Abstract
Methionine can induce more than a 100% increase in ethylene production by apple tissue slices. The increased amount of ethylene derives from carbons 3 and 4 of methionine. Only post-climacteric fruit tissues are stimulated by methionine, and stimulation is optimum after 8 months' storage. Copper chelators such as sodium diethyl dithiocarbamate and cuprizone very markedly inhibit ethylene production by tissue slices. Carbon monoxide does not effect ethylene production by the slices. These data suggest that the mechanism for the conversion of methionine to ethylene, in apple tissues, is similar to the previously described model system for producing ethylene from methionine and reduced copper. Therefore, it is suggested that one of the ethylene-forming systems in tissues derives from methionine and proceeds to ethylene via a copper enzyme system which may be a peroxidase.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Biale J. B., Young R. E., Olmstead A. J. Fruit Respiration and Ethylene Production. Plant Physiol. 1954 Mar;29(2):168–174. doi: 10.1104/pp.29.2.168. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Burg S. P., Burg E. A. Role of Ethylene in Fruit Ripening. Plant Physiol. 1962 Mar;37(2):179–189. doi: 10.1104/pp.37.2.179. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SPENCER M. S. Ethylene metabolism in tomato fruit. I. Relationship of ethylene evolution to fruit respiration and ripening. Can J Biochem Physiol. 1956 Nov;34(6):1261–1270. [PubMed] [Google Scholar]