Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1967 Oct;42(10):1321–1328. doi: 10.1104/pp.42.10.1321

Chloroplast Integrity and ATP-Dependent CO2 Fixation in Spinacia oleracea

Emmett J Johnson 1,1, Barbara S Bruff 1,2
PMCID: PMC1086726  PMID: 16656658

Abstract

Washed whole chloroplasts of Spinacia oleracea isolated and assayed in a tris (hydroxymethyl aminomethane)-HCl buffered sucrose solution exhibited low dark CO2 fixing activity, whereas washed whole chloroplasts isolated in the same buffer but assayed in that buffer without sucrose exhibited much greater dark CO2 fixing activity. The lowered activity could be attributed to the impermeability of the chloroplast membrane to ribose-5-phosphate or adenosine triphosphate. The preservation of the integrity of the chloroplast membrane, as reflected by its impermeability to either or both of the abovementioned compounds, was measured by the fixation of 14CO2 into acid-stable products in the presence of ribose-5-phosphate and adenosine triphosphate by the whole chloroplast as compared with fixation by the chloroplast extract. An effect (i.e., apparent resistance to the passage of ribose-5-phosphate or adenosine-5-triphosphate into the chloroplast) similar to, but less pronounced than, that produced by the presence of sucrose in the isolation medium was observed upon the addition of MnCl2 or CaCl2 to the buffered sucrose isolation medium. The addition of KCl enhanced slightly the effect produced by addition of sucrose alone to the isolation medium. The presence of MgCl2 in the isolation medium, however, either caused the chloroplasts to become leaky or more fragile since more of the activity of the carboxylative phase enzymes appeared in the cytoplasm. When a mixture of all of the metal ions was added to the buffered sucrose suspending medium, the chloroplasts exhibited the same response observed with MgCl2 alone. The addition of ethylene diaminetetraacetate or dithiothreitol appeared to alter the permeability of the chloroplast membrane nonspecifically when the assay was conducted in the absence of sucrose. Specific activities (μmoles CO2 fixed/mg chlorophyll × hr) as high as 329.6 have been observed for dark fixation by chloroplasts. The phosphoenolpyruvate carboxylase activity in the chloroplasts was only one-seventh that of ribulose diphosphate carboxylase. The phosphoenolpyruvate carboxylase activity in the cytoplasm was 5 times that of the chloroplasts.

Full text

PDF
1325

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ARNON D. I., ALLEN M. B., WHATLEY F. R. Photosynthesis by isolated chloroplasts. IV. General concept and comparison of three photochemical reactions. Biochim Biophys Acta. 1956 Jun;20(3):449–461. doi: 10.1016/0006-3002(56)90339-0. [DOI] [PubMed] [Google Scholar]
  2. AVRON M. Photophosphorylation by swiss-chard chloroplasts. Biochim Biophys Acta. 1960 May 20;40:257–272. doi: 10.1016/0006-3002(60)91350-0. [DOI] [PubMed] [Google Scholar]
  3. Arnon D. I. COPPER ENZYMES IN ISOLATED CHLOROPLASTS. POLYPHENOLOXIDASE IN BETA VULGARIS. Plant Physiol. 1949 Jan;24(1):1–15. doi: 10.1104/pp.24.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. BASSHAM J. A. PHOTOSYNTHESIS: ENERGETICS AND RELATED TOPICS. Adv Enzymol Relat Areas Mol Biol. 1963;25:39–117. doi: 10.1002/9780470122709.ch2. [DOI] [PubMed] [Google Scholar]
  5. Baldry C. W., Bucke C., Walker D. A. Temperature and photosynthesis. I. Some effects of temperature on carbon dioxide fixation by isolated chloroplasts. Biochim Biophys Acta. 1966 Oct 10;126(2):207–213. doi: 10.1016/0926-6585(66)90056-2. [DOI] [PubMed] [Google Scholar]
  6. Baldry C. W., Walker D. A., Bucke C. Calvin-cycle intermediates in relation to induction phenomena in photosynthetic carbon dioxide fixation by isolated chloroplasts. Biochem J. 1966 Dec;101(3):642–646. doi: 10.1042/bj1010642. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bamberger E. S., Gibbs M. Effect of Phosphorylated Compounds and Inhibitors on CO(2) Fixation by Intact Spinach Chloroplasts. Plant Physiol. 1965 Sep;40(5):919–926. doi: 10.1104/pp.40.5.919. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Bennun A., Avron M. The relation of the light-dependent and light-triggered adenosine triphosphatases to photophosphorylation. Biochim Biophys Acta. 1965 Sep 27;109(1):117–127. doi: 10.1016/0926-6585(65)90096-8. [DOI] [PubMed] [Google Scholar]
  9. Gee R., Joshi G., Bils R. F., Saltman P. Light and Dark CO(2) Fixation by Spinach Leaf Systems. Plant Physiol. 1965 Jan;40(1):89–96. doi: 10.1104/pp.40.1.89. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. HEBER U., WILLENBRINK J. SITES OF SYNTHESIS AND TRANSPORT OF PHOTOSYNTHETIC PRODUCTS WITHIN THE LEAF CELL. Biochim Biophys Acta. 1964 Feb 10;82:313–324. doi: 10.1016/0304-4165(64)90302-2. [DOI] [PubMed] [Google Scholar]
  11. Jensen R. G., Bassham J. A. Photosynthesis by isolated chloroplasts. Proc Natl Acad Sci U S A. 1966 Oct;56(4):1095–1101. doi: 10.1073/pnas.56.4.1095. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. LOSADA M., TREBST A. V., ARNON D. I. Photosynthesis by isolated chloroplasts. XI. Carbon dioxide assimilation in a reconstituted chloroplast system. J Biol Chem. 1960 Mar;235:832–839. [PubMed] [Google Scholar]
  13. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  14. Santarius K. A., Heber U. Changes in the intracellular levels of ATP, ADP, AMP and P1 and regulatory function of the adenylate system in leaf cells during photosynthesis. Biochim Biophys Acta. 1965 May 25;102(1):39–54. doi: 10.1016/0926-6585(65)90201-3. [DOI] [PubMed] [Google Scholar]
  15. WHATLEY F. R., ALLEN M. B., ROSENBERG L. L., CAPINDALE J. B., ARNON D. I. Photosynthesis by isolated chloroplasts. V. Phosphorylation and carbon dioxide fixation by broken chloroplasts. Biochim Biophys Acta. 1956 Jun;20(3):462–468. doi: 10.1016/0006-3002(56)90340-7. [DOI] [PubMed] [Google Scholar]
  16. Walker D. A. Improved rates of carbon dioxide fixation by illuminated chloroplasts. Biochem J. 1964 Sep;92(3):22C–23C. doi: 10.1042/bj0920022c. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES