Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1967 Feb;42(2):294–298. doi: 10.1104/pp.42.2.294

Relationship of Cell Sap pH to Organic Acid Change During Ion Uptake 1

A J Hiatt 1
PMCID: PMC1086527  PMID: 16656506

Abstract

Excised roots of barley (Hordeum vulgare, var. Campana) were incubated in KCl, K2SO4, CaCl2, and NaCl solutions at concentrations of 10−5 to 10−2 n. Changes in substrate solution pH, cell sap pH, and organic acid content of the roots were related to differences in cation and anion absorption. The pH of expressed sap of roots increased when cations were absorbed in excess of anions and decreased when anions were absorbed in excess of cations. The pH of the cell sap shifted in response to imbalances in cation and anion uptake in salt solutions as dilute as 10−5 n. Changes in cell sap pH were detectable within 15 minutes after the roots were placed in 10−3 n K2SO4. Organic acid changes in the roots were proportional to expressed sap pH changes induced by unbalanced ion uptake. Changes in organic acid content in response to differential cation and anion uptake appear to be associated with the low-salt component of ion uptake.

Full text

PDF
296

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Epstein E., Hagen C. E. A KINETIC STUDY OF THE ABSORPTION OF ALKALI CATIONS BY BARLEY ROOTS. Plant Physiol. 1952 Jul;27(3):457–474. doi: 10.1104/pp.27.3.457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Jacobson L. Carbon Dioxide Fixation and Ion Absorption in Barley Roots. Plant Physiol. 1955 May;30(3):264–269. doi: 10.1104/pp.30.3.264. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Jacobson L., Ordin L. Organic Acid Metabolism and Ion Absorption in Roots. Plant Physiol. 1954 Jan;29(1):70–75. doi: 10.1104/pp.29.1.70. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES