Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1991 Jun;96(2):479–484. doi: 10.1104/pp.96.2.479

Characterization of Two Gene Transcripts Modulated by Cytokinins in Micropropagated Apple (Malus domestica [L.] Borkh) Plantlets

Bernard Watillon 1,2,1, Richard Kettmann 1,2,1, Philippe Boxus 1,2, Arsène Burny 1,2
PMCID: PMC1080795  PMID: 16668211

Abstract

The micropropagation of apple (Malus domestica [L.] Borkh) cultivars is usually achieved by axillary bud stimulation and requires an exogenous cytokinin supply. Two cDNA libraries were constructed from mRNA isolated from plantlets grown in vitro on medium with or without benzyladenine. One cDNA clone (pSD3), corresponding to transcripts more abundant in plantlets grown on medium containing cytokinin than on medium lacking the hormone, was isolated. It corresponds to a mRNA of about 1,800 nucleotides which codes for a proline-rich protein with a predicted mass of 31,000 daltons. Its accumulation is restricted to roots and stems of in vivo grown apple plantlets and to stems of microcuttings cultivated on medium without cytokinin. Furthermore, it accumulates to comparable levels in leaves and stems when plantlets are grown on medium containing benzyladenine. A second cDNA clone (pSD4), corresponding to transcripts down-regulated in the presence of cytokinin in the culture medium, was also characterized. Its corresponding mRNA is about 700 nucleotides in length and encodes a protein highly homologous to the precursor of the 10-kilodalton polypeptide of the photosystem II from spinach. This mRNA accumulates specifically in leaves of apple plantlets and is more abundant in leaves of plantlets grown in the absence of cytokinin compared with plantlets grown in the presence of benzyladenine.

Full text

PDF
482

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aviv H., Leder P. Purification of biologically active globin messenger RNA by chromatography on oligothymidylic acid-cellulose. Proc Natl Acad Sci U S A. 1972 Jun;69(6):1408–1412. doi: 10.1073/pnas.69.6.1408. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Chen J., Varner J. E. Isolation and characterization of cDNA clones for carrot extensin and a proline-rich 33-kDa protein. Proc Natl Acad Sci U S A. 1985 Jul;82(13):4399–4403. doi: 10.1073/pnas.82.13.4399. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chirgwin J. M., Przybyla A. E., MacDonald R. J., Rutter W. J. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry. 1979 Nov 27;18(24):5294–5299. doi: 10.1021/bi00591a005. [DOI] [PubMed] [Google Scholar]
  4. Henikoff S. Unidirectional digestion with exonuclease III creates targeted breakpoints for DNA sequencing. Gene. 1984 Jun;28(3):351–359. doi: 10.1016/0378-1119(84)90153-7. [DOI] [PubMed] [Google Scholar]
  5. Kyte J., Doolittle R. F. A simple method for displaying the hydropathic character of a protein. J Mol Biol. 1982 May 5;157(1):105–132. doi: 10.1016/0022-2836(82)90515-0. [DOI] [PubMed] [Google Scholar]
  6. Lautner A., Klein R., Ljungberg U., Reiländer H., Bartling D., Andersson B., Reinke H., Beyreuther K., Herrmann R. G. Nucleotide sequence of cDNA clones encoding the complete precursor for the "10-kDa" polypeptide of photosystem II from spinach. J Biol Chem. 1988 Jul 25;263(21):10077–10081. [PubMed] [Google Scholar]
  7. Lütcke H. A., Chow K. C., Mickel F. S., Moss K. A., Kern H. F., Scheele G. A. Selection of AUG initiation codons differs in plants and animals. EMBO J. 1987 Jan;6(1):43–48. doi: 10.1002/j.1460-2075.1987.tb04716.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Memelink J., Hoge J. H., Schilperoort R. A. Cytokinin stress changes the developmental regulation of several defence-related genes in tobacco. EMBO J. 1987 Dec 1;6(12):3579–3583. doi: 10.1002/j.1460-2075.1987.tb02688.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Neale A. D., Wahleithner J. A., Lund M., Bonnett H. T., Kelly A., Meeks-Wagner D. R., Peacock W. J., Dennis E. S. Chitinase, beta-1,3-glucanase, osmotin, and extensin are expressed in tobacco explants during flower formation. Plant Cell. 1990 Jul;2(7):673–684. doi: 10.1105/tpc.2.7.673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Shinshi H., Mohnen D., Meins F. Regulation of a plant pathogenesis-related enzyme: Inhibition of chitinase and chitinase mRNA accumulation in cultured tobacco tissues by auxin and cytokinin. Proc Natl Acad Sci U S A. 1987 Jan;84(1):89–93. doi: 10.1073/pnas.84.1.89. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Showalter A. M., Bell J. N., Cramer C. L., Bailey J. A., Varner J. E., Lamb C. J. Accumulation of hydroxyproline-rich glycoprotein mRNAs in response to fungal elicitor and infection. Proc Natl Acad Sci U S A. 1985 Oct;82(19):6551–6555. doi: 10.1073/pnas.82.19.6551. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Stockhaus J., Schell J., Willmitzer L. Identification of enhancer elements in the upstream region of the nuclear photosynthetic gene ST-LS1. Plant Cell. 1989 Aug;1(8):805–813. doi: 10.1105/tpc.1.8.805. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Varner J. E., Lin L. S. Plant cell wall architecture. Cell. 1989 Jan 27;56(2):231–239. doi: 10.1016/0092-8674(89)90896-9. [DOI] [PubMed] [Google Scholar]
  15. von Heijne G. Transcending the impenetrable: how proteins come to terms with membranes. Biochim Biophys Acta. 1988 Jun 9;947(2):307–333. doi: 10.1016/0304-4157(88)90013-5. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES