Colonies on PDA with aerial mycelium white, dense, reverse with tawny pigment accumulation, being darker at the centre and paler at the edge. Colony 56–58 mm diam in 15 d at 28 °C. Conidiomata are observed around 25 d and are mostly produced in the centre of the colony. Conidiomata globose, exuding black conidial masses.

Additional materials examined. China, Shaanxi Province, Baoji City, Fengxian County, Xinjia Mountain, N34°12'45" E106°36'25", alt. 1609 m, on spines of R. chinensis, 16 July 2019, C.M. Tian, Y.M. Liang & C. Peng (BJFC-S1894, cultures CFCC 55169 = ROC 014, ROC 015, ROC 016); Gansu Province, Tianshui City, Maiji District, Maiji Mountain, N34°20'44" E106°0'22", alt. 1601 m, on spines of R. chinensis, 15 Aug. 2020, C. Peng & S. Jia (BJFC-S1895, cultures ROC 145, ROC 146, ROC 147).

Notes — The nine isolates studied form a well-supported independent clade distinct from known Seimatosporium species (ML/MP/BI = 98/96/1). Seimatosporium centrale is most closely related to Seim. botan, Seim. discosioides, Seim. gracile sp. nov. and Seim. nonappendiculatum sp. nov. (Fig. 6). Among them, Seim. discosioides as pathogens occurring on some Rosaceae hosts, especially on Rosa spp. (Shoemaker 1964, Nag Raj 1993). A pairwise comparison of the ITS sequence showed seven nucleotide differences out of 557 nucleotides (98.7 % similarity, including two gaps) between Seim. centrale and Seim. discosioides, while LSU showed six nucleotide differences out of 794 nucleotides (99.2 % similarity, without gaps). Meanwhile, Seim. discosioides morphologically differs from our new species and other Seimatosporium species associated with Rosa by the absent of appendages. Seimatosporium centrale differs from Seim. botan in morphology, namely having wider conidia (5.5–7 μm vs 4–5 μm) and their mean conidium length/ width ratio is quite distinct (3.4 : 1 in Seim. centrale vs 4.6 : 1 in Seim. botan). In addition, Seim. botan has two types of conidia (with only basal appendage and both apical and basal appendages) while Seim. centrale has only one conidial type (both apical and basal appendages). Furthermore, Seim. centrale can be distinguished from Seim. gracile by its extremely high mean conidium length/width ratio (3.40 : 1 vs 6.19 : 1) and from Seim. nonappendiculatum by the colour of its basal cell (pale brown vs hyaline).

Besides Seim. discosioides, four species of Seimatosporium have been recorded from Rosa, namely Seim. caninum, Seim. pseudorosae, Seim. salicinum and Seim. rosae (Nag Raj 1993, Kobayashi 2007, Mulenko et al. 2008, Norphanphoun et al. 2015, Hyde et al. 2016). Seimatosporium centrale has larger conidia than Seim. pseudorosae and Seim. rosae (19.5–23.5 × 5.5–7 μm vs 12–17.5 × 3–6 μm and 19.5–23.5 × 5.5–7 μm vs 10–16 × 3–4.5 μm). However, the apical appendages of Seim. centrale are noticeably shorter than those of the two species (3.5–5.5 μm vs 8–25 μm and 3.5–5.5 μm vs 1.5–15 μm). Seimatosporium caninum and Seim. salicinum can be distinguished from Seim. centrale based on the number of conidial septa. While Seim. centrale has 3-septate conidia, Seim. salicinum has 2–3-septate and Seim. caninum only has 2-septate conidia (Wanasinghe et al. 2018).

Seimatosporium gracile C. Peng & C.M. Tian, sp. nov. — MycoBank MB 843818; Fig. 16

Fig. 16.

Fig. 16

Seimatosporium gracile (BJFC-S1896, holotype). a. Appearance of conidiomata on host substrate; b. colonies on PDA at 3 d (left) and 15 d (right); c. conidiomata formed on pine needles; d–k. conidiogenous cells with attached conidia; l. conidia. — Scale bars: c = 200 μm; d–l = 10 μm.

Etymology. From Latin ‘gracile’ means slender/slim, which refers to the shape of the conidia.

Typus. China, Gansu Province, Tianshui City, Qingshui county, Shidong Mountain, N34°41'4" E106°21'34", alt. 1697 m, on spines of R. xanthina, 17 July 2019, C.M. Tian, Y.M. Liang & C. Peng (holotype BJFC-S1896, ex-type cultures CFCC 55167 = ROC 004, ROC 005, ROC 006).

Sexual morph not observed. Asexual morph: Acervular conidiomata solitary to gregarious, immersed when immature, becoming erumpent at maturity, subglobose, up to 95–337 μm diam, 56–104 μm high, visible as black conidiomata on the spines. Conidiophores irregularly branched, mostly branched at the base, 1–3-septate, hyaline. Conidiogenous cells discrete or integrated, ampulliform, cylindrical or subcylindrical, hyaline, smooth, thick-walled, variable in size, (7–)8.5–21.5(–23) × 1.52(–3) μm (av. = 15.6 ± 3.23 × 1.6 ± 0.18 μm). Conidia straight or slightly curved, cymbiform or fusoid, concolourous, 3-septate, barely constricted at the septa, transverse septa dark brown and fairly thick, smooth-walled, (13.5–)14.5–19.5(–20) × 2.5–3(–3.5) μm (av. = 16.7 ± 1.82 × 2.7 ± 0.25 μm); basal cell obconic with or without a truncate base, pale brown to hyaline, (2.5–)3–4(–4.5) μm (av. = 3.6 ± 0.47 μm) long; middle cells cylindrical, pale brown, second cell from base (3–)3.5–4.5 μm (av. = 3.9 ± 0.37 μm), third cell from base 3.5–4(–4.5) μm (av. = 3.8 ± 0.27 μm), together 7–8(–9) μm (av. = 7.7 ± 0.43 μm) long; apical cell conical, pale brown, (2.5–)3–3.5(–4.5) μm (av. = 3.2 ± 0.28 μm); apical appendage single, unbranched, centric, (3–)4–8(–8.5) μm (av. = 6.3 ± 1.58 μm) long; basal appendage single, unbranched, excentric, 4.5–8.5(–9) μm (av. = 6.1 ± 1.22 μm) long; mean conidium length/width ratio = 6.19 : 1.

Culture characteristics — Colonies on PDA flat with irregular margin, colony yellow or pale yellow in the centre with fluffy aerial mycelia and pale white margin; reverse tawny pigment accumulation formed in the shape of a concentric ring pattern. Colony 56–58 mm diam in 15 d at 28 °C. Conidiomata sparse, concentrically and irregularly distributed on the medium surface.

Additional materials examined. China, Gansu Province, Tianshui City, Qingshui county, Shidong mountain, N34°41'4" E106°21'35", alt. 1699 m, on spines of R. xanthina, 17 July 2019, C.M. Tian, Y.M. Liang & C. Peng (BJFC-S1897, cultures ROC 007, ROC 008, ROC 009); ibid. (cultures ROC 010, ROC 011, ROC 012).

Notes — Seimatosporium gracile forms an independent clade (ML/MP/BI = 100/100/1) and is phylogenetically distinct from Seim. nonappendiculatum (described below) (Fig. 6). A comparison of the ITS region showed 0.35 % differences (two bp difference of 566 bp, with one single gap), 0.23 % bp differences (2 bp difference of 846 bp, with no gaps) in the LSU region, 2.1 % bp differences (7 bp difference of 326 bp, with no gaps) in TEF, 2.4 % bp differences (11 bp difference of 464 bp, with no gaps) in TUB and 0.38 % bp differences (4 bp difference of 1051 bp, with no gaps) in RPB2, which is evidence for new species rank. Moreover, the two species are morphologically distinct. Seimatosporium gracile differs from Seim. nonappendiculatum in the colour of its basal cell and presence or absence of appendages. While Seim. gracile has a pale brown basal cell with both apical and basal appendages, Seim. nonappen diculatum has a hyaline basal cell with no appendages or only basal appendage. Furthermore, the typical characteristic of Seim. gracile is that the conidia are slender and has a markedly higher mean conidial length/width ratios (6.19 : 1) than other species that have been recorded from Rosa in this genus.

Seimatosporium nonappendiculatum C. Peng & C.M. Tian, sp. nov. — MycoBank MB 843820; Fig. 17

Fig. 17.

Fig. 17

Seimatosporium nonappendiculatum (BJFC-S1901, holotype). a–b. Disease symptoms; c. appearance of conidiomata on host substrate; d. conidiomata formed on PDA; e. longitudinal section through conidiomata; f–m. conidiogenous cells with attached conidia; n. conidia. — Scale bars: d = 200 μm; e = 20 μm; f–n = 10 μm.

Etymology. Referring to conidia lacking an apical appendage.

Typus. China, Ningxia Hui Autonomous Region, Guyuan City, Jingyuan County, N35°23'53" E106°22'33", alt. 1786 m, on fruits of R. laevigata, 29 Aug. 2020, C. Peng (holotype BJFC-S1901, ex-type cultures CFCC 55168 = ROC 377, ROC 378).

Symptoms are marked by slightly collapsed lesions, with regular margin, black dark brown, round spots on fruits (Fig. 19a–c). Sexual morph not observed. Asexual morph: Acervular conidiomata solitary to gregarious, subglobose, globose or irregular, up to 287–436 μm diam, 135–160 μm high. Conidiophores cylindrical, branched at the base, 1–3-septate, hyaline, smooth-walled. Conidiogenous cells discrete or integrated, ampulliform, cylindrical or subcylindrical, hyaline, smooth, thick-walled, variable in size, (5–)6.5–13.5(–16) × (1.5–)2–2.5(–3) μm (av. = 9.9 ± 2.21 × 2.3 ± 0.25 μm). Conidia straight or curved, fusoid or pyriform, 3-septate, distoseptate or euseptate, with or without constrictions at the septa, transverse septa dark brown and fairly thick, smooth-walled, (17–)18–23.5(–24) × (5–)5.5–7 μm (av. = 20.3 ± 1.47 × 6.4 ± 0.52 μm); basal cell obconic with a truncate base, hyaline or almost hyaline, (3–)3.5–4.5 μm (av. = 3.9 ± 0.39 μm) long; middle cells cylindrical, pale to medium brown, second cell from base 3–5(–5.5) μm (av. = 4.3 ± 0.32 μm), third cell from base (3.5–)4–4.5(–5) μm (av. = 4.3 ± 0.44 μm), together (7–)8–10(–11) μm (av. = 8.7 ± 0.32 μm) long; apical cell obtuse or conical, pale brown, (3–)4.5–5.5 μm (av. = 4.8 ± 0.31 μm); apical appendage absent; basal appendage lacking or, when present, single, unbranched, excentric, 1.5–4 μm (av. = 2.9 ± 0.93 μm) long; mean conidium length/ width ratio = 3.17 : 1.

Fig. 19.

Fig. 19

Asexual morph of Seimatosporium parvum (BJFC-S1898, holotype). a. Appearance of conidiomata on host substrate; b. appearance of conidiomata on host substrate; c. conidiomata formed on pine needles; d. colonies on PDA at 3 d (left) and 15 d (right); e–l. conidiogenous cells with attached conidia; m. conidia. — Scale bars: c = 200 μm; e–m = 10 μm.

Culture characteristics — Colonies on PDA flat with entire margin, colony yellow or pale yellow in the centre with fluffy aerial mycelia and pale white margin; reverse with yellow pigment. Colony 50–52 mm diam in 15 d at 25 °C. Conidiomata sparse, concentrically and irregularly distributed on the medium surface.

Additional material examined. China, Ningxia Hui Autonomous Region, Guyuan City, Jingyuan County, N35°23'53" E106°22'36", alt. 1788 m, on fruits of R. laevigata, 29 Aug. 2020, C. Peng (BJFC-S1902, cultures ROC 379, ROC 380, ROC 381).

Notes — Seimatosporium nonappendiculatum forms an independent clade (ML/MP/BI = 89/93/1) and is phylogenetically distinct from Seim. gracile (Fig. 6). The differences between Seim. nonappendiculatum and Seim. gracile have been mentioned above (see Seim. gracile).

Seimatosporium nonappendiculatum is characterised by its fusoid to pyriform, 3-septate conidia with a hyaline basal cell, lacking an apical appendage or with an excentric basal appendage. These morphological characteristics can easily distinguish Seim. nonappendiculatum from other Seimatosporium species previously reported from Rosa. Seimatosporium botan which was collected from Paeonia suffruticosa in Japan also has two types of conidia (Hatakeyama & Harada 2004). Seimatosporium botan can produce conidia with only one basal appendage which morphologically resembles our new Seimatosporium species, but Seim. botan has longer basal appendages (4–8 μm vs 1.5–4 μm) and larger mean conidium length/width ratio (4.6 : 1 vs 3.17 : 1). The other conidial type of Seim. botan bears appendages at both ends, which is very different from the conidia of Seim. nonappendiculatum. Besides Seim. botan, Seim. grammitum, Seim. hebeiense and Seim. hysterioides produce conidia with only a basal appendage (Shoemaker 1964, Hatakeyama & Harada 2004). Seimatosporium nonappendiculatum can be distinguished from these three species by its larger conidia (18–23.5 × 5.5–7 μm vs 12–18.5 × 3.5–5.5 μm, 18–23.5 × 5.5–7 μm vs 13.5–17.6 × 4.5–6.5 μm and 18–23.5 × 5.5–7 μm vs 12–18 × 5.5–6.5 μm). Seimatosporium pseudoglandigenum produces conidia without appendages which morphologically resemble the other conidial type of Seim. nonappendiculatum (Wijayawardene et al. 2016a). However, the conidia of Seim. pseudoglandigenum only has one conidial type. Although Seim. nonappendiculatum is similar to Seim. pseudoglandigenum in conidial size (18–23.5 × 5.5–7 μm vs 15–23 × 5–8 μm), Seim. pseudoglandigenum can be distinguished from our new species based on the colour of its apical conidial cells. While Seim. nonappendiculatum has pale brown apical cells and the apical cell is heterochromatic to the basal cells, Seim. pseudoglandigenum has hyaline apical cells and the apical cell is concolourous to the basal cells (Wijayawardene et al. 2016a).

Seimatosporiumparvum C. Peng & C.M. Tian, sp. nov. — MycoBank MB 843819; Fig. 18, 19

Fig. 18.

Fig. 18

Sexual morph of Seimatosporiumparvum (BJFC-S1898, holotype). a. Disease symptoms; b. appearance of ascomata on host substrate; c–d. longitudinal section through ascomata; e. asci and pseudoparaphyses; f–g. asci; h–i. ascospores. — Scale bars: c–d = 50 μm; f–k = 10 μm.

Etymology. From Latin parva ‘small’, referring to smaller conidia.

Typus. China, Qinghai Province, Huangnan Tibetan Autonomous Prefecture, Zeku County, N37°18'51" E101°56'34", alt. 2890 m, on spines of R. spinosissima, 12 July 2019, C.M. Tian, Y.M. Liang & C. Peng (holotype BJFC-S1898, ex-type cultures CFCC 55164 = ROC 038, ROC 039, ROC 040).

Sexual morph: Ascomata 52–155 μm high × 102–254 μm diam, black, immersed, solitary or gregarious, fully or partly erumpent, globose, uniloculate. Ostiole 6.5–16.5 μm, single, dark grey to black. Peridium 22–68 μm wide, comprising 2 layers, outer most layer heavily pigmented, thick-walled, comprising dark brown cells of textura angularis, inner layer composed of hyaline, flattened cells of textura angularis. Pseudoparaphyses numerous, 1.6–2.7 μm wide, filamentous, branched. Asci (86.5–) 91.599(–102.5) × (9–)10–11(–12.5) μm (av. = 96.7 ± 4.13 × 10.6 ± 1.16 μm), 8-spored, bitunicate, fissitunicate, clavate to cylindrical. Ascospores (21–)23.5–29(–30.5) × (3–)4.5–6(–7) μm (av. = 26.4 ± 2.21 × 5.4 ± 1.01 μm), overlapping biseriate, fusiform with narrow ends, mostly curved, 4–5-septate, constricted at the central septum, cells above central septum swollen, (3.5–)4.5–5.5(–6) × (4–)4.5–6 μm (av. = 5.1 ± 0.37 × 5.5 ± 1.02 μm). Asexual morph: Acervuli conidiomata solitary to gregarious, immersed when immature, becoming erumpent at maturity, unilocular, subglobose, up to 133–262 μm diam, 80–121 μm high, visible as black acervuli on the spines of R. spinosissima. Conidiophores cylindrical, branched at the base, smooth. Conidiogenous cells discrete or integrated, ampulliform, cylindrical or subcylindrical, hyaline, smooth, thick-walled, variable in size, (7–)9.5–24.5(–26.5) × (1–)1.5–2(–2.5) μm (av. = 16.5 ± 3.23 × 1.7 ± 0.97 μm). Conidia straight or slightly curved, cylindrical or subcylindrical, concolourous, 3-septate, without constrictions at the septa, transverse septa dark brown and fairly thick, smooth-walled, (10–)11–13.5(–14) × (2–)2.5–3.5(–4) μm (av. = 12.3 ± 0.51 × 2.9 ± 0.25 μm); basal cell obconic with a truncate base, pale brown to brown, (2–)2.5–3.5(–4) μm (av. = 2.6 ± 0.32 μm) long; middle cells cylindrical, pale brown to medium brown, second cell from base 2–3(–3.5) μm (av. = 2.7 ± 0.27 μm), third cell from base 2–3(–4) μm (av. = 2.4 ± 0.36 μm), together (5.5–)6–7(–8) μm (av. = 6.4 ± 0.41 μm) long; apical cell obtuse or conical, pale brown, (2–) 2.5–3.5 μm (av. = 3.1 ± 0.31 μm); apical appendage single, unbranched, centric, (17–)19.5–22.5(–23) μm (av. = 21.3 ± 2.13 μm) long; basal appendage single, unbranched, excentric, (18–)19.5–28.5(–30) μm (av. = 25.8 ± 2.32 μm) long; mean conidium length/width ratio = 3.95 : 1.

Culture characteristics — Colonies on PDA flat with entire margin, colony yellow or pale yellow in the centre with fluffy aerial mycelia and pale white margin; reverse with yellow pigment. Colony 54–58 mm diam in 15 d at 28 °C. Conidiomata sparse, concentrically and irregularly distributed on the medium surface.

Additional materials examined. China, Qinghai Province, Huangnan Tibetan Autonomous Prefecture, Zeku County, N37°18'60" E101°56'43", alt. 2899 m, on spines of R. spinosissima, 12 July 2019, C.M. Tian, Y.M. Liang & C. Peng (BJFC-S1899, cultures ROC 041, ROC 042, ROC 043); ibid., N37°18'56" E101°56'09", alt. 2910 m, on branches of R. helenae, 13 July 2019, C.M. Tian, Y.M. Liang & C. Peng (BJFC-S1900, cultures CFCC 55165 = ROC 017, ROC 018, ROC 019, ROC 020).

Notes — Seimatosporium parvum is most closely related to Seim. pseudorosae which has also been reported from Rosa (Hyde et al. 2016) (Fig. 6). Pairwise comparison of the LSU sequence data reveals 7 bp difference from 668 (98.7 %, without gap region) between this species and Seim. pseudorosae.

Moreover, morphological differences between Seim. parvum and Seim. pseudorosae are obvious, namely Seim. parvum have smaller conidia (11–13.5 × 2.5–3.5 μm vs 12–17.5 × 4–6 μm). Furthermore, the basal appendages of Seim. parvum are longer than those of Seim. pseudorosae (19.5–28.5 μm vs 6–15 μm).

In addition to Seim. pseudorosae, Seim. parvum is separated from Seim. rosae which has also been reported from Rosa based on phylogenetic analysis (Norphanphoun et al. 2015) (Fig. 6). Furthermore, Seim. parvum differs from other Seimatosporium species associated with Rosa in producing thinner conidia (Seim. parvum: 2.5–3.5 μm vs Seim. salicinum: 4–6 μm and Seim. rosae: 3–4.5 μm) and having longer apical appendage (Seim. parvum: 19.5–22.5 μm vs Seim. salicinum: 9–14 μm and Seim. rosae: 5–10 μm). Although Seim. caninum is similar to Seim. parvum in conidial dimensions (9.5–12 × 4–5 μm vs 11–13.5 × 2.5–3.5 μm), the conidia of this species only have two septa and lack appendages, which make Seim. caninum easily distinguishable from other species of Seimatosporium (Nag Raj 1993).

Key to Seimatosporium species on Rosa spp.

  • 1. Conidia lacking appendages . . . . . . . . . . . . . . . . . . . . . . . 2

  • 1. Conidia with appendages at both ends . . . . . . . . . . . . . . . 3

  • 2. Conidia 2-septate . . . . . . . . . . . . . . . . . . . . Seim caninum

  • 2. Conidia 3-septate . . . . . . . . . . . . . . . . . Seim. discosioides

  • 3. Appendages less than 8 μm . . . . . . . . . . . . . . . . . . . . . . . 4

  • 3. Appendages more than 8 μm . . . . . . . . . . . . . . . . . . . . . 7

  • 4. Conidia with appendages at both ends . . . . . . . . . . . . . . . 5

  • 4. Conidia without apical appendage, with or without basal appendage . . . . . . . . . . . . . . . . Seim. nonappendiculatum

  • 5. Conidial length more than 15 μm . . . . . . . . . . . . . . . . . . . 6

  • 5. Conidial length less than 15 μm . . . . . . . . . . . Seim. rosae

  • 6. Mean conidium length/width ratio = 3.40 : 1, conidia 19.5–23.5 × 5.5–7 μm . . . . . . . . . . . . . . . . . . . . . Seim. centrale

  • 6. Mean conidium length/width ratio = 6.19 : 1, conidia 14.5–19.5 × 2.5–3 μm . . . . . . . . . . . . . . . . . . . . . . Seim. gracile

  • 7. Mean conidium length/width ratio less than 6 . . . . . . . . . 8

  • 7. Mean conidium length/width ratio more than 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Seim. parvum

  • 8. Conidia 3-septate, 12–17.5 × 3–6 μm Seim. pseudorosae

  • 8. Conidia 2–3-septate, 11–17 × 4–6 μm . . . Seim. salicinum

Seiridium rosae C. Peng & C.M. Tian, sp. nov. — MycoBank MB 843821; Fig. 20

Fig. 20.

Fig. 20

Seiridium rosae (BJFC-S1903, holotype). a–b. Disease symptoms c. appearance of conidiomata on host substrate; d. conidiomata on PDA; e. colonies on PDA at 3 d (left) and 15 d (right); f–g. conidiomata on Rosa rugosa; h–n. conidiogenous cells with attached conidia; o. conidia. — Scale bars: c–d = 200 μm; h–o = 10 μm.

Etymology. The epithet reflects the name of the host plant genus Rosa.

Typus. China, Ningxia Hui Autonomous Region, Guyuan City, Jingyuan County, N35°18'52" E106°21'53", alt. 2157 m, on branches of R. rugosa, 27 Aug. 2020, C.M. Tian, Y.M. Liang & C. Peng (holotype BJFC-S1903, ex-type cultures CFCC55174 = ROC 208, ROC 209).

Symptoms appeared as elongate and ovoid, red or dark red, raised, dehiscent lesions on twigs or branches (Fig. 20a–c). Sexual morph not observed. Asexual morph: Acervular conidiomata irregularly scattered over the surface, solitary to gregarious, immersed when immature, erumpent from tissue at maturity, subglobose to globose and occasionally irregular. Conidiophores septate, cylindrical, irregularly branched, mostly branched at the base. Conidiogenous cells discrete, hyaline, subcylindrical to cylindrical, smooth-and thin-walled, the size varies tremendously, (8–)12–64.5(–70) × (1–)1.5–2(–3) μm (av. = 27.8 ± 15.43 × 1.7 ± 0.16 μm). Conidia fusoid, straight or slightly curved, 5-septate, not striate, distoseptate without pores, bearing one or two basal and one or more apical appendages, (29–)31–35(–36.5) × (7–)8–9.5 μm (av. = 32.6 ± 0.83 × 8.8 ± 0.47 μm); basal cell obconic, hyaline, smooth-walled, with marginal frill, (3–)3.5–4.5 μm (av. = 4.1 ± 0.63 μm); four median cells brown, smooth-walled, cylindrical to doliiform; second cell from base (4–)5.5–6.5(–7) μm (av. = 6.1 ± 0.21 μm); third cell (3–)4–5.5(–6) μm (av. = 4.9 ± 0.52 μm); fourth cell (3–) 3.5–5.5(–6.5) μm (av. = 4.7 ± 0.68 μm), fifth cell (4–)6–7.5 μm (av. = 6.5 ± 0.48 μm), together (18–)20.5–24.5(–26) μm (av. = 22.8 ± 2.65 μm); apical cell conical, hyaline, smooth-walled, (3–)3.5–5.5(–7) μm (av. = 4.1 ± 1.05 μm) long; apical appendages single or multiple, centric, branched or unbranched, occasionally swollen at the tip, (27–)28.5–44.5(–46) μm (av. = 35.3 ± 4.68 μm); 1–2 basal appendages (mostly two), cylindrical, centric, occasionally excentric, unbranched or branched, (2–)3–4.5 μm (av. = 3.7 ± 0.55 μm).

Culture characteristics — Colony on PDA with flattened mycelium, white, smoke grey in the centre, reverse with pale yellow pigments formed in concentric pattern. Colony 36–40 mm diam in 15 d at 25 °C, with concentrically distributed conidiomata.

Additional materials examined. China, Ningxia Hui Autonomous Region, Guyuan City, Jingyuan County, N35°18’52” E106°21’55”, alt. 2158 m, on branches of R. rugosa, 27 Aug. 2020, C.M. Tian, Y.M. Liang & C. Peng (cultures CFCC 55175 = ROC 267, ROC 268).

Notes — Seiridium rosae clustered in a well-supported independent clade (ML/MP/BI = 100/100/1) closely related to Seir. aquaticum and Seir. venetum (Fig. 7). Seiridium rosae can be distinguished from Seir. venetum in ITS (19 bp difference from 463 characters, with 95.8 % similarity, including 28 gaps) and TUB (7 bp difference from 365 characters, with 98.1 % similarity, including no gaps) sequences. Pairwise comparison of the ITS sequence data reveals 49 bp difference from 526 (90.6 % similarity, including 10 gaps) between our new species and the Seir. aquaticum. Seiridium rosae is distinct from Seir. aquaticum by its branched appendages, while Seir. aquaticum has conidia bearing single, short and unbranched appendage (Luo et al. 2019). Additionally, Seir. rosae has thinner conidia (8–9.5 μm vs 12–14 μm) and longer basal appendages (the basal appendages of Seir. aquaticum reduced to marginal frills) than Seir. aquaticum (Luo et al. 2019). Seiridium venetum can also produce conidia with branched apical appendages (Nag Raj 1985), but this species can be distinguished from Seir. rosae based on conidial dimensions (31–35 × 8–9.5 μm vs 20–30 × 6.5–8.5 μm). Seiridium rosae morphologically resembles Seir. pezizoides (basionym: Pestalotia pezizoides) which was isolated from Vitis sp. in Italy and the USA having 5-distoseptate conidia with one or more, branched or unbranched apical appendages (Nag Raj 1985). However, Seir. rosae differs from Seir. pezizoides in having longer apical appendages (28.5–44.5 μm vs 8.5–27 μm) and shorter basal appendages (3–4.5 μm vs 5.5–14 μm). Besides, the conidia of Seir. rosae mostly bear two basal appendages while Seir. pezizoides only has one basal appendage (Nag Raj 1985, Marin-Felix et al. 2019). Seiridium rosae is also morphologically distinct from other Seridium species associated with Rosa (i.e., Seir. marginatum and Seir. rosarum) (Jaklitsch et al. 2016, Wanasinghe et al. 2018). Seiridium rosae differs from Seir. marginatum in having smaller conidia (31–35 × 8–9.5 μm vs 38–42 × 8.8–10.2 μm), and differs from Seir. rosarum in having larger conidia (31–35 × 8–9.5 μm vs 22–28 × 7–9 μm) and longer conidiogenous cell (12–64.5 μm vs 5–20 μm) (Jaklitsch et al. 2016, Wanasinghe et al. 2018).

Key to Seiridium species on Rosa spp.

  • 1. Conidia with one or more, branched or unbranched apical appendages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Seir. rosae

  • 1. Conidia with one unbranched apical appendage . . . . . . . 2

  • 2. Conidia 38.2–42 × 8.8–10.2 μm, appendages up to 52 μm long . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Seir. marginatum

  • 2. Conidia 22–28 × 7–9 μm, appendages up to 12 μm long . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Seir. rosarum

Sporocadus brevis C. Peng & C.M. Tian, sp. nov. — Myco-Bank MB 843822; Fig. 21

Fig. 21.

Fig. 21

Sporocadus brevis (BJFC-S1904, holotype). a. Disease symptoms; b–c. appearance of conidiomata on host substrate; d. conidiomata formed on pine needles; e. longitudinal section through conidiomata; f. colonies on PDA at 3 d (left) and 15 d (right); g–m. conidiogenous cells with attached conidia; n. conidia. — Scale bars: c–d = 200 μm; e = 50 μm; g–n = 10 μm.

Etymology. The Latin ‘brevis’ meaning short, which refers to the conidial size.

Typus. China, Gansu Province, Gannan Tibetan Autonomous Prefecture, Lintan County, Yeliguan, N34°53'43" E103°35'2", alt. 2808 m, on spines of R. spinosissima, 21 Aug. 2020, C. Peng & S. Jia (holotype BJFC-S1904, ex-type cultures CFCC 55170 = ROC 091, ROC 092, ROC 093).

Sexual morph not observed. Asexual morph: Acervular conidiomata solitary to gregarious, mostly irregular or subglobose, erumpent through the surface of bark when mature, up to 187–251 μm diam, visible as black acervuli on the spines. Conidiophores septate, branched at base, smooth, hyaline, mostly reduced to conidiogenous cells. Conidiogenous cells discrete or integrated, lageniform, filiform or ampulliform, sometimes irregular, hyaline, smooth, without annellations, (2.5–)3.5–19(–21) × 1–2(–2.5) μm (av. = 8.2 ± 3.62 × 1.6 ± 0.24 μm). Conidia straight or slightly curved, fusoid or obovoid, pale brown, mostly 2-septate, rarely 3-septate, septa fairly thick-walled and darker than the rest of the cell, wall smooth and occasionally slightly constricted at the septa, (9–)10–12(–12.5) × (6–)6.5–7(–7.5) μm (av. = 11.3 ± 0.74 × 6.4 ± 0.22 μm), lacking appendages; basal cell obconic with or without a truncate base, hyaline to pale brown, thick-walled, shorter than other cells, 1.5–3.5(–4) μm (av. = 2.4 ± 0.47 μm) long; median cells doliiform, each (2–)3–4.5(–5) μm (av. = 3.7 ± 0.43 μm) long, pale to mid-brown; apical cell (2.5–)3–5(–5.5) μm (av. = 4.2 ± 0.68 μm), short conic with a wide round apex, concolourous with the median cell in 2-septate conidia paler than median cells in 3-septate conidia; mean conidium length/width ratio = 1.76 : 1.

Culture characteristics — Cultures on PDA with aerial mycelium white, fluffy, reverse with a mottled tawny pigment. Colony 54–56 mm diam in 15 d at 28 °C. Conidiomata sparse and distributed irregularly on the medium surface.

Additional material examined. China, Gansu Province, Gannan Tibetan Autonomous Prefecture, Lintan County, Yeliguan, N34°53'48" E103°35'2", alt. 2806 m, on spines of R. spinosissima, 21 Aug. 2020, C. Peng & S. Jia (BJFC-S1905, cultures ROC 094, ROC 095).

Notes — Sporocadus brevis is introduced based on multigene phylogenetic analysis, with five isolates clustering separately in a well-supported clade (ML/MP/BI = 100/100/1) (Fig. 8). Sporocadus brevis is most closely related to Spo. trimorphus, which was isolated from R. canina in Sweden (Liu et al. 2019), but distinguished based on ITS, RPB2, TEF and TUB loci from Spo. trimorphus by 34 bp in the concatenated alignment, in which 2 bp are distinct in the ITS region (from 506 characters, with 99.6 % sequence identity, including 1 gap), 5 bp in the RPB2 region (from 832 characters, with 99.3 % sequence identity, no gaps), 11 bp in the TEF region (from 468 characters, with 97.6 % sequence identity, including 1 gap) and 16 bp in the TUB region (from 702 characters, with 97.7 % sequence identity, including 1 gap). Morphologically, Spo. trimorphus can produce conidia with appendages but the conidia of Spo. brevis lack appendages (Liu et al. 2019). Moreover, conidia of Spo. brevis are wider than those of Spo. trimorphus (6.5–7 μm vs 3–4.5 μm).

In addition to Sporocadus trimorphus, Spo. lichenicola, Spo. rosarum and Spo. rosigena are also associated with Rosa spp. (Wanasinghe et al. 2018, Liu et al. 2019). Sporocadus brevis can be easily distinguished from these species by the conidial length (10–12 μm in Spo. brevis vs 18–25 μm in Spo. lichenicola) and width (6.5–7 μm in Spo. brevis vs 4–6 μm in Spo. rosarum, 3.5–6.5 μm in Spo. rosigena). Furthermore, the mean conidium length/width ratio of Spo. brevis is smaller than these four species (Spo. brevis: 1.76 : 1 vs Spo. lichenicola: 3 : 1, Spo. rosarum: 2.24 : 1, Spo. rosigena: 2.4 : 1 and Spo. trimorphus: 3.4 : 1).

Sporocadus sorbi (Wijayaw. et al.) F. Liu et al., Stud. Mycol. 92: 404. 2019 — Fig. 22

Fig. 22.

Fig. 22

Sporocadus sorbi (BJFC-S1906). a–b. Appearance of conidiomata on host substrate; c. conidiomata on PDA; d–g. conidiogenous cells with attached conidia; h. conidia. — Scale bars: c = 200 μm; d–h = 10 μm.

Sexual morph not observed. Asexual morph: Acervular conidiomata solitary to gregarious, mostly subglobose, immersed to semi-immersed, up to 390–420 μm diam, 121–130 μm high, visible as black or dark red acervuli on the stems. Conidiophores septate, mostly branched at base, hyaline, smooth.

Conidiogenous cells discrete or integrated, sub-cylindrical or lageniform, variable in size, hyaline, smooth, with annellations, (7–)12–43.5(–48) × 1.5–2(–2.5) μm (av. = 17.2 ± 9.78 × 1.9 ± 0.34 μm). Conidia fusoid or obovoid, straight, 3-septate, transverse septa brown to dark brown, slightly constricted at the septa, wall smooth, (9.5–)11–15.5(–17) × (3–)3.5–5.5(–6) μm (av. = 13.7 ± 1.54 × 4.3 ± 0.21 μm), lacking appendages; basal cell obconic with or without a truncate base, hyaline to pale grey, 2–3(–3.5) μm (av. = 2.7 ± 0.38 μm) long; median cells mostly two, cylindrical, fairly thick-walled and pale brown, each 3–4.5(–5) μm (av. = 4.1 ± 0.54 μm) long; apical cell conic, hyaline or concolourous with median cells, 2–3(–4) μm (av. = 2.6 ± 0.32 μm) long; mean conidium length/width ratio = 3.18 : 1.

Culture characteristics — Colony on PDA with fluffy aerial mycelium, panniform, aerial mycelium white to pale brown, reverse umber coloured, being darker at the centre and paler at the edge. Colony 36–42 mm diam in 15 d at 25 °C. Conidio-mata black, distributed circularly at the colony margin on the medium surface.

Materials examined. China, Gansu Province, Lanzhou City, Yuzhong County, Xinglong Mountain, N35°48'2" E104°3'57", alt. 2160 m, on branches of R. xanthina, 26 Aug. 2020, C. Peng (BJFC-S1906, cultures ROC 102, ROC 103, ROC 105); Gansu Province, Gannan Tibetan Autonomous Prefecture, Lintan County, Yeliguan, N34°53'45" E103°35'2", alt. 2806 m, on spines of R. xanthina, 21 Aug. 2020, C. Peng & S. Jia (BJFC-S1907, cultures ROC 159, ROC 160, ROC 161).

Notes — Sporocadus sorbi was first reported from a dead leaf of Sorbus torminalis in Italy (Lawrence et al. 2018). In this study, six isolates of Sporocadus were identified as belonging to this species, and this is the first report of this fungus on Rosa plants, and in China.

Conidia of the ex-type (MFLUCC 14-0469) of Spo. sorbi are slightly wider than those of isolate ROC 101 (5.5–7.5 μm vs 3.5–5.5 μm), and it has shorter conidiogenous cells (8–20 μm vs 12–43.5 μm).

Sporocadus spiniger C. Peng & C.M. Tian, sp. nov. — MycoBank MB 843823; Fig. 23

Fig. 23.

Fig. 23

Sporocadus spiniger (BJFC-S1908, holotype). a. Disease symptoms; b. colonies on PDA at 3 d (left) and 15 d (right); c–d. appearance of conidiomata on host substrate; e. conidiomata formed on pine needles; f–h, j–m. conidiogenous cells with attached conidia; i. longitudinal section through conidiomata; n. conidia. — Scale bars: e = 200 μm; f–h, j–m, n = 10 μm; i = 50 μm.

Etymology. Referring to the fact that this strain was isolated from spines.

Typus. China, Gansu Province, Lanzhou City, Yongdeng County, Dayou Town, N36°44'20" E102°49'27", alt. 2743 m, on spines of R. omeiensis, 25 Oct. 2020, C. Peng (holotype BJFC-S1908, ex-type cultures ROC 119, ROC 120, ROC 121).

Sexual morph not observed. Asexual morph: Acervular conidiomata solitary to gregarious, mostly irregular, occasionally subglobose, superficial to semi-immersed, up to 154–196 μm diam, 61–95 μm high, visible as black acervuli on the spines. Conidiophores septate, mostly branched at base, hyaline, smooth. Conidiogenous cells discrete, filiform or ampulliform, sometimes cylindrical and subcylindrical, hyaline, smooth, without annellations, (12–)14.5–30.5(–34) × 1–1.5 μm (av. = 23.8 ± 4.27 × 1.2 ± 0.18 μm). Conidia straight or slightly curved, clavate or subcylindrical, with round ends, pale brown, (2–)3-septate, septa darker than the rest of cell, wall smooth and slightly constricted at the septa, (12.5–)14.5–16.5(–17.5) × (4–)4.5–5(–5.5) μm (av. = 15.8 ± 0.54 × 4.9 ± 0.31 μm), lacking appendages; basal cell obconic with round base, hyaline to pale brown, paler than other cells, thick-walled, (2–)2.5–3.5(–4) μm (av. = 2.8 ± 0.21 μm) long; median cells doliiform, the second cell from base is slightly longer than the third cell in 3-septate conidia, 3.5–4.5 μm (av. = 4.2 ± 2.17 μm) vs 2.5–3 μm (av. = 2.7 ± 0.16 μm), pale to mid-brown; median cell 4.9–5.0 μm (av. = 5.0 ± 0.07 μm), pale brown in 2-septate conidia; apical cell in 2-septate conidia significantly longer than apical cell in 3-septate conidia, (5.5–)6–6.5 μm (av. = 6.2 ± 0.09 μm) vs (2–)2.5–3.5 μm (av. = 2.7 ± 0.31 μm), short conic with a wide round apex, concolourous with the median cells; mean conidium length/width ratio = 3.22 : 1.

Culture characteristics — Cultures on PDA with white aerial mycelium and regular margin, fluffy, reverse yellowish brown. Colony 48–52 mm diam in 15 d at 25 °C. Acervuli black, distributed irregularly at the colony margin on the medium surface.

Additional material examined. China, Lanzhou City, Yongdeng County, Dayou Town, N36°44'17" E102°49'25", alt. 2745 m, on spines of R. omeiensis, 25 Oct. 2020, C. Peng (BJFC-S1909, cultures ROC 122, ROC 123, ROC 124, ROC 125).

Notes — Based on the multi-locus phylogenetic analysis, the seven isolates cluster separately in a well-supported clade (ML/ MP/BI = 100/100/1) (Fig. 8). Sporocadus spiniger is most closely related to Spo. brevis and Spo. trimorphus, differentiated from them in ITS (three different unique fixed alleles in Spo. brevis (521/524, 99.4 % with no gaps) and three in Spo. trimorphus (503/506, 99.4 % with no gaps)), LSU loci (four bp in Spo. brevis (884/888, 99.5 % with a single gap) and eight bp in Spo. trimorphus (876/884, 99.0 % with no gaps)), RPB2 loci (35 bp in Spo. brevis (812/847, 95.8 % with no gaps) and 39 bp in Spo. trimorphus (793/832, 95.3 % with no gaps)), TEF loci (40 bp in Spo. brevis (433/473, 91.5 % with 11 gaps) and 45 bp in Spo. trimorphus (427/472, 91.5 % with 11 gaps)) and TUB loci (45 bp in Spo. brevis (663/708, 93.6 % with 10 gaps) and 41 bp in Spo. trimorphus (667/708, 94.2 % with 10 gaps)). Moreover, Spo. spiniger differs from Spo. brevis in having longer conidia (14.5–16.5 μm vs 10–12 μm) and conidiogenous cells (14.5–30.5 μm vs 3.5–19 μm). The conidia are also wider than those of Spo. trimorphus (4.5–5 μm vs 3–4.5 μm).

Other species of Sporocadus that have been recorded from Rosa can be distinguished from this new species based on the number of septa and presence or absence of appendages. While Spo. spiniger has mostly 3-septate conidia without appendages, Spo. lichenicola has 4–5-septate conidia and Spo. rosarum has conidia with one apical appendage (Liu et al. 2019). Sporocadus rosigena mostly has 3-septate conidia without appendages that are morphologically similar to those of Spo. spiniger (Liu et al. 2019), but these two species have a distinctly different mean conidium length/width ratio (Spo. spiniger: 3.22 : 1 vs Spo. rosigena: 2.4 : 1).

Sporocadus trimorphus F. Liu et al., Stud. Mycol. 92: 406. 2018 — Fig. 24

Fig. 24.

Fig. 24

Sporocadus trimorphus (BJFC-S1910). a. Disease symptoms; b. colonies on PDA at 3 d (left) and 15 d (right); c–d. appearance of conidiomata on host substrate; e. conidiomata on PDA; f. longitudinal section through conidiomata; g–k. conidiogenous cells with attached conidia; l. conidia. — Scale bars: e = 200 μm; f = 20 μm; g–l = 10 μm.

Sexual morph not observed. Asexual morph: Acervular stromata ostiolate, immersed or semi-immersed in plant tissues, slightly to strongly erumpent through the bark surface, sometimes delimited by a black or dark red marginal line, up to 207–269 μm diam, 82–144 μm high. Conidiophores septate, mostly branched at base, hyaline, smooth. Conidiogenous cells discrete or integrated, sub-cylindrical, lageniform or ampulliform, hyaline, smooth, with annellations, (11.5–)13–34(–38.5) × 1.5–2.5 μm (av. = 24.5 ± 6.43 × 2.0 ± 0.31 μm). Conidia fusoid or obovoid, straight, 3-septate, transverse septa fairly thick, wall smooth, (11–)12–16 × 4.5–5.5 μm (av. = 14.1 ± 1.22 × 4.8 ± 0.14 μm), bearing appendages; basal cell obconic with or without a truncate base, hyaline to pale brown, 2–3 μm (av. = 2.7 ± 0.41 μm) long; median cells mostly two, cylindrical, fairly thick-walled and pale brown, each (3–)3.5–4.5(–5) μm (av. = 4.1 ± 0.88 μm) long; apical cell conic, hyaline or concolourous with median cells, (1.5–)2–3.5(–4.5) μm (av. = 2.7 ± 0.28 μm) long; apical appendage lacking or, when present, single, unbranched, attenuated, tubular or flexuous, (6.5–)8–13.5 μm (av. = 11.3 ± 1.39 μm) long; basal appendage lacking or, when present, unbranched, tubular or flexuous, centric or excentric, (7–)9–12(–13.5) μm (av. = 10.4 ± 1.27 μm) long; mean conidium length/width ratio = 2.94 : 1.

Culture characteristics — On PDA, colonies initially white, irregular, lacking aerial mycelium, fast growing, reaching up to 60–62 mm diam in 15 d. Colonies pale white to pale grey after 15 d, lacking aerial mycelium. Conidiomata distributed sparsely over the medium surface.

Material examined. China, Gansu Province, Lanzhou City, Yuzhong County, Xinglong Mountain, N35°47'37" E104°3'53", alt. 2168 m, on branches of R. xanthina, 25 Aug. 2020, C. Peng (BJFC-S1910, cultures CFCC 55171 = ROC 112, ROC 113, ROC 114, ROC 115, ROC 116).

Notes — Sporocadus trimorphus was first described from R. canina in Sweden (Liu et al. 2019). In this study, five isolates were identified as belonging to this species and this species is also reported for the first time from China. Sporocadus trimorphus is characterised by three conidial types, i.e., non-appendaged, either apical or basal appendaged, and both apical and basal appendaged conidia (Liu et al. 2019).

Compared with the description of the ex-type isolate CBS 114203, isolate CFCC 55171 has shorter apical appendages (8–13.5 μm vs 2–20 μm), slightly wider conidia (4.5–5.5 μm vs 3–4.5 μm) and longer conidiogenous cells (13–34 μm vs 4.5–14 μm).

Key to Sporocadus species on Rosa spp.

  • 1. Conidia with appendages . . . . . . . . . . . . . . . . . . . . . . . . . 2

  • 1. Conidia lacking appendages . . . . . . . . . . . . . . . . . . . . . . . 6

  • 2. Conidia 3–5-septate . . . . . . . . . . . . . . . . . Spo. lichenicola

  • 2. Conidia 3-septate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

  • 3. Mean conidium length/width ratio less than 3 . . . . . . . . . 4

  • 3. Mean conidium length/width ratio more than 3 . . . . . . . . 5

  • 4. Conidia 10–12 × 6.5–7 μm . . . . . . . . . . . . . . . . Spo. brevis

  • 4. Conidia 10–15 × 3.5–6.5 μm . . . . . . . . . . . . Spo. rosigena

  • 5. Conidia 11–15.5 × 3.5–5.5 μm, conidiogenous cells 11.0–28.5 × 1.0–1.7 μm . . . . . . . . . . . . . . . . . . . . . . . . Spo. sorbi

  • 5. Conidia 14.5–16.5 × 4.5–5 μm, conidiogenous cells 14.5–30.5 × 1.0–1.5 μm . . . . . . . . . . . . . . . . . . . . . Spo. spiniger

  • 6. Conidia of two types, i.e., non-appendaged or only basal appendaged . . . . . . . . . . . . . . . . . . . . . . . . . . . Spo. rosarum

  • 6. Conidia of three types, i.e., non-appendaged, either apical or basal appendaged, or both apical and basal appendaged conidia . . . . . . . . . . . . . . . . . . . . . . . . . . . Spo. trimorphous

Prevalence

Pestalotiopsis was the most prevalent genus (45 isolates, 35.2 % of the total isolates from Rosa), followed by Seimatosporium (33 isolates, 26.2 %) and Sporocadus (23 isolates, 18.3 %). The isolation rate of the other genera varied from 3.1 % to 13.5 % (Fig. 25). Pestalotiopsis was also the most abundant genus in all tissues investigated and had the highest isolation rate from all tissues. Seiridium was the genus with the lowest richness among all tissues, isolated only from branches (Fig. 26).

Fig. 25.

Fig. 25

Overall isolation rate (%) of Sporocadaceae genera and species.

Fig. 26.

Fig. 26

Isolation rate (%) of Sporocadaceae genera from each Rosa organs.

Fifteen species present in six genera (Monochaetia, Neopestalotiopsis, Pestalotiopsis, Seimatosporium, Seiridium and Sporocadus) were identified. Pestalotiopsis chamaeropis and Pes. rhodomyrtus (18 isolates, 14 % of the isolates from Rosa) were the two most prevalent species, followed by Seim. parvum (10 isolates, 8 %). Neopestalotiopsis concentrica, Seim. centrale and Seim. gracile have the same isolation rate of 7 %. In the current study, N. concentrica, N. subepidermalis, Pes. rhodomyrtus and Seim. parvum were isolated from spines/branches of two and three species of Rosa. Each of the remaining 11 species of Sporocadaceae was only isolated from one Rosa species (Fig. 29).

Fig. 29.

Fig. 29

Isolation rate (%) of Sporocadaceae species from each Rosa sp.

The isolation rate of Seimatosporium in fruits and Pestalotiopsis in leaves was 100 %. These data reveal low generic and species diversity in these plant organs. In contrast, the branches had the highest genus diversity among all organs in this study, except for Seimatosporium, the other five genera were isolated from branches. Although the generic diversity of spines was slightly lower than that of branches, the number of strains isolated from the spines and the species diversity of spines was the highest of all tissues and was much higher than that of any other tissues (Fig. 26, 27).

Analysis of the abundance of Sporocadaceae species on Rosa species revealed seven species from R. chinensis, four from R. rugosa, three from R. xanthina and two from R. spinosissima, respectively (Fig. 29), with only one species on the remaining Rosa species, namely R. multiflora (Pes. rhodomyrtus), R. helenae (Seim. parvum), R. laevigata (Seim. nonappendiculatum) and R. omeiensis (Spo. spiniger) (Fig. 29). These findings might be due to the smaller sampling size of R. multiflora, R. helenae, R. laevigata and R. omeiensis obtained, since symptomatic branches were far less commonly observed than for the other Rosa species.

DISCUSSION

In this study, many Rosa specimens were collected from six major rose production areas (Gansu, Henan, Hunan, Ningxia, Qinghai and Shaanxi) in China, and 126 pestalotioid strains were obtained elsewhere. Multi-locus phylogenetic and morphological analyses revealed 15 species belonging to six genera in Sporocadaceae, namely Monochaetia, Neopestalotiopsis, Pestalotiopsis, Seimatosporium, Seiridium and Sporocadus.

Seimatosporium species have been extensively studied on several hosts (Tanaka et al. 2011, Liu et al. 2019), but not yet on Rosa spp. Up to now, five species of Seimatosporium have been recorded from Rosa, namely Seim. caninum on R. canina, Seim. pseudorosae on R. villosa, Seim. salicinum on R. multiflora and R. spinosissima, Seim. rosae on R. canina, R. kalmiussica, R. mucosa and R. pomifera, Seim. discosioides on R. blanda, R. heliophila, R. moschata, R. multiflora and R. rugosa (Weiss 1950, Nag Raj 1993, Cho & Shin 2004, Kobayashi 2007, Li et al. 2016, Crous et al. 2018, Liu et al. 2019). Among them, Seim. salicinum has been recorded in China (Tai 1979). In this study, a total of four new Seimatosporium species were introduced from Rosa in China. Seimatosporium is the genus which has the most species found and has a relatively high isolation rate (26.2 %) (Fig. 25). Seimatosporium species from Rosa spp. in previous and present studies show quite a difference based on morphology and DNA sequence data. Seimatosporium rosae is distinguished from the four new species in this study based on DNA phylogenetic data (Fig. 6) and the number of conidial septa (3–6-septate vs 3-septate). Although Seim. pseudorosae is closely related to Seim. parvum in this study (Fig. 6), these two species can be clearly distinguished by the size of their conidia and the length of their appendages. There are no sequence data available for Seim. caninum and Seim. salicinum for comparison, but the morphological characteristics of Seim. caninum (appendages lacking, 2-septate conidia) clearly distinguish it from other Seimatosporium species (Nag Raj 1993). Seimatosporium salicinum also produces 2-septate conidia (Sutton 1975, Nag Raj 1993), and this morphological characteristic distinguishes it from our four new species. Except for Seim. salicinum (the main hosts are Salix spp. and Rosaceae plants) (Nag Raj 1993, Tanaka et al. 2011), the other species from Rosa spp. are rarely recorded on other hosts (Nag Raj 1993, Mulenko et al. 2008, Li et al. 2016, Bonthond et al. 2018). Currently, seven Seimatosporium species have been reported from China besides our new species and Seim. salicinum. However, none of them occur on Rosa spp., i.e., Seim. botan, Seim. grammitum and Seim. hebeiensis on Paeonia suffruticosa, Seim. lonicerae on Pinus tabulaeformis, Seim. rhododendri on Rhododendron aureum, Seim. piceae on Picea jezoensis and Seim. maria (Tai 1979, Wang 1985, Nag Raj 1993, Guo 2004, Duan et al. 2011). Among these species, Seim. botan can produce conidia with only basal appendages (Hatakeyama & Harada 2004), which is similar to Seim. nonappendiculatum, to which it formed a sister clade. Seimatosporium grammitum and Seim. hebeiensis produce conidia lacking appendages and are therefore similar to Seim. nonappendiculatum. However, they differ significantly in their conidial dimensions. Having conidia with only basal appendages or without appendages, makes Seim. nonappendiculatum unique in the Sporocadaceae, and phylogenetically it clustered closer Sporocadus (conidia lacking appendages) than other Seimatosporium species (Fig. 2). The most typical morphological characteristics of Seim. piceae is that the length of the appendages is longer than the conidia itself (Wang 1985), which is most similar to the new species Seim. parvum (Fig. 6), but the conidia and appendages of Seim. parvum are significantly shorter than Seim. picea (14.3–15 × 4.21–4.34 μm vs 18–23 × 5–7 μm). In addition, the conidial dimensions of the other two new species, Seim. centrale and Seim. gracile, are significantly different from those species currently recorded in China.

Sporocadus is the type of Sporocadaceae and generally characterised by non-appendaged, 3-septate conidia (Liu et al. 2019). Sporocadus has long been assumed to be a synonym of Seimatosporium (Sutton 1975), but was confirmed to be a separate genus based on multigene phylogeny and conidial morphology (Brockmann 1976, Nag Raj 1993, Liu et al. 2019, Wijayawardene et al. 2020). However, in this study, although ITS-Blast is useful to locate species at the generic and family level, relatively weak in distinguishing Seimatosporium from Sporocadus, and even less so at the species level. Therefore, analysing these two genera at the family level is necessary to classify species into the correct genus (Fig. 2). Corresponding to the taxonomic classification determined by multi-locus phylogenetic analyses (Fig. 2), most Sporocadus species also exhibit characteristic morphological characters, including their non-appendaged and 3-septate conidia. In previous studies, most of these features have been used to delimit this genus (Brockmann 1976, Nag Raj 1993). It is worth to note that the presence or absence of conidial appendages is not a stable taxonomic character for the genus (Liu et al. 2019). For example, the conidia of Seim. discosioides and Seim. germanicum are also non-appendaged (Shoemaker 1964, Liu et al. 2019). Liu et al. (2019) introduced Spo. trimorphus and the conidia of this species have three types, i.e., non-appendaged which is the typical morphological characteristics of this genus; both apical and basal appendaged conidia which is the typical characteristics of Seimatosporium and either apical or basal appendaged conidia. This was also the first time that species with appendaged conidia were observed in Sporocadus, which renders morphology-based identifications more difficult, and underlines the necessity of molecular data for accurate identification. This study also found Spo. trimorphus on R. xanthina, which is also a first report from China. The other important morphological characteristic of this genus is 3-septate conidia (Nag Raj 1993). However, the number of conidial septa is far too unstable a feature to determine generic delineations. Liu et al. (2019) were the first to suggest that Sporocadus species could produce 2-septate conidia and introduced five species with this conidial type, namely Spo. biseptatus, Spo. incanus, Spo. rosarum, Spo. rosigena and Spo. rotundatus. Although the newly described species Spo. brevis can also produce conidia with two septa, this species is phylogenetically distinct from these five species (Fig. 8) and has significantly wider conidia (Table 5). To our knowledge, this study represents the first resolution of Sporocadus species in China based on multilocus sequence data. A total of four species of Sporocadus were identified in this study, and the isolation rate is similar to that of Seimatosporium (Fig. 25). Besides Spo. brevis and Spo. trimorphus, this study also described a new species Spo. spiniger, and represents the first report of Spo. sorbi on Rosa globally. Currently, only one Sporocadus species has been reported from China, namely Spo. lichenicola, the type species of the genus (Tai 1979). The hosts of this species include many Rosa plants and can cause leaf spot or brown spot of R. xanthina in China (Tai 1979, Wu 1992, Chen 2003). Based on multigene phylogenetic analyses, Spo. lichenicola is also separated from the two new species (Fig. 8). Moreover, the conidia of Spo. lichenicola are 4–5-septate, which is also an important morphological characteristic distinguishing it from other species in Sporocadus (Norphanphoun et al. 2015). In addition to Spo. lichenicola, relatively little has been recorded about Sporocadus species associated with Rosa. Liu et al. (2019) transferred four Seimatosporium species associated with Rosa to Sporocadus based on molecular systematics and morphological characteristics, namely Spo. rosarum (synonyms: Seim. rosarum, Seim. pseudorosarum and Seim. rosigenum) and Spo. rosigena (basionym: Seim. rosicola). Sporocadus rosarum forms a large sister clade with the two new species and Spo. trimorphus (Fig. 8), but the conidia of Spo. rosarum have an apical appendage, which makes it easy to distinguish them from other species of Sporocadus (Wanasinghe et al. 2018, Liu et al. 2019). Sporocadus rosigena is separated from the two new species in this study based on DNA phylogeny (Fig. 8) and there are also differences in conidial dimensions. It is remarkable that Seim. caninum isolated from R. chinensis has the typical morphological characteristics of Sporocadus, that is, with conidia lacking appendages (Sutton 1975). The feature of 2-septate conidia distinguishes Seim. caninum from other species in Seimatosporium and most of the members in Sporocadus. As described above, six Sporocadus species (including the new species described here) can produce 2-septate conidia similar to those of Seim. caninum, but the conidia of Seim. caninum are smaller than those of other species (Table 5). Therefore, since related sequence data of Seim. caninum are unavailable, further research is needed to resolve which genus it belongs to.

Table 5.

Synopsis of Seimatosporium caninum and species with 2-septate conidia in Sporocadus.

Species Length of conidia (μm) Width of conidia (μm) Host Country References
Seimatosporium caninum 9.5–12 4.5–5.5 Quercus incana India Sutton (1975)
Sporocadus biseptatus 12.5–19.5 4.5–9 Unknown Unknown Liu et al. (2019)
Spo. brevis 10–12 6.5–7 Rosa spinosissima China Present study
Spo. incanus 11.5–20 4.5–6.5 Prunus dulcis Spain Liu et al. (2019)
Spo. rosarum 9.0–14.0 4.0–6.0 Rosa canina Europe Liu et al. (2019)
Spo. rosigena 10.0–15.0 3.5–6.5 Vitis vinifera Iran Liu et al. (2019)
Rosa canina Italy Liu et al. (2019)
Rh ododendron sp. Latvia Liu et al. (2019)
Rubus fruticosus Netherlands Liu et al. (2019)
Spo. rotundatus 9.0–16.5 4.5–7.5 Arceuthobium pussilum Canada Liu et al. (2019)

* Newly described taxon is in bold.

Pestalotiopsis is the genus with the highest isolation rate in this study, namely 29.6 % (Fig. 25), which is basically in line with expectations, because Pestalotiopsis, as an important plant pathogen, has many records and can parasitise more than 50 plant families in China (Tai 1979, Chen 2003, Ge et al. 2009). Cash crops such as palm, eucalypts, guava and tea trees have suffered serious damage due to species of Pestalotiopsis (Ge et al. 2009, Maharachchikumbura et al. 2013a, Wang et al. 2019a, b). This genus also has many records on Rosa plants. In China, five species of Pestalotiopsis have been recorded from Rosa, namely Pes. rosae and Pes. suffocata that are parasitic on R. chinensis, Pes. oleandri that is parasitic on R. laevigata, Pes. longisetula that is parasitic on R. henryi and Pes. aquatica that is saprophytic on R. chinensis (Zhu et al. 1991, Wei et al. 2005, Ge et al. 2009). Beyond that, there are six species of Pestalotiopsis recorded from Rosa in different countries (Riley 1960, Guba 1961, Mathur 1979, Rai 1990, Nag Raj 1993, Mendes et al. 1998, Sameva 2004, Kobayashi 2007). In this study, Pes. chamaeropis and Pes. rhodomyrtus are newly reported from Rosa. For the newly described species, Pes. tumida isolated from R. chinensis, morphological differences distinguish this species and other known species recorded on Rosa, especially in terms of the conidial dimensions and length of the appendages, as well as shape of basal appendages. The results of our study suggest that the species diversity of Pestalotiopsis on Rosa in China may be higher than what was previously expected.

Neopestalotiopsis was separated from Pestalotiopsis based on its versicolourous median conidium cells and indistinct conidiophores (Maharachchikumbura et al. 2014, Liu et al. 2017, 2019). In this study, two new species of Neopestalotiopsis were introduced from Rosa based on the phylogenetic analyses and morphological characteristics, namely N. concentrica and N. subepidermalis. Five Neopestalotiopsis species associated with Rosa have been recorded, namely N. clavispora, N. palmarum, N. rosae, N. rosicola and N. versicolor (Liu et al. 2010, Feng et al. 2014, Maharachchikumbura et al. 2014, Jiang et al. 2018, Vu et al. 2019). For these five species, N. clavispora, N. palmarum, N. rosicola and N. versicolor have been reported in China and cause leaf blotch, stem canker of R. chinensis and leaf spot disease of many other hosts (Ge et al. 2009, Feng et al. 2014, Jiang et al. 2018), but these four species are phylogenetically separated from our new species (Fig. 4) and there are also differences in their conidial morphology. Neopestalotiopsis rosae is morphologically quite distinct from other taxa in the genus (has appendages which do not arise from the apical crest, but at different regions in the upper half of the apical cell; Maharachchikumbura et al. 2014). With the increase of collections and DNA data, N. clavispora, N. palmarum, N. rosae and N. versicolor appear to be widely distributed in different countries where they cause severe diseases on different hosts, e.g., N. rosae causes dieback, crown rot, fruit rot and root rot of many economically important plants including Eucalyptus, Fragaria, Paeonia and Vitis (Maharachchikumbura et al. 2014, Rebollar-Alviter et al. 2020, Santos et al. 2020, Cosseboom & Hu 2021), and N. clavispora can infect more than 50 plant species belonging to 27 families in China and about 17 other countries, resulting in severe leaf diseases (Qiu et al. 2020). For this reason, the two new species isolated from Rosa may present dangerous pathogens for other hosts, and further work is needed to better understand the role and distribution of these two new Neopestalotiopsis species. For other pestalotiopsis-like species associated with Rosa, as mentioned above, some Pestalotiopsis spp. on Rosa (Pes. adusta, Pes. algeriensis, Pes. aquatica, Pes. longisetula and Pes. oleandri) have the typical morphological characteristics of Neopestalotiopsis, namely versicolourous median conidium cells (Guba 1961, Mordue & Holliday 1971, Zhu et al. 1991, Wei et al. 2005, Ge et al. 2009, Cardoso et al. 2017). However, due to the lack of related DNA sequence data, their taxonomy still needs to be resolved. However, our two new Neopestalotiopsis species can be distinguished from these five Pestalotiopsis species based on their conidial and appendage morphology (Table 6). This study also encountered the same problem as previous studies on Neopetalotiopsis compared to other genera, namely the short branch length and low support rate of the current phylogenetic tree based on ITS, TEF and TUB (Liu et al. 2017, Norphanphoun et al. 2019). More gene regions will have to be introduced in future studies to provide better support for species in the genus.

Table 6.

Synopsis of two new Neopestalotiopsis species and species with versicolourous median conidium cells in Pestalotiopsis.

Species Length of conidia (μm) Width of conidia (μm) Length of apical appendages (μm) Length of basal appendages (μm) Host Country References
Neopestalotiopsis concentrica 14–18.5 4.5–5 19–26 3.5–5.5 Rosa rugosa China Present study
N. subepidermalis 20–25 7.5–9 27–32.5 7–7.5 Rosa rugosa China Present study
Pestalotiopsis adusta 16–22.4 4.7–6.6 5 –12 3.5 Rosa indica India Rai (1990)
Pes. algeriensis 20.5–31.3 6.3–8.0 13.3–17.8 3–6.3 Rosa sempervirens Algeria Nag Raj (1993)
Pes. aquatica 20.6–28.2 7.2–8.2 12.8–23 2–4 Rosa sp. China Ge et al. (2009)
Pes. longisetula 20.6–25.7 6.4–7.7 20.6–36 5.1–7.7 Rosa henryi China Ge et al. (2009)
Rosa sp. China Ge et al. (2009)
Pes. oleandri 15–22.6 5–7.5 14–16.5 6.1–11.5 Rosa laevigata China Ge et al. (2009)
Rosa sp. China Zhu et al. (1991)

* Newly described taxa are in bold.

Many species of Pestalotiopsis and Neopestalotiopsis have overlapping morphological characteristics, and it is difficult to identify them solely based on morphology (Maharachchikumbura et al. 2014, Liu et al. 2017). Some morphological characteristics are unstable and vary with host range, culture and other environmental conditions (Maharachchikumbura et al. 2011, Norphanphoun et al. 2019). But at the same time, conidial morphology can still provide a good reference for species distinction of pestalotioid fungi (Crous et al. 2012). Therefore, the combination of morphology and molecular systematics based on sequence data has become an important means to solve the classification of pestalotiopsis-like and support the introduction of new species (Crous et al. 2012, Maharachchikumbura et al. 2014, Liu et al. 2019).

Monochaetia has undergone a lot of changes since it was introduced, and many species have been transferred to other genera, such as Diploceras, Monochaetinula, Sarcostroma, Seimatosporium and Seiridium (De Silva et al. 2018, Liu et al. 2019). However, species of Monochaetia are morphologically conserved at present and the typical morphological characteristic of this genus is that conidia have a single centric apical and basal appendage (if present) (De Silva et al. 2018, Liu et al. 2019). Previous reports on the hosts of Monochaetia were mainly concentrated on Fagaceae (especially Castanea and Quercus spp.) (De Silva et al. 2018, Liu et al. 2019). In this study one new species, M. rosarum, was isolated from Rosa and can be distinguished from other phylogenetically allied species based on conidial dimensions. In addition, there are currently four species of Monochaetia that have been recorded from Rosa, namely M. concentrica, M. rosae-caninae, M. seiridioides and M. turgida (Guba 1961, Tai 1979, Chen 2003). Except for M. rosae-caninae, three other species have also been recorded in China (Tai 1979, Chen 2003). The species associated with Rosa have relatively wide host ranges mainly concentrated in the Rosaceae, excluding the Fagaceae (Weiss 1950, Sutton 1980, Nag Raj 1993), and the choice of host may also be affected by the geographical environment. For example, M. turgida, has been recorded on Rosa spp. in India, on Crataegus spp. in the USA, and on Pyrus spp in China (Mathur 1979, Tai 1979, Nag Raj 1993). Besides the three species on Rosa mentioned above (M. concentrica, M. seiridioides and M. turgida), 16 species of Monochaetia have been recorded from China (Table 7). Among them, Chen et al. (2002) introduced seven Monochaetia species based on morphology and host, i.e., M. caryotae on Caryota ochlandra, M. cycadis on Cycas revoluta, M. elaeocarpi on Elaeocarpus serratus, M. garciniae on Garcinia tinctoria, M. hirta on Castanopsis fabri, M. sabinae on Sabina chinensis and M. salaccae on Salacca secanda, and all these species are endemic to China. Although sequence data for these species are not available and reliance only on morphology and host data in Monochaetia taxonomy is far from perfect, the ongoing discovery of this genus from other hosts except for Fagaceae in China will deepen our understanding of the species in this genus. It is worth mentioning that Zhao & Li (1994) have described a species M. nodosporella, the hosts of which include also Castanopsis spp. Characteristics of this species are quite different from morphological characters of Monochaetia, including 4-celled distoseptate conidia with two olivaceous-brown median cells, lacking appendages. Considering the limited sampling and the lack of sequence data, the taxonomy of M. nodosporella remains unresolved and will be treated once DNA sequence data have been obtained. Aside from the species associated with Rosa and the Chinese endemic species mentioned above, the remaining species recorded in China have a relatively small range of host plants mainly on Castanea and Quercus, and are geographically widespread (Tai 1979, Zhao & Li 1994, Chen et al. 2002). For example, M. monochaeta and M. kansensis have also been recorded in many countries besides China, but the hosts are basically Quercus and Castanea (Ellis & Everhart 1893, Weiss 1950, Guba 1961, Nag Raj 1993, Cho & Shin 2004, Kobayashi 2007). Therefore, for the new species M. rosarum described in this study, many specimens still need to be collected to improve our understanding of its host range and distribution.

Table 7.

Monochaetia species that have been recorded in China in previous studies

Species Host Location Collector References
Monochaetia caryotae Caryota ochlandra Guangxi, China Y.X. Chen & G. Wei Chen et al. (2002)
M. castaneae Castanea mollissima Sichuan, China N. Jiang Jiang et al. (2021)
M. celaeocarpi Elaeocarpus serratus Hainan, China Z.W. Wang & G. Wei Chen et al. (2002)
M. concentrica Rosa xanthina Jilin, China P.K. Qi Tai (1979)
M. cycadis Cycas revoluta Guangxi, China G. Wei Chen et al. (2002)
M. diospyri Diospyros lotus Chen et al. (2002)
M. garciniae Garcinia tinctoria Hainan, China Z.W. Wang & G. Wei Chen et al. (2002)
M. hirta Castanopsis fabri Hainan, China Z.W. Wang & G. Wei Chen et al. (2002)
M. kansensis Castanea mollissima Chen et al. (2002)
Quercus dentata Henan, China M.Q, Wang Tai (1979)
Q. dentata Gansu, China Y.R. Meng Meng (2003)
M. monochaeta Q. dentata Gansu, China Y.R. Meng Meng et al. (2003)
Q. variabilis Jiangsu, China Teng (1963)
Q. variabilis Jiangsu, China Q.Y. Shen Tai (1979)
M. nattrassii Camellia sinensis Hong Kong Sutton et al. (1980)
M. nodosporella Castanopsis delavayi Yunnan, China Zhao & Li Zhao & Li (1994)
M. sabinae Sabina chinensis Guangxi, China G. Wei Chen et al. (2002)
M. saccardoi Q. variabilis Jiangsu, China Teng (1963)
M. salaccae Salacca secunda Yunnan, China G. Wei Chen et al. (2002)
M. seiridioides R. xanthina Henan, China M.Q, Wang Tai (1979)
M. turgida Pyrus communis Guangdong, China Z. Tu Tai (1979)

Seiridium generally produces 5-septate conidia with a single centric apical and single excentric basal appendage (Bonthond et al. 2018, Liu et al. 2019). Nees (1817) established Seiridium based on Seir. marginatum which was collected from rose stems in Germany, and this is also the earliest record of pestalotioid fungi on the Rosa plants. Presently, besides the type species Seir. marginatum, only one Seiridium species has been recorded from Rosa, namely Seir. rosarum, which is distributed in Europe and Australia (Sutton 1980, Nag Raj 1993, Jaklitsch et al. 2016). In this study, a new species Seir. rosae was introduced from R. multiflora in China. The newly described species can be distinguished from most Seiridium species by its numerous appendages, which are branched, while in Seiridium appendages are fewer and generally unbranched (Maharachchikumbura et al. 2014). However, conidial appendages are branched, which is not unique to Seir. rosae in Seiridium and is also typical for Seir. indicum, Seir. pezizoides and Seir. venetum (Pavgi & Singh 1970, Maharachchikumbura et al. 2015, Marin-Felix et al. 2019). Seiridium rosae is easily distinguishable from these three species based on conidial morphology (Table 8). It is worth mentioning that Seiridium is the most important pathogen group in Sporocadaceae (Bonthond et al. 2018). Seiridium is the main pathogen of cypress canker and causes huge economic losses worldwide (Boesewinkel 1983, Graniti 1986, 1993, 1998, Barnes et al. 2001, Tsopelas et al. 2007). There are currently nine species of Seiridium recorded in China, with diverse hosts (Table 9). However, thus far China still has no record of Seiridium spp. on Cupressaceae.

Table 8.

Synopsis of species with branched appendages in Seiridium.

Species Length of conidia (μm) Width of conidia (μm) Length of apical appendages (μm) Length of basal appendages (μm) Host Country References
Seiridium indicum 22–30.8 7.7–8.8 4.4–11 1–1.8 Spirea micrantha India Nag Raj (1993)
Seir. pezizoides 28–33.5 7–8 8.5–27 5.5–14 Vitis vinifera Italy Marin-Felix et al. (2019)
Seir. rosae 31–35 8–9.5 28.5–44.5 3–4.5 Rosa rugosa China Present study
Seir. venetum 20–30 6.5–8.5 10–35 2–5 Cornus sanguinea Italy Nag Raj (1993)

* Newly described taxa is in bold.

Table 9.

Seiridium species that have been recorded in China in previous studies.

Species Host Location Collector References
Seiridium camelliae Camellia reticulata Yunnan, China Y.M. Zhang Maharachchikumbura et al. (2015)
Seir. ceratosporum Vitis vinifera Yunnan, China Bonthond et al. (2018)
Seir. chinense Trachycarpus fortunei Shaanxi, China N. Jiang & C.M. Tian Jiang et al. (2018)
Seir. cupressi Vitis sp. Zhejiang, China Teng (1996)
Seir. eriobotryae Eriobotrya japonica Guangxi, China G. Wei Chen et al. (2002)
Seir. manilkarae Manilkara zapota Yunnan, China G. Wei Chen et al. (2002)
Seir. pezizoides Camellia oleifera Hunan, China J.X. Yu Yu et al. (2018)
Seir. unicorne Eriobotrya japonica Jiangsu, China F.L. Tai Tai (1979)
Malus mandshurica Jilin, China Miura Tai (1979)
M. prunifolia Jilin, China P.K. Qi Tai (1979)
M. pumila Yunnan, China L.D. Lin Tai (1979)
Pyrus ussuriensis Jilin, China P.K. Qi Tai (1979)
Sorbus alnifolia Jilin, China Miura Tai (1979)
V. vinifera Jiangsu, China L. Ling Tai (1979)
Seir. venetum Cornus sp. Yunnan, China Tai (1979)

In this study, the species diversity of Sporocadaceae on the stems and spines of Rosa was significantly higher than that on the leaves and fruits. Nevertheless, a new species Seim. nonappendiculatum was isolated from the fruits of Rosa laevigata and Pes. rhodomyrtus, that was first reported on Rosa, was isolated from leaves of Rosa rugosa. Therefore, the leaves and fruits of Rosa plants might harbour many more species of pestalotioid fungi yet unknown to science. This study represents the first systematic investigation, morphological and molecular characterisation of Sporocadaceae on Rosa. The findings of this study reveal taxonomic, morphological and biological diversity of Sporocadaceae associated with different Rosa spp. in China. Other than expanding our knowledge of the genetic diversity and hosts of Sporocadaceae on Rosa, it provides crucially important information to understand the ecology of the Sporocadaceae associated with Rosa. Further study is needed to test the pathogenicity of these species and understand their biological and epidemiological characteristics to contribute towards better disease management.

Fig. 27.

Fig. 27

Isolation rate (%) of Sporocadaceae species from each Rosa organs.

Fig. 28.

Fig. 28

Isolation rate (%) of Sporocadaceae genera from each Rosa sp.

Acknowledgements

This study is financed by National Natural Science Foundation of China (Project No.: 31670647).

Declaration on conflict of interest

The authors declare that there is no conflict of interest.

Supplementary material

Fig. S1

Phylogenetic tree of Monochaetia resulting from maximum likelihood (ML) analysis of the ITS sequence alignment. Nodes are labelled with bootstrap values from RAxML/Parsimony bootstrap/Bayesian posterior probabilities values. Nodes receiving below 50 bootstrap values and 0.5 probability values are not labelled. The scale bar represents the expected number of changes per site. Isolates collected in this study are in bold and blue.

per-2022-49-7-SF1.jpg (1.3MB, jpg)
Fig. S2

Phylogenetic trees based on maximum likelihood (ML) analyses for species in Neopestalotiopsis. a. ITS region; b. TEF gene region; c. TUB gene region. Nodes are labelled with bootstrap values from RAxML/Parsimony bootstrap/Bayesian posterior probabilities values. Nodes receiving below 50 bootstrap values and 0.5 probability values are not labelled. The scale bar represents the expected number of changes per site. Isolates collected in this study are in bold and blue.

per-2022-49-7-SF2-2.jpg (915.2KB, jpg)
Fig. S3

Phylogenetic trees based on maximum likelihood (ML) analyses for species in Pestalotiopsis. a. ITS region; b. TEF gene region; c. TUB gene region. Nodes are labelled with bootstrap values from RAxML/Parsimony bootstrap/Bayesian posterior probabilities values. Nodes receiving below 50 bootstrap values and 0.5 probability values are not labelled. The scale bar represents the expected number of changes per site. Isolates collected in this study are in bold and blue.

Fig. S4

Phylogenetic trees based on maximum likelihood (ML) analyses for species in Seimatosporium. a. ITS region; b. LSU gene region. Nodes are labelled with bootstrap values from RAxML/Parsimony bootstrap/Bayesian posterior probabilities values. Nodes receiving below 50 bootstrap values and 0.5 probability values are not labelled. The scale bar represents the expected number of changes per site. Isolates collected in this study are in bold and blue.

per-2022-49-7-SF4.jpg (3.6MB, jpg)
Fig. S5

Phylogenetic trees based on maximum likelihood (ML) analyses for species in Seiridium. a. ITS region; b. RPB2 gene region; c. TEF gene region; d. TUB gene region. Nodes are labelled with bootstrap values from RaxML/Parsimony bootstrap/Bayesian posterior probabilities values. Nodes receiving below 50 bootstrap values and 0.5 probability values are not labelled. The scale bar represents the expected number of changes per site. Isolates collected in this study are in bold and blue.

per-2022-49-7-SF5.jpg (2.6MB, jpg)
Fig. S6

Phylogenetic trees based on maximum likelihood (ML) analyses for species in Sporocadus. a. ITS region; b. LSU gene region; c. RPB2 gene region; d. TEF gene region; e. TUB gene region. Nodes are labelled with bootstrap values from RAxML/Parsimony bootstrap/Bayesian posterior probabilities values. Nodes receiving below 50 bootstrap values and 0.5 probability values are not labelled. The scale bar represents the expected number of changes per site. Isolates collected in this study are in bold and blue.

REFERENCES

  1. Akinsanmi OA, Nisa S, Jeff-Ego OS, et al. 2017. Dry flower disease of macadamia in Australia caused by Neopestalotiopsis macadamiae sp. nov. and Pestalotiopsis macadamiae sp. nov. Plant Disease 101: 45–53. [DOI] [PubMed] [Google Scholar]
  2. Alberto F, Giorgio G, Dalia A. 2022. Neopestalotiopsis siciliana sp. nov. and N. rosae causing stem lesion and dieback on avocado plants in Italy. Journal of Fungi 8: 562. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Ariyawansa HA, Hyde KD. 2018. Additions to Pestalotiopsis in Taiwan. Mycosphere 9: 999–1013. [Google Scholar]
  4. Bagsic I, Linde M, Debener T. 2016. Genetic diversity and pathogenicity of Sphaceloma rosarum (teleomorph Elsinoë rosarum) causing spot anthracnose on roses. Plant Pathology 65: 978–986. [Google Scholar]
  5. Barber PA, Crous PW, Groenewald JZ, et al. 2011. Reassessing Vermisporium (Amphisphaeriaceae), a genus of foliar pathogens of eucalypts. Persoonia 27: 90–118. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Barnes I, Roux J, Wingfield MJ, et al. 2001. Characterization of Seiridium spp. associated with cypress canker based on ß-tubulin and histone sequences. Plant Disease 85: 317–321. [DOI] [PubMed] [Google Scholar]
  7. Bezerra JDP, Machado AR, Firmino AL, et al. 2018. Mycological diversity description I. Acta Botanica Brasilica 32: 656–666. [Google Scholar]
  8. Boesewinkel H. 1983. New records of the three fungi causing cypress canker in New Zealand, Seiridium cupressi (Guba) comb. nov. and S. cardinale on Cupressocyparis and S. unicorne on Cryptomeria and Cupressus. Transactions of the British Mycological Society 80: 544–547. [Google Scholar]
  9. Bonthond G, Sandoval-Denis M, Groenewald JZ, et al. 2018. Seiridium (Sporocadaceae): an important genus of plant pathogenic fungi. Persoonia 40: 96–118. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Brockmann I. 1976. Untersuchungen über die Gattung Discostroma Clements (Ascomycetes). Sydowia 28: 275–338. [Google Scholar]
  11. Bruneau A, Starr JR, Joly S. 2007. Phylogenetic relationships in the genus Rosa: new evidence from chloroplast DNA sequences and an appraisal of current knowledge. Systematic Botany 32: 366–378. [Google Scholar]
  12. Cardoso JK, Nanami DS, Zanutto CA, et al. 2017. Description and identification of two new diseases of guariroba palm (Syagrus oleraceae) in Brazil. Journal of Phytopathology 165: 610–619. [Google Scholar]
  13. Chaiwan N, Wanasinghe DN, Mapook A, et al. 2020. Novel species of Pestalotiopsis fungi on Dracaena from Thailand. Mycology 11: 306–315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Chen MM. 2003. Forest fungi phytogeography: Forest fungi phytogeography of China, North America, and Siberia and international quarantine of tree pathogens. Pacific Mushroom Research and Education Center Sacramento USA. [Google Scholar]
  15. Chen SF, Li GQ, Liu JQ, et al. 2016. Characteristics of Lasiodiplodia theobromae from Rosa rugosa in South China. Crop Protection 79: 51–55. [Google Scholar]
  16. Chen YX, Wai G, Chen WP. 2002. New species of Monochaetia and Seiridium in China. Mycosystema 21: 503–510. [Google Scholar]
  17. Chen YY, Maharachchikumbura SSN, Liu JK. 2017. Fungi from Asian Karst formations I. Pestalotiopsis photinicola sp. nov., causing leaf spots of Photinia serrulata. Mycosphere 8: 103–110. [Google Scholar]
  18. Cho WD, Shin HD. 2004. List of plant diseases in Korea. Korean Society of Plant Pathology, Korea. [Google Scholar]
  19. Collado J, Platas G, Bills GF, et al. 2006. Studies on Morinia: Recognition of Morinia longiappendiculata sp. nov. as a new endophytic fungus, and a new circumscription of Morinia pestalozzioides. Mycologia 98: 616–627. [DOI] [PubMed] [Google Scholar]
  20. Cosseboom SD, Hu M. 2021. Diversity, pathogenicity, and fungicide sensitivity of fungal species associated with late-season rots of wine grape in the Mid-Atlantic United States. Plant Disease 105: 3101–3110. [DOI] [PubMed] [Google Scholar]
  21. Crous PW, Boers J, Holdom D, et al. 2022. Fungal Planet description sheets: 1383–1435. Persoonia 48: 261–371. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Crous PW, Carris LM, Giraldo A, et al. 2015a. The genera of fungi-fixing the application of the type species of generic names-G 2: Allantophomopsis, Latorua, Macrodiplodiopsis, Macrohilum, Milospium, Protostegia, Pyricularia, Robillarda, Rotula, Septoriella, Torula, and Wojnowicia. IMA Fungus 6: 163–198. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Crous PW, Denman S, Taylor JE, et al. 2013. Cultivation and diseases of Proteaceae: Leucadendron, Leucospermum and Protea. CBS Biodiversity Series 13. CBS-KNAW Fungal Biodiversity Centre. [Google Scholar]
  24. Crous PW, Gams W, Stalpers JA, et al. 2004. MycoBank: an online initiative to launch mycology into the 21st century. Studies in Mycology 50: 19–22. [Google Scholar]
  25. Crous PW, Liu F, Cai L, et al. 2018. Allelochaeta (Sporocadaceae): pigmentation lost and gained. Fungal Systematics and Evolution 2: 273–309. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Crous PW, Phillips A, Baxter A. 2000. Phytopathogenic fungi from South Africa: 73–75. Department of Plant Pathology Press, University of Stellenbosch, South Africa. [Google Scholar]
  27. Crous PW, Shivas RG, Quaedvlieg W, et al. 2014a. Fungal Planet description sheets: 214–280. Persoonia 32: 184–306. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Crous PW, Summerell BA, Shivas RG, et al. 2011a. Fungal Planet description sheets: 92–106. Persoonia 27: 130–162. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Crous PW, Summerell BA, Swart L, et al. 2011b. Fungal pathogens of Proteaceae. Persoonia 27: 20–45. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Crous PW, Verkley G, Christensen M, et al. 2012. How important are conidial appendages? Persoonia 28: 126–137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Crous PW, Verkley G, Groenewald J, et al. 2019a. Fungal Biodiversity. Westerdijk Laboratory Manual Series no. 1. Utrecht, Westerdijk Fungal Biodiversity Institute, Utrecht, the Netherlands. [Google Scholar]
  32. Crous PW, Wingfield MJ, Cheewangkoon R, et al. 2019b. Foliar pathogens of eucalypts. Studies in Mycology 94: 125–298. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Crous PW, Wingfield MJ, Chooi YH, et al. 2020. Fungal Planet description sheets: 1042–1111. Persoonia 44: 301–459. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Crous PW, Wingfield MJ, Le Roux JJ, et al. 2015b. Fungal Planet description sheets: 371–399. Persoonia 35: 264–327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Crous PW, Wingfield MJ, Schumacher RK, et al. 2014b. Fungal Planet description sheets: 281–319. Persoonia 33: 212–289. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. De Silva NI, Maharachchikumbura SSN, Bhat DJ, et al. 2018. Monochaetia sinensis sp. nov. from Yunnan Province in China. Phytotaxa 375: 059–069. [Google Scholar]
  37. Dean RA, Lichens-Park A, Kole C. 2014. Genomics of plant-associated fungi: monocot pathogens. Berlin, Heidelberg, Germany. [Google Scholar]
  38. Debener T. 2019. The Beast and the Beauty: What do we know about Black Spot in roses? Critical Reviews in Plant Sciences 38: 313–326. [Google Scholar]
  39. Diogo E, Gonçalves CI, Silva AC, et al. 2021. Five new species of Neopestalotiopsis associated with diseased Eucalyptus spp. in Portugal. Mycological Progress 20: 1441–1456. [Google Scholar]
  40. Doyle JJ, Doyle JL. 1990. Isolation of plant DNA from fresh tissue. Focus 12: 39–40. [Google Scholar]
  41. Duan YB, Yu ZZ, Kang YB. 2011. First report of leaf spot disease of peony caused by Seimatosporium botan in China. Plant Disease 95: 226. [DOI] [PubMed] [Google Scholar]
  42. Eken C, Spanbayev A, Tulegenova Z, et al. 2009. First report of Truncatella angustata causing leaf spot on Rosa canina in Kazakhstan. Australasian Plant Disease Notes 4: 44–45. [Google Scholar]
  43. Ellis JB, Everhart BM. 1893. New species of fungi from various localities. Proceedings of the Academy of Natural Sciences of Philadelphia 45: 440–466. [Google Scholar]
  44. Eriksson O. 1986. Notes on ascomycete systematics, Nos. 1–224. Systema Ascomycetum 5: 113–174. [Google Scholar]
  45. Eriksson O. 1987. Notes on ascomycete systematics. Nos. 225–463. Systema Ascomycetum 9: 11–165. [Google Scholar]
  46. Feng F, Zhou G, Li H. 2019. First report of Colletotrichum siamense causing anthracnose on Rosa chinensis in China. Plant Disease 103: 1422–1422. [Google Scholar]
  47. Feng Y, Liu B, Sun B. 2014. First report of leaf blotch caused by Pestalotiopsis clavispora on Rosa chinensis in China. Plant Disease 98: 1009–1009. [DOI] [PubMed] [Google Scholar]
  48. Fougère-Danezan M, Joly S, Bruneau A, et al. 2015. Phylogeny and biogeography of wild roses with specific attention to polyploids. Annals of Botany 115: 275–291. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Freitas EFS, Da Silva M, Barros MVP, et al. 2019. Neopestalotiopsis hadrolaeliae sp. nov., a new endophytic species from the roots of the endangered orchid Hadrolaelia jongheana in Brazil. Phytotaxa 416: 211–220. [Google Scholar]
  50. Fu M, Crous PW, Bai Q, et al. 2019. Colletotrichum species associated with anthracnose of Pyrus spp. in China. Persoonia 42: 1–35. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Ge QX, Chen YX, Xu T. 2009. Flora Fungorum Sinicorum. Vol. 38. Pestalotiopsis. Science Press. Beijing, China. [In Chinese.] [Google Scholar]
  52. Geng K, Zhang B, Song Y, et al. 2013. A new species of Pestalotiopsis from leaf spots of Licuala grandis from Hainan, China. Phytotaxa 88: 49–54. [Google Scholar]
  53. Goonasekara ID, Maharachchikumbura SSN, Wijayawardene NN, et al. 2016. Seimatosporium quercina sp. nov. (Discosiaceae) on Quercus robur from Germany. Phytotaxa 255: 240–280. [Google Scholar]
  54. Graniti A. 1986. Seiridium cardinale and other cypress cankers 1. EPPO Bulletin 16: 479–486. [Google Scholar]
  55. Graniti A. 1993. Seiridium blight of cypress-another ecological disaster? Plant Disease 77: 1–6. [Google Scholar]
  56. Graniti A. 1998. Cypress canker: a pandemic in progress. Annual Review of Phytopathology 36: 91–114. [DOI] [PubMed] [Google Scholar]
  57. Gu M, Hu D, Han B, et al. 2021. Pestalotiopsis abietis sp. nov. from Abies fargesii in China. Phytotaxa 509: 93–105. [Google Scholar]
  58. Gualberto GF, Catarino ADM, Sousa TF, et al. 2021. Pseudopestalotiopsis gilvanii sp. nov. and Neopestalotiopsis formicarum leaves spot pathogens from guarana plant: a new threat to global tropical hosts. Phytotaxa 489: 121–139. [Google Scholar]
  59. Guba EF. 1961. Monograph of Monochaetia and Pestalotia. Harvard University Press, Cambridge, Massachusetts, USA. [Google Scholar]
  60. Guo LD. 2004. Endophytic Fungi II. New records from pine in China. Mycosystema 23: 24–27. [Google Scholar]
  61. Guo Y, Crous PW, Bai Q, et al. 2020. High diversity of Diaporthe species associated with pear shoot canker in China. Persoonia 77: 132–162. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Hatakeyama S, Harada Y. 2004. A new species of Discostroma and its anamorph Seimatosporium with two morphological types of conidia, isolated from the stems of Paeonia suffruticosa. Mycoscience 45: 106–111. [Google Scholar]
  63. Hernández-Restrepo M, Groenewald JZ, Crous PW, et al. 2016. Taxonomic and phylogenetic re-evaluation of Microdochium, Monographella and Idriella. Persoonia 36: 57–82. [DOI] [PMC free article] [PubMed] [Google Scholar]
  64. Hongsanan S, Maharachchikumbura SSN, Hyde KD, et al. 2017. An updated phylogeny of Sordariomycetes based on phylogenetic and molecular clock evidence. Fungal Diversity 84: 25–41. [Google Scholar]
  65. Huanluek N, Jayawardena RS, Maharachchikumbura SSN, et al. 2021. Additions to pestalotioid fungi in Thailand: Neopestalotiopsis hydeana sp. nov. and Pestalotiopsis hydei sp. nov. Phytotaxa 479: 23–43. [Google Scholar]
  66. Huelsenbeck JP, Ronquist F. 2001. MrBayes: Bayesian inference of phylogenetic trees. Bioinformatics 17: 754–755. [DOI] [PubMed] [Google Scholar]
  67. Hyde KD, Hongsanan S, Jeewon R, et al. 2016. Fungal diversity notes 367–490: taxonomic and phylogenetic contributions to fungal taxa. Fungal Diversity 80: 1–270. [Google Scholar]
  68. Hyde KD, Jeewon R, Chen YJ, et al. 2020. The numbers of fungi: is the descriptive curve flattening. Fungal Diversity 103: 219–271. [Google Scholar]
  69. Jaklitsch WM, Gardiennet A, Voglmayr H. 2016. Resolution of morphology-based taxonomic delusions: Acrocordiella, Basiseptospora, Blogiascospora, Clypeosphaeria, Hymenopleella, Lepteutypa, Pseudapiospora, Requienella, Seiridium and Strickeria. Persoonia 37: 82–105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  70. Jayawardena R, Hyde KD, Chethana K, et al. 2018. Mycosphere notes 102–168: Saprotrophic fungi on Vitis in China, Italy, Russia and Thailand. Mycosphere 9: 1–114. [Google Scholar]
  71. Jayawardena RS, Liu M, Maharachchikumbura SSN. 2016. Neopestalotiopsis vitis sp. nov. causing grapevine leaf spot in China. Phytotaxa 258: 63–74. [Google Scholar]
  72. Jia J, Li X, Zhang W, et al. 2019. First report of Botryosphaeria dothidea associated with stem canker on Rosa chinensis in China. Plant Disease 103: 3280. [Google Scholar]
  73. Jiang N, Bonthond G, Fan XL, et al. 2018. Neopestalotiopsis rosicola sp. nov. causing stem canker of Rosa chinensis in China. Mycotaxon 133: 271–283. [Google Scholar]
  74. Jiang N, Fan XL, Tian CM. 2021. Identification and characterization of feafinhabiting fungi from Castanea plantations in China. Journal of Fungi 7: 64. [DOI] [PMC free article] [PubMed] [Google Scholar]
  75. Jiang N, Liang YM, Tian CM. 2019. Morphological and phylogenic evidences reveal a new Seiridium species in China. Phytotaxa 418: 287–293. [Google Scholar]
  76. Jin J. 2020. Investigation and application of Rosa resources in Guizhou, China. Seed 39: 61–65. [In Chinese.] [Google Scholar]
  77. Kang JC, Hyde KD, Kong RY. 1999. Studies on Amphisphaeriales: the Amphisphaeriaceae (sensu stricto). Mycological Research 103: 53–64. [Google Scholar]
  78. Katoh K, Rozewicki J, Yamada KD. 2019. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Briefings in Bioinformatics 20: 1160–1166. [DOI] [PMC free article] [PubMed] [Google Scholar]
  79. Katoh K, Standley DM. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution 30: 772–780. [DOI] [PMC free article] [PubMed] [Google Scholar]
  80. Kobayashi T. 2007. Index of fungi inhabiting woody plants in Japan. Zenkoku Noson Kyoiku Kyokai, Tokyo, Japan. [Google Scholar]
  81. Kumar V, Cheewangkoon R, Gentekaki E. 2019. Neopestalotiopsis alpapicalis sp. nov. a new endophyte from tropical mangrove trees in Krabi Province (Thailand). Phytotaxa 393: 251–262. [Google Scholar]
  82. Lawrence DP, Travadon R, Baumgartner K. 2018. Novel Seimatosporium species from grapevine in northern California and their interactions with fungal pathogens involved in the trunk-disease complex. Plant Disease 102: 1081–1092. [DOI] [PubMed] [Google Scholar]
  83. Li GJ, Hyde KD, Zhao RL, et al. 2016. Fungal diversity notes 253–366: taxonomic and phylogenetic contributions to fungal taxa. Fungal Diversity 78: 1–237. [Google Scholar]
  84. Li L, Yang Q, Li H. 2021. Morphology, phylogeny, and pathogenicity of pestalotioid species on Camellia oleifera in China. Journal of Fungi 7: 1080. [DOI] [PMC free article] [PubMed] [Google Scholar]
  85. Li WJ, Maharachchikumbura SSN, Li QR. 2015. Epitypification of Broomella vitalbae and introduction of a novel species of Hyalotiella. Cryptogamie, Mycologie 36: 93–108. [Google Scholar]
  86. Liu AR, Chen SC, Wu SY, et al. 2010. Cultural studies coupled with DNA based sequence analyses and its implication on pigmentation as a phylogenetic marker in Pestalotiopsis taxonomy. Molecular Phylogenetics and Evolution 57: 528–535. [DOI] [PubMed] [Google Scholar]
  87. Liu F, Bonthond G, Groenewald JZ, et al. 2019. Sporocadaceae, a family of coelomycetous fungi with appendage-bearing conidia. Studies in Mycology 92: 287–415. [DOI] [PMC free article] [PubMed] [Google Scholar]
  88. Liu F, Hou L, Raza M, et al. 2017. Pestalotiopsis and allied genera from Camellia, with description of 11 new species from China. Scientific Reports 7: 866. [DOI] [PMC free article] [PubMed] [Google Scholar]
  89. Liu LL. 2016. Review on the research and utilization of the genus Rosa in China. Agricultural Science and Technology: 1–5.
  90. Liu JK, Hyde KD, Jones EB, et al. 2015. Fungal diversity notes 1–110: taxonomic and phylogenetic contributions to fungal species. Fungal Diversity 72: 1–197. [Google Scholar]
  91. Liu X, Tibpromma S, Zhang F, et al. 2021. Neopestalotiopsis cavernicola sp. nov. from Gem Cave in Yunnan Province, China. Phytotaxa 512: 1–27. [Google Scholar]
  92. Luo ZL, Hyde KD, Liu J, et al. 2019. Freshwater Sordariomycetes. Fungal Diversity 99: 451–660. [Google Scholar]
  93. Ma XY, Maharachchikumbura SSN, Chen BW, et al. 2019. Endophytic pestalotiod taxa in Dendrobium orchids. Phytotaxa 419: 268–286. [Google Scholar]
  94. Maharachchikumbura SSN, Camporesi E, Liu ZY, et al. 2015. Seiridium venetum redescribed, and S. camelliae, a new species from Camellia reticulata in China. Mycological Progress 14: 85. [Google Scholar]
  95. Maharachchikumbura SSN, Chukeatirote E, Guo LD, et al. 2013a. Pestalotiopsis species associated with Camellia sinensis (tea). Mycotaxon 123: 47–61. [Google Scholar]
  96. Maharachchikumbura SSN, Guo LD, Cai L, et al. 2012. A multi-locus backbone tree for Pestalotiopsis, with a polyphasic characterization of 14 new species. Fungal Diversity 56: 95–129. [Google Scholar]
  97. Maharachchikumbura SSN, Guo LD, Chukeatirote E, et al. 2011. Pestalotiopsis-morphology, phylogeny, biochemistry and diversity. Fungal Diversity 50: 167–187. [Google Scholar]
  98. Maharachchikumbura SSN, Hyde KD, Groenewald JZ, et al. 2014. Pestalotiopsis revisited. Studies in Mycology 79: 121–186. [DOI] [PMC free article] [PubMed] [Google Scholar]
  99. Maharachchikumburaa SSN, Zhang YM, Wang Y, et al. 2013b. Pestalotiopsis anacardiacearum sp. nov. Amphisphaeriaceae has an intricate relationship with Penicillaria jocosatrix, the mango tip borer. Phytotaxa 99: 49–57. [Google Scholar]
  100. Marin-Felix Y, Hernandez-Restrepo M, Iturrieta-Gonzalez I, et al. 2019. Genera of phytopathogenic fungi: GOPHY 3. Studies in Mycology 94: 1–124. [DOI] [PMC free article] [PubMed] [Google Scholar]
  101. Mathur RS. 1979. The Coelomycetes of India. Bishen Singh Mahendra Pal Singh. [Google Scholar]
  102. Mendes M, Da Silva V, Dianese J. 1998. Fungos em Plants no Brasil. Embrapa-SPI/Embrapa-Cenargen, Brasilia. [Google Scholar]
  103. Meng YR. 2003. Diseases of economic plants in Gansu province. Gansu Science and Technology Press. Lanzhou, China. [In Chinese.] [Google Scholar]
  104. Moghadam JN, Khaledi E, Abdollahzadeh J, et al. 2022. Seimatosporium marivanicum, Sporocadus kurdistanicus, and Xenoseimatosporium kurdistanicum: three new pestalotioid species associated with grapevine trunk diseases from the Kurdistan Province, Iran. Mycological Progress 21: 427–446. [Google Scholar]
  105. Mordue J. 1986. Another unusual species of Pestalotiopsis: P. montellicoides sp. nov. Transactions of the British Mycological Society 86: 665–668. [Google Scholar]
  106. Mordue J, Holliday P. 1971. Pestalotiopsis palmarum. [Descriptions of Fungi and Bacteria]. IMI Descriptions of Fungi and Bacteria No. 319.
  107. Moslemi A, Taylor PW. 2015. Pestalotiopsis chamaeropis causing leaf spot disease of round leaf mint-bush (Prostanthera rotundifolia) in Australia. Australasian Plant Disease Notes 10: 1–5. [Google Scholar]
  108. Mułenko W, Majewski T, Ruszkiewicz-Michalska M. 2008. A preliminary checklist of micromycetes in Poland. W. Szafer Institute of Botany, Polish Academy of Sciences, Poland. [Google Scholar]
  109. Munoz M, Faust JE, Schnabel G. 2019. Characterization of Botrytis cinerea from commercial cut flower roses. Plant Disease 103: 1577–1583. [DOI] [PubMed] [Google Scholar]
  110. Nag Raj T. 1985. Redisposals and redescriptions in the Monochaetia-Seiridium, Pestalotia-Pestalotiopsis complexes. I: The correct name for the type species of Pestalotiopsis. II: Pestalotiopsis besseyii (Guba) comb. nov. and Pestalosphaeria varia sp. nov. III: Monochaetia ilicina (Sacc.) comb. nov. IV: On Monochaetia miersi. Mycotaxon 22: 43–75. [Google Scholar]
  111. Nag Raj T. 1993. Coelomycetous anamorphs with appendage-bearing conidia. Mycologue Publications, Waterloo, Canada. [Google Scholar]
  112. Nees C. 1817. Das system der Pilze und Schwämme. Stahelsche Buchhandlung, Würzburg, Germany. [Google Scholar]
  113. Norphanphoun C, Jayawardena RS, Chen Y, et al. 2019. Morphological and phylogenetic characterization of novel pestalotioid species associated with mangroves in Thailand. Mycosphere 10: 531–578. [Google Scholar]
  114. Norphanphoun C, Maharachchikumbura SSN, Daranagama A, et al. 2015. Towards a backbone tree for Seimatosporium, with S. physocarpi sp. nov. Mycosphere 6: 385–400. [Google Scholar]
  115. Nozawa S, Seto Y, Watanabe K. 2019. First report of leaf blight caused by Pestalotiopsis chamaeropis and Neopestalotiopsis sp. in Japanese andromeda. Journal of General Plant Pathology 85: 449–452. [Google Scholar]
  116. Pan M, Zhu H, Bonthond G, et al. 2020. High diversity of Cytospora associated with canker and dieback of Rosaceae in China, with 10 new species described. Frontiers in Plant Science 11: 690. [DOI] [PMC free article] [PubMed] [Google Scholar]
  117. Patouillard N. 1886. Quelques champignons de la Chine, récoltés par M. l’abbé Delavay dans la province du Yunnan. Revue Mycologique 8: 179–182. [Google Scholar]
  118. Pavgi M, Singh U. 1970. Parasitic fungi from North India. IX. Sydowia 24: 113–119. [Google Scholar]
  119. Peregrine WTH, Ahmad KB. 1982. Brunei: A first annotated list of plant diseases and associated organisms. Phytopathological Papers 27: 1–87. [Google Scholar]
  120. Prasannath K, Shivas RG, Galea VJ, et al. 2021. Neopestalotiopsis species associated with flower diseases of Macadamia integrifolia in Australia. Journal of Fungi 7: 771. [DOI] [PMC free article] [PubMed] [Google Scholar]
  121. Qiu F, Xu G, Zheng FQ, et al. 2020. First report of Neopestalotiopsis clavispora causing leaf spot on macadamia (Macadamia integrifolia) in China. Plant Disease 104: 288–289. [Google Scholar]
  122. Rai M. 1990. New records of fungi from India. Indian Journal of Mycology and Plant Pathology 20: 199–201. [Google Scholar]
  123. Ran S, Maharachchikumbura SSN, Ren Y, et al. 2017. Two new records in Pestalotiopsidaceae associated with Orchidaceae disease in Guangxi Province, China. Mycosphere 8: 121–130. [Google Scholar]
  124. Rayner RW. 1970. A mycological colour chart. CMI and British Mycological Society, Kew, Surrey, UK. [Google Scholar]
  125. Rebollar-Alviter A, Silva-Rojas HV, Fuentes-Aragón D, et al. 2020. An emerging strawberry fungal disease associated with root rot, crown rot and leaf spot caused by Neopestalotiopsis rosae in Mexico. Plant Disease 104: 2054–2059. [DOI] [PubMed] [Google Scholar]
  126. Riley EA. 1960. A revised list of plant diseases in Tanganyika Territory.
  127. Samarakoon M. 2016. Evolution of Xylariomycetidae (Ascomycota: Sordariomycetes). Mycosphere 7: 1746–1761. [Google Scholar]
  128. Sameva EF. 2004. New records of anamorphic fungi from Bulgaria. Micologia Balcanica 1: 55–57. [Google Scholar]
  129. Samuels G, Müller E, Petrini O. 1987. Studies in the Amphisphaeriaceae (sensu lato). III: New species of Monographella and Pestalosphaeria, and two new genera. Mycotaxon 28: 473–499. [Google Scholar]
  130. Santos GS, Mafia RG, Aguiar AM, et al. 2020. Stem rot of eucalyptus cuttings caused by Neopestalotiopsis spp. in Brazil. Journal of Phytopathology 168: 311–321. [Google Scholar]
  131. Santos J, Hilário S, Pinto G, et al. 2022. Diversity and pathogenicity of pestalotioid fungi associated with blueberry plants in Portugal, with description of three novel species of Neopestalotiopsis. European Journal of Plant Pathology 162: 539–555. [Google Scholar]
  132. Senanayake IC, Maharachchikumbura SSN, Hyde KD, et al. 2015. Towards unraveling relationships in Xylariomycetidae (Sordariomycetes). Fungal Diversity 73: 73–144. [Google Scholar]
  133. Shoemaker R. 1964. Seimatosporium (= Cryptostictis) parasites of Rosa, Vitis, and Cornus. Canadian Journal of Botany 42: 411–421. [Google Scholar]
  134. Silva AC, Diogo E, Henriques J, et al. 2020. Pestalotiopsis pini sp. nov., an emerging pathogen on stone pine (Pinus pinea L.). Forests 11: 805. [Google Scholar]
  135. Silvério ML, Cavalcanti MA, Silva GA. 2016. A new epifoliar species of Neo-pestalotiopsis from Brazil. Agrotropica 28: 151–158. [Google Scholar]
  136. Silvestro D, Michalak I. 2012. raxmlGUI: a graphical front-end for RAxML. Organisms Diversity & Evolution 12: 335–337. [Google Scholar]
  137. Smith GJ, Liew EC, Hyde KD. 2003. The Xylariales: a monophyletic order containing 7 families. Fungal Diversity 13: 185–218. [Google Scholar]
  138. Smith H, Wingfield M, Coutinho T, et al. 1996. Sphaeropsis sapinea and Botryosphaeria dothidea endophytic in Pinus spp. and Eucalyptus spp. in South Africa. South African Journal of Botany 62: 86–88. [Google Scholar]
  139. Song Y, Geng K, Hyde KD, et al. 2013. Two new species of Pestalotiopsis from Southern China. Phytotaxa 126: 22–32. [Google Scholar]
  140. Spaulding P. 1949. Foreign diseases of forest trees of the world: an annotated list. US Department of Agriculture, USA.
  141. Sutton BC. 1975. Coelomycetes. V. Coryneum. Mycological Papers 138: 1–224. Commonwealth Mycological Institute, Kew. [Google Scholar]
  142. Sutton BC. 1980. The coelomycetes. Fungi imperfecti with pycnidia, acervuli and stromata. Commonwealth Mycological Institute, Kew. [Google Scholar]
  143. Swart L, Taylor J, Crous PW, et al. 1999. Pestalotiopsis leaf spot disease of Proteaceae in Zimbabwe. South African Journal of Botany 65: 239–242. [Google Scholar]
  144. Swofford DL. 2003. PAUP*: Phylogenetic Analysis Using Parsimony (*and other methods) version 4.0b10. Sinauer Associates, Sunderland, MA, USA. [Google Scholar]
  145. Tai FL. 1979. Sylloge Fungorum Sinicorum. Science Press, Academia Sinica. Beijing, China. [In Chinese.] [Google Scholar]
  146. Tamura K, Stecher G, Peterson D, et al. 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution 30: 2725–2729. [DOI] [PMC free article] [PubMed] [Google Scholar]
  147. Tanaka K, Endo M, Hirayama K, et al. 2011. Phylogeny of Discosia and Seimatosporium, and introduction of Adisciso and Immersidiscosia genera nova. Persoonia 26: 85–98. [DOI] [PMC free article] [PubMed] [Google Scholar]
  148. Taylor J. 2000. Proteaceae pathogens: the significance of their distribution in relation to recent changes in phytosanitary regulations. Acta Horticulturae 545: 253–264. [Google Scholar]
  149. Teng SC. 1963. Fungi of China. Science Press. Beijing, China. [In Chinese.] [Google Scholar]
  150. Teng SC. 1996. Fungi of China. Ithaca, Mycotaxon, Ltd., NY, USA. [Google Scholar]
  151. Tibpromma S, Hyde KD, McKenzie EH, et al. 2018. Fungal diversity notes 840–928: micro-fungi associated with Pandanaceae. Fungal Diversity 93: 1–160. [Google Scholar]
  152. Tibpromma S, Mortimer PE, Karunarathna SC, et al. 2019. Morphology and multi-gene phylogeny reveal Pestalotiopsis pinicola sp. nov. and a new host record of Cladosporium anthropophilum from edible pine (Pinus armandii) seeds in Yunnan province, China. Pathogens 8: 285. [DOI] [PMC free article] [PubMed] [Google Scholar]
  153. Tsopelas P, Barnes I, Wingfield M, et al. 2007. Seiridium cardinale on Juniperus species in Greece. Forest Pathology 37: 338–347. [Google Scholar]
  154. Ul Haq I, Ijaz S, Khan NA, et al. 2021. Genealogical concordance of phylogenetic species recognition-based delimitation of Neopestalotiopsis species associated with leaf spots and fruit canker disease affected guava plants. Pakistan Journal of Agricultural Sciences 58: 1301–1313. [Google Scholar]
  155. Vieira WA, Michereff SJ, De Morais MA, et al. 2014. Endophytic species of Colletotrichum associated with mango in northeastern Brazil. Fungal Diversity 67: 181–202. [Google Scholar]
  156. Vu D, Groenewald M, De Vries M, et al. 2019. Large-scale generation and analysis of filamentous fungal DNA barcodes boosts coverage for kingdom fungi and reveals thresholds for fungal species and higher taxon delimitation. Studies in Mycology 92: 135–154. [DOI] [PMC free article] [PubMed] [Google Scholar]
  157. Wanasinghe DN, Phukhamsakda C, Hyde KD, et al. 2018. Fungal diversity notes 709–839: taxonomic and phylogenetic contributions to fungal taxa with an emphasis on fungi on Rosaceae. Fungal Diversity 89: 1–236. [Google Scholar]
  158. Wang G. 1985. New species and records of fungi from Changbai mountain, China (I). Bulletin of Botanical Research 5: 137–139. [In Chinese.] [Google Scholar]
  159. Wang S. 2021. Relationships between species richness patterns of Rosa L. and environmental factors in China. Acta Ecologica Sinica 42: 1–8. [Google Scholar]
  160. Wang S, Mi X, Wu Z, et al. 2019a. Characterization and pathogenicity of pestalotiopsis-like species associated with gray blight disease on Camellia sinensis in Anhui province, China. Plant Disease 103: 2786–2797. [DOI] [PubMed] [Google Scholar]
  161. Wang Y, Xiong F, Lu Q, et al. 2019b. Diversity of pestalotiopsis-like species causing Gray Blight Disease of tea plants (Camellia sinensis) in China, including two novel Pestalotiopsis species, and analysis of their pathogenicity. Plant Disease 103: 2548–2558. [DOI] [PubMed] [Google Scholar]
  162. Watanabe K, Motohashi K, Ono Y. 2010. Description of Pestalotiopsis pallidotheae: a new species from Japan. Mycoscience 51: 182–188. [Google Scholar]
  163. Watanabe K, Nozawa S, Hsiang T. 2018. The cup fungus Pestalopezia brunneopruinosa is Pestalotiopsis gibbosa and belongs to Sordariomycetes. PloS one 13: 1–12. [DOI] [PMC free article] [PubMed] [Google Scholar]
  164. Weiss F. 1950. Index of plant diseases in the United States. Parts I, II, III. U.S. Department of Agrculture, Plant Disease Survey Special Publication. [Google Scholar]
  165. Wei JG, Phan CK, Wang L, et al. 2013. Pestalotiopsis yunnanensis sp. nov., an endophyte from Podocarpus macrophyllus (Podocarpaceae) based on morphology and ITS sequence data. Mycological Progress 12: 563–568. [Google Scholar]
  166. Wei JG, Xu T, Guo LD, et al. 2005. Endophytic Pestalotiopsis species from southern China. Mycosystema 24: 481–493. [Google Scholar]
  167. Wijayawardene NN, Goonasekara I, Camporesi E, et al. 2016a. Two new Seimatosporium species from Italy. Mycosphere 7: 204–213. [Google Scholar]
  168. Wijayawardene NN, Hyde KD, Al-Ani LKT, et al. 2020. Outline of fungi and fungus-like taxa. Mycosphere 11: 1060–1456. [Google Scholar]
  169. Wijayawardene NN, Hyde KD, Wanasinghe DN, et al. 2016b. Taxonomy and phylogeny of dematiaceous coelomycetes. Fungal Diversity 77: 1–316. [Google Scholar]
  170. Wu W. 1992. Two new Seimatosporium species from China. Journal of Hebei Academy of Sciences 2: 61–64. [Google Scholar]
  171. Wu ZY, Raven PH, Hong DY. (eds). 2003. Flora of China. Vol. 9 (Pittosporaceae through Connaraceae). Science Press, Beijing, and Missouri Botanical Garden Press, St. Louis. [Google Scholar]
  172. Yang Q, Zeng XY, Yuan J, et al. 2021. Two new species of Neopestalotiopsis from southern China. Biodiversity Data Journal 9: e70446. [DOI] [PMC free article] [PubMed] [Google Scholar]
  173. Yu J, Wu Y, He Z, et al. 2018. Diversity and antifungal activity of endophytic fungi associated with Camellia oleifera. Mycobiology 46: 85–91. [DOI] [PMC free article] [PubMed] [Google Scholar]
  174. Zhang M, Li J, Wu H, et al. 2014. First report of Chaetomella raphigera causing leaf spot on Rosa chinensis in China. Plant Disease 98: 569–569. [DOI] [PubMed] [Google Scholar]
  175. Zhang Y, Jiang Y, Zu W. 2009. Resources of the genus Rosa in China and their application prospects in gardens. Seed 28: 1–9. [In Chinese.] [Google Scholar]
  176. Zhang YM, Maharachchikumbura SSN, Mckenzie EH. 2012a. A novel species of Pestalotiopsis causing leaf spots of Trachycarpus fortunei. Cryptogamie, Mycologie 33: 311–318. [Google Scholar]
  177. Zhang YM, Maharachchikumbura SSN, Tian Q. 2013. Pestalotiopsis species on ornamental plants in Yunnan Province, China. Sydowia 65: 113–128. [Google Scholar]
  178. Zhang YM, Maharachchikumbura SSN, Wei JG. 2012b. Pestalotiopsis camelliae, a new species associated with grey blight of Camellia japonica in China. Sydowia 64: 335–344. [Google Scholar]
  179. Zhang ZX, Liu RY, Liu SB, et al. 2022. Morphological and phylogenetic analyses reveal two new species of Sporocadaceae from Hainan, China. MycoKeys 88: 171–192. [DOI] [PMC free article] [PubMed] [Google Scholar]
  180. Zhao G, Li N. 1994. A new species of Monochaetia (Coelomycetes) from China. Mycotaxon 52: 187–191. [Google Scholar]
  181. Zhu PL, Ge QX, Xu T. 1991. Seven new combinations of Pestalotiopsis from China. Acta Mycologica Sinica 10: 273–279. [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Fig. S1

Phylogenetic tree of Monochaetia resulting from maximum likelihood (ML) analysis of the ITS sequence alignment. Nodes are labelled with bootstrap values from RAxML/Parsimony bootstrap/Bayesian posterior probabilities values. Nodes receiving below 50 bootstrap values and 0.5 probability values are not labelled. The scale bar represents the expected number of changes per site. Isolates collected in this study are in bold and blue.

per-2022-49-7-SF1.jpg (1.3MB, jpg)
Fig. S2

Phylogenetic trees based on maximum likelihood (ML) analyses for species in Neopestalotiopsis. a. ITS region; b. TEF gene region; c. TUB gene region. Nodes are labelled with bootstrap values from RAxML/Parsimony bootstrap/Bayesian posterior probabilities values. Nodes receiving below 50 bootstrap values and 0.5 probability values are not labelled. The scale bar represents the expected number of changes per site. Isolates collected in this study are in bold and blue.

per-2022-49-7-SF2-2.jpg (915.2KB, jpg)
Fig. S3

Phylogenetic trees based on maximum likelihood (ML) analyses for species in Pestalotiopsis. a. ITS region; b. TEF gene region; c. TUB gene region. Nodes are labelled with bootstrap values from RAxML/Parsimony bootstrap/Bayesian posterior probabilities values. Nodes receiving below 50 bootstrap values and 0.5 probability values are not labelled. The scale bar represents the expected number of changes per site. Isolates collected in this study are in bold and blue.

Fig. S4

Phylogenetic trees based on maximum likelihood (ML) analyses for species in Seimatosporium. a. ITS region; b. LSU gene region. Nodes are labelled with bootstrap values from RAxML/Parsimony bootstrap/Bayesian posterior probabilities values. Nodes receiving below 50 bootstrap values and 0.5 probability values are not labelled. The scale bar represents the expected number of changes per site. Isolates collected in this study are in bold and blue.

per-2022-49-7-SF4.jpg (3.6MB, jpg)
Fig. S5

Phylogenetic trees based on maximum likelihood (ML) analyses for species in Seiridium. a. ITS region; b. RPB2 gene region; c. TEF gene region; d. TUB gene region. Nodes are labelled with bootstrap values from RaxML/Parsimony bootstrap/Bayesian posterior probabilities values. Nodes receiving below 50 bootstrap values and 0.5 probability values are not labelled. The scale bar represents the expected number of changes per site. Isolates collected in this study are in bold and blue.

per-2022-49-7-SF5.jpg (2.6MB, jpg)
Fig. S6

Phylogenetic trees based on maximum likelihood (ML) analyses for species in Sporocadus. a. ITS region; b. LSU gene region; c. RPB2 gene region; d. TEF gene region; e. TUB gene region. Nodes are labelled with bootstrap values from RAxML/Parsimony bootstrap/Bayesian posterior probabilities values. Nodes receiving below 50 bootstrap values and 0.5 probability values are not labelled. The scale bar represents the expected number of changes per site. Isolates collected in this study are in bold and blue.


Articles from Persoonia : Molecular Phylogeny and Evolution of Fungi are provided here courtesy of Naturalis Biodiversity Center & Centraalbureau voor Schimmelcultures

RESOURCES