Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1967 Jun;42(6):774–780. doi: 10.1104/pp.42.6.774

Control of Chlorophyll Production in Rapidly Greening Bean Leaves 1

Merrill Gassman 1,2, Lawrence Bogorad 1,3
PMCID: PMC1086620  PMID: 16656570

Abstract

The possible involvement of nucleic acid and protein synthesis in light-regulated chlorophyll formation by rapidly greening leaves has been studied.

Removing leaves from illumination during the phase of rapid greening results in a reduction in the rate of pigment synthesis; cessation occurs within 2 to 4 hours. Etiolated leaves which exhibit a lag in pigment synthesis when first placed in the light do not show another lag after a 4 hour interruption of illumination during the phase of rapid greening.

Actinomycin D, chloramphenicol, and puromycin inhibit chlorophyll synthesis when applied before or during the phase of rapid greening. Application of δ-amino-levulinic acid partially relieves the inhibition by chloramphenicol.

It is suggested that light regulates chlorophyll synthesis by controlling the availability of δ-aminolevulinic acid, possibly by mediating the formation of an enzyme of δ-aminolevulinate synthesis. This process may result from gene activation or derepression; the involvement of RNA synthesis of some sort is suggested by the inhibitory effect of actinomycin D on chlorophyll production by rapidly greening leaves.

