Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1992 Jun;99(2):439–444. doi: 10.1104/pp.99.2.439

Substrate Specificity of the H+-Sucrose Symporter on the Plasma Membrane of Sugar Beets (Beta vulgaris L.) 1

Transport of Phenylglucopyranosides

Roland Hecht 1,2,3, J Henry Slone 1,2,3,2, Thomas J Buckhout 1,2,3, William D Hitz 1,2,3, William J VanDerWoude 1,2,3
PMCID: PMC1080481  PMID: 16668904

Abstract

Previous results (TJ Buckhout, Planta [1989] 178: 393-399) indicated that the structural specificity of the H+-sucrose symporter on the plasma membrane from sugar beet leaves (Beta vulgaris L.) was specific for the sucrose molecule. To better understand the structural features of the sucrose molecule involved in its recognition by the symport carrier, the inhibitory activity of a variety of phenylhexopyranosides on sucrose uptake was tested. Three competitive inhibitors of sucrose uptake were found, phenyl-α-d-glucopyranoside, phenyl-α-d-thioglucopyranoside, and phenyl-α-d-4-deoxythioglucopyranoside (PDTGP; Ki = 67, 180, and 327 micromolar, respectively). The Km for sucrose uptake was approximately 500 micromolar. Like sucrose, phenyl-α-d-thioglucopyranoside and to a lesser extent, PDTGP induced alkalization of the external medium, which indicated that these derivatives bound to and were transported by the sucrose symporter. Phenyl-α-d-3-deoxy-3-fluorothioglucopyranoside, phenyl-α-d-4-deoxy-4-fluorothioglucopyranoside, and phenyl-α-d-thioallopyranoside only weakly but competively inhibited sucrose uptake with Ki values ranging from 600 to 800 micromolar, and phenyl-α-d-thiomannopyranoside, phenyl-β-d-glucopyranoside, and phenylethyl-β-d-thiogalactopyranoside did not inhibit sucrose uptake. Thus, the hydroxyl groups of the fructose portion of sucrose were not involved in a specific interaction with the carrier protein because phenyl and thiophenyl derivatives of glucose inhibited sucrose uptake and, in the case of phenyl-α-d-thioglucopyranoside and PDTGP, were transported.

Full text

PDF
440

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  2. Bush D. R. Electrogenicity, pH-Dependence, and Stoichiometry of the Proton-Sucrose Symport. Plant Physiol. 1990 Aug;93(4):1590–1596. doi: 10.1104/pp.93.4.1590. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bush D. R. Proton-Coupled Sucrose Transport in Plasmalemma Vesicles Isolated from Sugar Beet (Beta vulgaris L. cv Great Western) Leaves. Plant Physiol. 1989 Apr;89(4):1318–1323. doi: 10.1104/pp.89.4.1318. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Delrot S. Proton Fluxes Associated with Sugar Uptake in Vicia faba Leaf Tissues. Plant Physiol. 1981 Sep;68(3):706–711. doi: 10.1104/pp.68.3.706. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Fondy B. R., Geiger D. R. Sugar Selectivity and Other Characteristics of Phloem Loading in Beta vulgaris L. Plant Physiol. 1977 May;59(5):953–960. doi: 10.1104/pp.59.5.953. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hitz W. D., Card P. J., Ripp K. G. Substrate recognition by a sucrose transporting protein. J Biol Chem. 1986 Sep 15;261(26):11986–11991. [PubMed] [Google Scholar]
  7. Maynard J. W., Lucas W. J. Sucrose and Glucose Uptake into Beta vulgaris Leaf Tissues : A Case for General (Apoplastic) Retrieval Systems. Plant Physiol. 1982 Nov;70(5):1436–1443. doi: 10.1104/pp.70.5.1436. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Schmitt M. R., Hitz W. D., Lin W., Giaquinta R. T. Sugar Transport into Protoplasts Isolated from Developing Soybean Cotyledons : II. Sucrose Transport Kinetics, Selectivity, and Modeling Studies. Plant Physiol. 1984 Aug;75(4):941–946. doi: 10.1104/pp.75.4.941. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Slone J. H., Buckhout T. J., Vanderwoude W. J. Symport of proton and sucrose in plasma membrane vesicles isolated from spinach leaves. Plant Physiol. 1991 Jun;96(2):615–618. doi: 10.1104/pp.96.2.615. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES