Abstract
An auxin-stimulated NADH oxidase activity (NADH oxidase I) of plasma membrane vesicles, highly purified by aqueous two-phase partition from soybean (Glycine max Merr.) hypocotyls was activated by lysophospholipids and fatty acids, both products of phospholipase A action. The activation of NADH oxidase activity occurred slowly, suggesting a mechanism whereby the lipids acted to stabilize the enzyme in a more active configuration. In contrast to activation by lipids, the activation by auxin was rapid. The average Km of the NADH oxidase after activation by lipids was four- to fivefold less than the Km before activation. The Vmax was unchanged by activation. The increases occurred in the presence of detergent and thus were not a result of exposure of latent active sites. Also, the activation did not result from activation of a peroxidase or lipoxygenase. Fatty acid esters, where growth promoting effects have been reported, also activated the auxin-stimulated oxidase. However, the auxin stimulation of NADH oxidase I did not appear to be obligatorily mediated by phospholipase A, nor did inhibitors of phospholipase A2 block the stimulation of the oxidase by auxins.
Full text
PDF![1314](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dc95/1080932/754c025d2298/plntphys00695-0322.png)
![1315](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dc95/1080932/fa964f099991/plntphys00695-0323.png)
![1316](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dc95/1080932/a5bbb121cb8f/plntphys00695-0324.png)
![1317](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dc95/1080932/2a4f8d94fd8a/plntphys00695-0325.png)
![1318](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dc95/1080932/b0f33ec54dad/plntphys00695-0326.png)
![1319](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dc95/1080932/837745437cd4/plntphys00695-0327.png)
![1320](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dc95/1080932/ef94b2cf82a2/plntphys00695-0328.png)
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Brightman A. O., Barr R., Crane F. L., Morré D. J. Auxin-Stimulated NADH Oxidase Purified from Plasma Membrane of Soybean. Plant Physiol. 1988 Apr;86(4):1264–1269. doi: 10.1104/pp.86.4.1264. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Im W. B., Blakeman D. P., Davis J. P. Effect of lysophosphatidylcholine on K+ transport in rat heavy gastric membranes enriched with (H+-K+)-ATPase. Biochem Biophys Res Commun. 1987 Jul 31;146(2):840–848. doi: 10.1016/0006-291x(87)90607-3. [DOI] [PubMed] [Google Scholar]
- Kauss H., Jeblick W. Influence of Free Fatty Acids, Lysophosphatidylcholine, Platelet-Activating Factor, Acylcarnitine, and Echinocandin B on 1,3-beta-d-Glucan Synthase and Callose Synthesis. Plant Physiol. 1986 Jan;80(1):7–13. doi: 10.1104/pp.80.1.7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kelly R. A., O'Hara D. S., Mitch W. E., Smith T. W. Identification of NaK-ATPase inhibitors in human plasma as nonesterified fatty acids and lysophospholipids. J Biol Chem. 1986 Sep 5;261(25):11704–11711. [PubMed] [Google Scholar]
- Kirschbaum B. B., Bosmann H. B. Lysolecithin enhancement of glycoprotein: glycosyl transferase activity. FEBS Lett. 1973 Aug 15;34(2):129–132. doi: 10.1016/0014-5793(73)80773-2. [DOI] [PubMed] [Google Scholar]
- Klucis E., Polya G. M. Calcium-independent activation of two plant leaf calcium-regulated protein kinases by unsaturated fatty acids. Biochem Biophys Res Commun. 1987 Sep 30;147(3):1041–1047. doi: 10.1016/s0006-291x(87)80175-4. [DOI] [PubMed] [Google Scholar]
- Martiny-Baron G., Scherer G. F. Phospholipid-stimulated protein kinase in plants. J Biol Chem. 1989 Oct 25;264(30):18052–18059. [PubMed] [Google Scholar]
- Palmgren M. G., Sommarin M. Lysophosphatidylcholine stimulates ATP dependent proton accumulation in isolated oat root plasma membrane vesicles. Plant Physiol. 1989 Jul;90(3):1009–1014. doi: 10.1104/pp.90.3.1009. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Penny D., Stowe B. B. Relationship of lipid metabolism to the respiration and growth of pea stem sections. Plant Physiol. 1966 Feb;41(2):360–365. doi: 10.1104/pp.41.2.360. [DOI] [PMC free article] [PubMed] [Google Scholar]
- STOWE B. B. Growth promotion in pea epicotyl sections by fatty acid esters. Science. 1958 Aug 22;128(3321):421–423. doi: 10.1126/science.128.3321.421. [DOI] [PubMed] [Google Scholar]
- Sarkadi B., Enyedi A., Nyers A., Gárdos G. The function and regulation of the calcium pump in the erythrocyte membrane. Ann N Y Acad Sci. 1982;402:329–348. doi: 10.1111/j.1749-6632.1982.tb25753.x. [DOI] [PubMed] [Google Scholar]
- Scharff O., Foder B., Skibsted U. Hysteretic activation of the Ca2+ pump revealed by calcium transients in human red cells. Biochim Biophys Acta. 1983 May 5;730(2):295–305. doi: 10.1016/0005-2736(83)90346-2. [DOI] [PubMed] [Google Scholar]
- Scherer G. F. 1-Alkyl-2-acetyl-sn-glycero-3-phosphocholine (platelet activating factor) stimulates plant H+ transport in vitro and growth. Biochem Biophys Res Commun. 1985 Dec 31;133(3):1160–1167. doi: 10.1016/0006-291x(85)91258-6. [DOI] [PubMed] [Google Scholar]
- Schmalzing G., Kutschera P. Modulation of ATPase activities of human erythrocyte membranes by free fatty acids or phospholipase A2. J Membr Biol. 1982;69(1):65–76. doi: 10.1007/BF01871243. [DOI] [PubMed] [Google Scholar]
- Shier W. T., Trotter J. T., 3rd Stimulation of liver microsomal sialyltransferase activity by lysolecithin. FEBS Lett. 1976 Feb 15;62(2):165–168. doi: 10.1016/0014-5793(76)80044-0. [DOI] [PubMed] [Google Scholar]
- Stowe B. B. Growth Promotion in Pea Stem Sections. I. Stimulation of Auxin and Gibberellin Action by Alkyl Lipids. Plant Physiol. 1960 Mar;35(2):262–269. doi: 10.1104/pp.35.2.262. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Swann A. C. Free fatty acids and (Na+,K+)-ATPase: effects on cation regulation, enzyme conformation, and interactions with ethanol. Arch Biochem Biophys. 1984 Sep;233(2):354–361. doi: 10.1016/0003-9861(84)90456-9. [DOI] [PubMed] [Google Scholar]
- Swoboda G., Fritzsche J., Hasselbach W. Effects of phospholipase A2 and albumin on the calcium-dependent ATPase and the lipid composition of sarcoplasmic membranes. Eur J Biochem. 1979 Mar 15;95(1):77–88. doi: 10.1111/j.1432-1033.1979.tb12941.x. [DOI] [PubMed] [Google Scholar]
- Taverna R. D., Hanahan D. J. Modulation of human erythrocyte Ca2+/Mg2+ ATPase activity by phospholipase A2 and proteases. A comparison with calmodulin. Biochem Biophys Res Commun. 1980 May 30;94(2):652–659. doi: 10.1016/0006-291x(80)91282-6. [DOI] [PubMed] [Google Scholar]