Full text

PDF
777

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arnon D. I. COPPER ENZYMES IN ISOLATED CHLOROPLASTS. POLYPHENOLOXIDASE IN BETA VULGARIS. Plant Physiol. 1949 Jan;24(1):1–15. doi: 10.1104/pp.24.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BULL M. J., LASCELLES J. The association of protein synthesis with formation of pigments in some photosynthetic bacteria. Biochem J. 1963 Apr;87:15–28. doi: 10.1042/bj0870015. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. BURNHAM B. F., PIERCE W. S., WILLIAMS K. R., BOYER M. H., KIRBY C. K. delta-aminolaevulate dehydratase from Rhodopseudomonas spheroides. Biochem J. 1963 Jun;87:462–472. doi: 10.1042/bj0870462. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bogorad L., Jacobson A. B. Inhibition of greening of etiolated leaves by antinomycin D. Biochem Biophys Res Commun. 1964;14:113–117. doi: 10.1016/0006-291x(64)90239-6. [DOI] [PubMed] [Google Scholar]
  5. Brock T. D. CHLORAMPHENICOL. Bacteriol Rev. 1961 Mar;25(1):32–48. doi: 10.1128/br.25.1.32-48.1961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Carell E. F., Price C. A. Porphyrins and the iron requirement for chlorophyll formation in Euglena. Plant Physiol. 1965 Jan;40(1):1–7. doi: 10.1104/pp.40.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. DE DEKEN-GRENSON M. Grana formation and synthesis of chloroplastic proteins induced by light in portions of etiolated leaves. Biochim Biophys Acta. 1954 Jun;14(2):203–211. doi: 10.1016/0006-3002(54)90159-6. [DOI] [PubMed] [Google Scholar]
  8. Frank S. R. THE EFFECTIVENESS OF THE SPECTRUM IN CHLOROPHYLL FORMATION. J Gen Physiol. 1946 Jan 20;29(3):157–179. [PMC free article] [PubMed] [Google Scholar]
  9. HIGUCHI M., GOTO K., FUJIMOTO M., NAMIKI O., KIKUCHI G. EFFECT OF INHIBITORS OF NUCLEIC ACID AND PROTEIN SYNTHESES ON THE INDUCED SYNTHESES OF BACTERIOCHLOROPHYLL AND DELTA-AMINOLEVULINIC ACID SYNTHETASE BY RHODOPSEUDOMONAS SPHEROIDES. Biochim Biophys Acta. 1965 Jan 11;95:94–110. doi: 10.1016/0005-2787(65)90215-7. [DOI] [PubMed] [Google Scholar]
  10. KOSKI V. M. Chlorophyll formation in seedlings of Zea mays L. Arch Biochem. 1950 Dec;29(2):339–343. [PubMed] [Google Scholar]
  11. KOSKI V. M., FRENCH C. S., SMITH J. H. C. The action spectrum for the transformation of protochlorophyll to chlorophyll a in normal and albino corn seedlings. Arch Biochem Biophys. 1951 Mar;31(1):1–17. doi: 10.1016/0003-9861(51)90178-6. [DOI] [PubMed] [Google Scholar]
  12. Kirk J. T., Allen R. L. Dependence of chloroplast pigment synthesis on protein synthesis: effect of actidione. Biochem Biophys Res Commun. 1965 Dec 21;21(6):523–530. doi: 10.1016/0006-291x(65)90516-4. [DOI] [PubMed] [Google Scholar]
  13. Klein S., Bogorad L. FINE STRUCTURAL CHANGES IN PROPLASTIDS DURING PHOTODESTRUCTION OF PIGMENTS. J Cell Biol. 1964 Aug 1;22(2):443–451. doi: 10.1083/jcb.22.2.443. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Klein S., Bryan G., Bogorad L. EARLY STAGES IN THE DEVELOPMENT OF PLASTID FINE STRUCTURE IN RED AND FAR-RED LIGHT. J Cell Biol. 1964 Aug 1;22(2):433–442. doi: 10.1083/jcb.22.2.433. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. LASCELLES J. Adaptation to form bacteriochlorophyll in Rhodopseudomonas spheroides: changes in activity of enzymes concerned in pyrrole synthesis. Biochem J. 1959 Jul;72:508–518. doi: 10.1042/bj0720508. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. LASCELLES J. The synthesis of enzymes concerned in bacteriochlorophyll formation in growing cultures of Rhodopseudomonas spheroides. J Gen Microbiol. 1960 Dec;23:487–498. doi: 10.1099/00221287-23-3-487. [DOI] [PubMed] [Google Scholar]
  17. LASCELLES J. The synthesis of porphyrins and bacteriochlorophyll by cell suspensions of Rhodopseudomonas spheroides. Biochem J. 1956 Jan;62(1):78–93. doi: 10.1042/bj0620078. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. MCCALLA D. R., ALLAN R. K. EFFECT OF ACTINOMYCIN D ON EUGLENA CHLOROPLAST FORMATION. Nature. 1964 Feb 1;201:504–505. doi: 10.1038/201504a0. [DOI] [PubMed] [Google Scholar]
  19. MEGO J. L., JAGENDORF A. T. Effect of light on growth of Black Valentine bean plastids. Biochim Biophys Acta. 1961 Oct 28;53:237–254. doi: 10.1016/0006-3002(61)90437-1. [DOI] [PubMed] [Google Scholar]
  20. Marcus A. Photocontrol of Formation of Red Kidney Bean Leaf Triphosphopyridine Nucleotide Linked Triosephosphate Dehydrogenase. Plant Physiol. 1960 Jan;35(1):126–128. doi: 10.1104/pp.35.1.126. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Margulies M. M. Effect of Chloramphenicol on Light Dependent Development of Seedlings of Phaseolus vulgaris var. Black Valentine, With Particular Reference to Development of Photosynthetic Activity. Plant Physiol. 1962 Jul;37(4):473–480. doi: 10.1104/pp.37.4.473. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Margulies M. M. Effect of Chloramphenicol on Light-Dependent Synthesis of Proteins and Enzymes of Leaves and Chloroplasts of Phaseolus vulgaris. Plant Physiol. 1964 Jul;39(4):579–585. doi: 10.1104/pp.39.4.579. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Margulies M. M. Relationship Between Red Light Mediated Glyceraldehyde-3-Phosphate Dehydrogenase Formation and Light Dependent Development of Photosynthesis. Plant Physiol. 1965 Jan;40(1):57–61. doi: 10.1104/pp.40.1.57. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. POGO B. T., POGO A. O. DNA DEPENDENCE OF PLASTID DIFFERENTIATION INHIBITION BY ACTINOMYCIN D. J Cell Biol. 1964 Jul;22:296–301. doi: 10.1083/jcb.22.1.296. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Price L., Klein W. H. Red, far-red response & chlorophyll synthesis. Plant Physiol. 1961 Nov;36(6):733–735. doi: 10.1104/pp.36.6.733. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Smith J. H., Benitez A. The Effect of Temperature on the Conversion of Protochlorophyll to Chlorophyll a in Etiolated Barley Leaves. Plant Physiol. 1954 Mar;29(2):135–143. doi: 10.1104/pp.29.2.135. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Spencer D. Protein synthesis by isolated spinach chloroplasts. Arch Biochem Biophys. 1965 Aug;111(2):381–390. doi: 10.1016/0003-9861(65)90200-6. [DOI] [PubMed] [Google Scholar]
  28. WOLFF J. B., PRICE L. Terminal steps of chlorophyll A biosynthesis in higher plants. Arch Biochem Biophys. 1957 Dec;72(2):293–301. doi: 10.1016/0003-9861(57)90205-9. [DOI] [PubMed] [Google Scholar]
  29. Yarmolinsky M. B., Haba G. L. INHIBITION BY PUROMYCIN OF AMINO ACID INCORPORATION INTO PROTEIN. Proc Natl Acad Sci U S A. 1959 Dec;45(12):1721–1729. doi: 10.1073/pnas.45.12.1721. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES