Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1966 Jan;41(1):165–172. doi: 10.1104/pp.41.1.165

Effect of Aluminum on the Uptake and Metabolism of Phosphorus by Barley Seedlings 1

David T Clarkson 1,2
PMCID: PMC1086314  PMID: 16656224

Abstract

The uptake of P32 and its incorporation into phosphorylated compounds was examined in the roots of barley seedlings which had been pretreated with aluminum.

The rate at which phosphorus increased in Al-roots was greater than in controls, especially during the first 15 minutes of incubation. It was shown that the increased phosphorus in Al-roots was Pi and that it was almost completely exchangeable. Similar increases over controls were found when root segments were incubated in phosphorus solutions containing 10−3 m DNP and at low temperature. The increased Pi in Al-roots did not result in an increase in the total amount of phosphorus incorporated into phosphorylated compounds.

Aluminum treatment markedly decreased the incorporation of P32 into sugar phosphates but increased the pool size of ATP and other nucleotide triphosphates present in the roots. The specific activities of P32 in ATP in Al-roots and controls were similar indicating that the rates of ATP synthesis were similar in each case.

Preliminary investigations showed that aluminum citrate inhibited both purified yeast hexokinase and phosphorylated sugar production by crude mitochondrial extracts from barley roots.

The results suggest that there are 2 reactions between aluminum and phosphorus: 1) at the cell surface or in the free space which results in the fixation of phosphate by an adsorption-precipitation reaction; 2) within the cell, possibly within the mitochondria, which results in a marked decrease in the rate of sugar phosphorylation, probably effected by the inhibition of hexokinase. The evidence does not support the view that aluminum enhances phosphorus uptake or that the superficial reaction between aluminum and phosphate interferes with phosphorus transport.

Full text

PDF
172

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BANDURSKI R. S., AXELROD B. The chromatographic identification of some biologically important phosphate esters. J Biol Chem. 1951 Nov;193(1):405–410. [PubMed] [Google Scholar]
  2. Foote B. D., Hanson J. B. Ion Uptake by Soybean Root Tissue Depleted of Calcium by Ethylenediaminetetraacetic Acid. Plant Physiol. 1964 May;39(3):450–460. doi: 10.1104/pp.39.3.450. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. OGUR M., ROSEN G. The nucleic acids of plant tissues; the extraction and estimation of desoxypentose nucleic acid and pentose nucleic acid. Arch Biochem. 1950 Feb;25(2):262–276. [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES