Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1967 Sep;42(9):1187–1190. doi: 10.1104/pp.42.9.1187

Effects of Metabolic Inhibitors on the Rates of CO2 Evolution in Light and in Darkness by Detached Spruce Twigs, Wheat, and Soybean Leaves 1

G Poskuta 1,2, C D Nelson 1,3, G Krotkov 1
PMCID: PMC1086700  PMID: 16656638

Abstract

Detached spruce twigs, wheat and soybean leaves were infiltrated with various metabolic inhibitors, placed in a closed system in CO2-free air and the amounts of CO2 evolved in either light or darkness were determined with an infra-red CO2 analyzer. In light, metabolic inhibitors always greatly suppressed evolution of CO2, the magnitude of suppression varying between 50 to 80% of that without an inhibitor. This depressing effect became less pronounced with increasing oxygen. In darkness, metabolic inhibitors sometimes suppressed and sometimes stimulated CO2 evolution. These observations have been taken as further support for a conclusion made earlier, that evolution of CO2 in light and darkness is not the same process.

Full text

PDF
1189

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Forrester M. L., Krotkov G., Nelson C. D. Effect of Oxygen on Photosynthesis, Photorespiration and Respiration in Detached Leaves. II. Corn and other Monocotyledons. Plant Physiol. 1966 Mar;41(3):428–431. doi: 10.1104/pp.41.3.428. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Forrester M. L., Krotkov G., Nelson C. D. Effect of oxygen on photosynthesis, photorespiration and respiration in detached leaves. I. Soybean. Plant Physiol. 1966 Mar;41(3):422–427. doi: 10.1104/pp.41.3.422. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. HOCH G., OWENS O. V., KOK B. Photosynthesis and respiration. Arch Biochem Biophys. 1963 Apr;101:171–180. doi: 10.1016/0003-9861(63)90547-2. [DOI] [PubMed] [Google Scholar]
  4. Krotkov G. Vacuum Infiltration as a Method for Determining Enzymic Activity in Vivo. Science. 1947 Mar 21;105(2725):318–320. doi: 10.1126/science.105.2725.318-a. [DOI] [PubMed] [Google Scholar]
  5. Walker D. A., Zelitch I. Some Effects of Metabolic Inhibitors, Temperature, & Anaerobic Conditions on Stomatal Movement. Plant Physiol. 1963 Jul;38(4):390–396. doi: 10.1104/pp.38.4.390. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Zelitch I. BIOCHEMICAL CONTROL OF STOMATAL OPENING IN LEAVES. Proc Natl Acad Sci U S A. 1961 Sep;47(9):1423–1433. doi: 10.1073/pnas.47.9.1423. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES