Abstract
The fungus Neurospora crassa is being used by a number of research groups as a model organism to investigate circadian (daily) rhythmicity. In this review we concentrate on recent work relating to the complexity of the circadian system in this organism. We discuss: the advantages of Neurospora as a model system for clock studies; the frequency (frq), white collar-1 and white collar-2 genes and their roles in rhythmicity; the phenomenon of rhythmicity in null frq mutants and its implications for clock mechanisms; the study of output pathways using clock-controlled genes; other rhythms in fungi; mathematical modelling of the Neurospora circadian system; and the application of new technologies to the study of Neurospora rhythmicity. We conclude that there may be many gene products involved in the clock mechanism, there may be multiple interacting oscillators comprising the clock mechanism, there may be feedback from output pathways onto the oscillator(s) and from the oscillator(s) onto input pathways, and there may be several independent clocks coexisting in one organism. Thus even a relatively simple lower eukaryote can be used to address questions about a complex, networked circadian system.
Full Text
The Full Text of this article is available as a PDF (225.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aronson B. D., Johnson K. A., Dunlap J. C. Circadian clock locus frequency: protein encoded by a single open reading frame defines period length and temperature compensation. Proc Natl Acad Sci U S A. 1994 Aug 2;91(16):7683–7687. doi: 10.1073/pnas.91.16.7683. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Aronson B. D., Johnson K. A., Loros J. J., Dunlap J. C. Negative feedback defining a circadian clock: autoregulation of the clock gene frequency. Science. 1994 Mar 18;263(5153):1578–1584. doi: 10.1126/science.8128244. [DOI] [PubMed] [Google Scholar]
- Aronson B. D., Lindgren K. M., Dunlap J. C., Loros J. J. An efficient method for gene disruption in Neurospora crassa. Mol Gen Genet. 1994 Feb;242(4):490–494. doi: 10.1007/BF00281802. [DOI] [PubMed] [Google Scholar]
- Arpaia G., Carattoli A., Macino G. Light and development regulate the expression of the albino-3 gene in Neurospora crassa. Dev Biol. 1995 Aug;170(2):626–635. doi: 10.1006/dbio.1995.1242. [DOI] [PubMed] [Google Scholar]
- Arpaia G., Loros J. J., Dunlap J. C., Morelli G., Macino G. Light induction of the clock-controlled gene ccg-1 is not transduced through the circadian clock in Neurospora crassa. Mol Gen Genet. 1995 Apr 20;247(2):157–163. doi: 10.1007/BF00705645. [DOI] [PubMed] [Google Scholar]
- Arpaia G., Loros J. J., Dunlap J. C., Morelli G., Macino G. The interplay of light and the circadian clock. Independent dual regulation of clock-controlled gene ccg-2(eas). Plant Physiol. 1993 Aug;102(4):1299–1305. doi: 10.1104/pp.102.4.1299. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ballario P., Talora C., Galli D., Linden H., Macino G. Roles in dimerization and blue light photoresponse of the PAS and LOV domains of Neurospora crassa white collar proteins. Mol Microbiol. 1998 Aug;29(3):719–729. doi: 10.1046/j.1365-2958.1998.00955.x. [DOI] [PubMed] [Google Scholar]
- Bell-Pedersen D., Dunlap J. C., Loros J. J. Distinct cis-acting elements mediate clock, light, and developmental regulation of the Neurospora crassa eas (ccg-2) gene. Mol Cell Biol. 1996 Feb;16(2):513–521. doi: 10.1128/mcb.16.2.513. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bell-Pedersen D., Dunlap J. C., Loros J. J. The Neurospora circadian clock-controlled gene, ccg-2, is allelic to eas and encodes a fungal hydrophobin required for formation of the conidial rodlet layer. Genes Dev. 1992 Dec;6(12A):2382–2394. doi: 10.1101/gad.6.12a.2382. [DOI] [PubMed] [Google Scholar]
- Bell-Pedersen D., Lewis Z. A., Loros J. J., Dunlap J. C. The Neurospora circadian clock regulates a transcription factor that controls rhythmic expression of the output eas(ccg-2) gene. Mol Microbiol. 2001 Aug;41(4):897–909. doi: 10.1046/j.1365-2958.2001.02558.x. [DOI] [PubMed] [Google Scholar]
- Bell-Pedersen D., Shinohara M. L., Loros J. J., Dunlap J. C. Circadian clock-controlled genes isolated from Neurospora crassa are late night- to early morning-specific. Proc Natl Acad Sci U S A. 1996 Nov 12;93(23):13096–13101. doi: 10.1073/pnas.93.23.13096. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bell-Pedersen D. Understanding circadian rhythmicity in Neurospora crassa: from behavior to genes and back again. Fungal Genet Biol. 2000 Feb;29(1):1–18. doi: 10.1006/fgbi.2000.1185. [DOI] [PubMed] [Google Scholar]
- Crosthwaite S. K., Dunlap J. C., Loros J. J. Neurospora wc-1 and wc-2: transcription, photoresponses, and the origins of circadian rhythmicity. Science. 1997 May 2;276(5313):763–769. doi: 10.1126/science.276.5313.763. [DOI] [PubMed] [Google Scholar]
- Crosthwaite S. K., Loros J. J., Dunlap J. C. Light-induced resetting of a circadian clock is mediated by a rapid increase in frequency transcript. Cell. 1995 Jun 30;81(7):1003–1012. doi: 10.1016/s0092-8674(05)80005-4. [DOI] [PubMed] [Google Scholar]
- Degli-Innocenti F., Russo V. E. Isolation of new white collar mutants of Neurospora crassa and studies on their behavior in the blue light-induced formation of protoperithecia. J Bacteriol. 1984 Aug;159(2):757–761. doi: 10.1128/jb.159.2.757-761.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Denault D. L., Loros J. J., Dunlap J. C. WC-2 mediates WC-1-FRQ interaction within the PAS protein-linked circadian feedback loop of Neurospora. EMBO J. 2001 Jan 15;20(1-2):109–117. doi: 10.1093/emboj/20.1.109. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dharmananda S., Feldman J. F. Spatial Distribution of Circadian Clock Phase in Aging Cultures of Neurospora crassa. Plant Physiol. 1979 Jun;63(6):1049–1054. doi: 10.1104/pp.63.6.1049. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dunlap J. C. Genetic analysis of circadian clocks. Annu Rev Physiol. 1993;55:683–728. doi: 10.1146/annurev.ph.55.030193.003343. [DOI] [PubMed] [Google Scholar]
- Dunlap J. C. Molecular bases for circadian clocks. Cell. 1999 Jan 22;96(2):271–290. doi: 10.1016/s0092-8674(00)80566-8. [DOI] [PubMed] [Google Scholar]
- Feldman J. F., Hoyle M. N. Isolation of circadian clock mutants of Neurospora crassa. Genetics. 1973 Dec;75(4):605–613. doi: 10.1093/genetics/75.4.605. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Garceau N. Y., Liu Y., Loros J. J., Dunlap J. C. Alternative initiation of translation and time-specific phosphorylation yield multiple forms of the essential clock protein FREQUENCY. Cell. 1997 May 2;89(3):469–476. doi: 10.1016/s0092-8674(00)80227-5. [DOI] [PubMed] [Google Scholar]
- Gardner G. F., Feldman J. F. Temperature Compensation of Circadian Period Length in Clock Mutants of Neurospora crassa. Plant Physiol. 1981 Dec;68(6):1244–1248. doi: 10.1104/pp.68.6.1244. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Golden Susan S., Ishiura Masahiro, Johnson Carl Hirschie, Kondo Takao. CYANOBACTERIAL CIRCADIAN RHYTHMS. Annu Rev Plant Physiol Plant Mol Biol. 1997 Jun;48(NaN):327–354. doi: 10.1146/annurev.arplant.48.1.327. [DOI] [PubMed] [Google Scholar]
- Gonze D., Leloup J. C., Goldbeter A. Theoretical models for circadian rhythms in Neurospora and Drosophila. C R Acad Sci III. 2000 Jan;323(1):57–67. doi: 10.1016/s0764-4469(00)00111-6. [DOI] [PubMed] [Google Scholar]
- Goodwin B. C. Oscillatory behavior in enzymatic control processes. Adv Enzyme Regul. 1965;3:425–438. doi: 10.1016/0065-2571(65)90067-1. [DOI] [PubMed] [Google Scholar]
- Green R. M., Tobin E. M. Loss of the circadian clock-associated protein 1 in Arabidopsis results in altered clock-regulated gene expression. Proc Natl Acad Sci U S A. 1999 Mar 30;96(7):4176–4179. doi: 10.1073/pnas.96.7.4176. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harris S. D. The duplication cycle in Aspergillus nidulans. Fungal Genet Biol. 1997 Aug;22(1):1–12. doi: 10.1006/fgbi.1997.0990. [DOI] [PubMed] [Google Scholar]
- Ishiura M., Kutsuna S., Aoki S., Iwasaki H., Andersson C. R., Tanabe A., Golden S. S., Johnson C. H., Kondo T. Expression of a gene cluster kaiABC as a circadian feedback process in cyanobacteria. Science. 1998 Sep 4;281(5382):1519–1523. doi: 10.1126/science.281.5382.1519. [DOI] [PubMed] [Google Scholar]
- Iwasaki H., Dunlap J. C. Microbial circadian oscillatory systems in Neurospora and Synechococcus: models for cellular clocks. Curr Opin Microbiol. 2000 Apr;3(2):189–196. doi: 10.1016/s1369-5274(00)00074-6. [DOI] [PubMed] [Google Scholar]
- Kippert F., Hunt P. Ultradian clocks in eukaryotic microbes: from behavioural observation to functional genomics. Bioessays. 2000 Jan;22(1):16–22. doi: 10.1002/(SICI)1521-1878(200001)22:1<16::AID-BIES5>3.0.CO;2-1. [DOI] [PubMed] [Google Scholar]
- Kippert F. The ultradian clocks of eukaryotic microbes: timekeeping devices displaying a homeostasis of the period. Chronobiol Int. 1997 Sep;14(5):469–479. doi: 10.3109/07420529709001469. [DOI] [PubMed] [Google Scholar]
- Kloss B., Price J. L., Saez L., Blau J., Rothenfluh A., Wesley C. S., Young M. W. The Drosophila clock gene double-time encodes a protein closely related to human casein kinase Iepsilon. Cell. 1998 Jul 10;94(1):97–107. doi: 10.1016/s0092-8674(00)81225-8. [DOI] [PubMed] [Google Scholar]
- Lakin-Thomas P. L., Brody S. Circadian rhythms in Neurospora crassa: lipid deficiencies restore robust rhythmicity to null frequency and white-collar mutants. Proc Natl Acad Sci U S A. 2000 Jan 4;97(1):256–261. doi: 10.1073/pnas.97.1.256. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lakin-Thomas P. L., Brody S., Coté G. G. Amplitude model for the effects of mutations and temperature on period and phase resetting of the Neurospora circadian oscillator. J Biol Rhythms. 1991 Winter;6(4):281–297. doi: 10.1177/074873049100600401. [DOI] [PubMed] [Google Scholar]
- Lakin-Thomas P. L. Circadian rhythms: new functions for old clock genes. Trends Genet. 2000 Mar;16(3):135–142. doi: 10.1016/s0168-9525(99)01945-9. [DOI] [PubMed] [Google Scholar]
- Lakin-Thomas P. L., Coté G. G., Brody S. Circadian rhythms in Neurospora crassa: biochemistry and genetics. Crit Rev Microbiol. 1990;17(5):365–416. doi: 10.3109/10408419009114762. [DOI] [PubMed] [Google Scholar]
- Lakin-Thomas P. L., Gooch V. D., Ramsdale M. Rhythms of differentiation and diacylglycerol in Neurospora. Philos Trans R Soc Lond B Biol Sci. 2001 Nov 29;356(1415):1711–1715. doi: 10.1098/rstb.2001.0966. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lakin-Thomas P. L., Johnson C. H. Commentary: molecular and cellular models of circadian systems. J Biol Rhythms. 1999 Dec;14(6):486–489. doi: 10.1177/074873099129001055. [DOI] [PubMed] [Google Scholar]
- Lauter F. R., Russo V. E., Yanofsky C. Developmental and light regulation of eas, the structural gene for the rodlet protein of Neurospora. Genes Dev. 1992 Dec;6(12A):2373–2381. doi: 10.1101/gad.6.12a.2373. [DOI] [PubMed] [Google Scholar]
- Lauter F. R., Yanofsky C. Day/night and circadian rhythm control of con gene expression in Neurospora. Proc Natl Acad Sci U S A. 1993 Sep 1;90(17):8249–8253. doi: 10.1073/pnas.90.17.8249. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lee K., Loros J. J., Dunlap J. C. Interconnected feedback loops in the Neurospora circadian system. Science. 2000 Jul 7;289(5476):107–110. doi: 10.1126/science.289.5476.107. [DOI] [PubMed] [Google Scholar]
- Leloup J. C., Gonze D., Goldbeter A. Limit cycle models for circadian rhythms based on transcriptional regulation in Drosophila and Neurospora. J Biol Rhythms. 1999 Dec;14(6):433–448. doi: 10.1177/074873099129000948. [DOI] [PubMed] [Google Scholar]
- Liu Y., Garceau N. Y., Loros J. J., Dunlap J. C. Thermally regulated translational control of FRQ mediates aspects of temperature responses in the neurospora circadian clock. Cell. 1997 May 2;89(3):477–486. doi: 10.1016/s0092-8674(00)80228-7. [DOI] [PubMed] [Google Scholar]
- Liu Y., Loros J., Dunlap J. C. Phosphorylation of the Neurospora clock protein FREQUENCY determines its degradation rate and strongly influences the period length of the circadian clock. Proc Natl Acad Sci U S A. 2000 Jan 4;97(1):234–239. doi: 10.1073/pnas.97.1.234. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Liu Y., Merrow M., Loros J. J., Dunlap J. C. How temperature changes reset a circadian oscillator. Science. 1998 Aug 7;281(5378):825–829. doi: 10.1126/science.281.5378.825. [DOI] [PubMed] [Google Scholar]
- Loros J. J., Denome S. A., Dunlap J. C. Molecular cloning of genes under control of the circadian clock in Neurospora. Science. 1989 Jan 20;243(4889):385–388. doi: 10.1126/science.2563175. [DOI] [PubMed] [Google Scholar]
- Loros J. J., Dunlap J. C. Neurospora crassa clock-controlled genes are regulated at the level of transcription. Mol Cell Biol. 1991 Jan;11(1):558–563. doi: 10.1128/mcb.11.1.558. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Loros J. J., Feldman J. F. Loss of temperature compensation of circadian period length in the frq-9 mutant of Neurospora crassa. J Biol Rhythms. 1986 Fall;1(3):187–198. doi: 10.1177/074873048600100302. [DOI] [PubMed] [Google Scholar]
- Luo C., Loros J. J., Dunlap J. C. Nuclear localization is required for function of the essential clock protein FRQ. EMBO J. 1998 Aug 10;17(5):1228–1235. doi: 10.1093/emboj/17.5.1228. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Martens C. L., Sargent M. L. Circadian rhythms of nucleic acid metabolism in Neurospora crassa. J Bacteriol. 1974 Mar;117(3):1210–1215. doi: 10.1128/jb.117.3.1210-1215.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McClung C. R., Fox B. A., Dunlap J. C. The Neurospora clock gene frequency shares a sequence element with the Drosophila clock gene period. Nature. 1989 Jun 15;339(6225):558–562. doi: 10.1038/339558a0. [DOI] [PubMed] [Google Scholar]
- Merrow M. W., Garceau N. Y., Dunlap J. C. Dissection of a circadian oscillation into discrete domains. Proc Natl Acad Sci U S A. 1997 Apr 15;94(8):3877–3882. doi: 10.1073/pnas.94.8.3877. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Merrow M., Brunner M., Roenneberg T. Assignment of circadian function for the Neurospora clock gene frequency. Nature. 1999 Jun 10;399(6736):584–586. doi: 10.1038/21190. [DOI] [PubMed] [Google Scholar]
- Merrow M., Franchi L., Dragovic Z., Görl M., Johnson J., Brunner M., Macino G., Roenneberg T. Circadian regulation of the light input pathway in Neurospora crassa. EMBO J. 2001 Feb 1;20(3):307–315. doi: 10.1093/emboj/20.3.307. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Millar A. J., Carré I. A., Strayer C. A., Chua N. H., Kay S. A. Circadian clock mutants in Arabidopsis identified by luciferase imaging. Science. 1995 Feb 24;267(5201):1161–1163. doi: 10.1126/science.7855595. [DOI] [PubMed] [Google Scholar]
- Morgan L. W., Feldman J. F., Bell-Pedersen D. Genetic interactions between clock mutations in Neurospora crassa: can they help us to understand complexity? Philos Trans R Soc Lond B Biol Sci. 2001 Nov 29;356(1415):1717–1724. doi: 10.1098/rstb.2001.0967. [DOI] [PMC free article] [PubMed] [Google Scholar]
- PITTENDRIGH C. S. Circadian rhythms and the circadian organization of living systems. Cold Spring Harb Symp Quant Biol. 1960;25:159–184. doi: 10.1101/sqb.1960.025.01.015. [DOI] [PubMed] [Google Scholar]
- Perkins D. D. Neurospora: the organism behind the molecular revolution. Genetics. 1992 Apr;130(4):687–701. doi: 10.1093/genetics/130.4.687. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ramsdale M., Lakin-Thomas P. L. sn-1,2-diacylglycerol levels in the fungus Neurospora crassa display circadian rhythmicity. J Biol Chem. 2000 Sep 8;275(36):27541–27550. doi: 10.1074/jbc.M002911200. [DOI] [PubMed] [Google Scholar]
- Roenneberg T., Merrow M. Circadian systems and metabolism. J Biol Rhythms. 1999 Dec;14(6):449–459. doi: 10.1177/074873099129001019. [DOI] [PubMed] [Google Scholar]
- Roenneberg T., Merrow M. Circadian systems: different levels of complexity. Philos Trans R Soc Lond B Biol Sci. 2001 Nov 29;356(1415):1687–1696. doi: 10.1098/rstb.2001.0969. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Roenneberg T., Merrow M. Molecular circadian oscillators: an alternative hypothesis. J Biol Rhythms. 1998 Apr;13(2):167–179. doi: 10.1177/074873098129000011. [DOI] [PubMed] [Google Scholar]
- Ruoff P., Vinsjevik M., Mohsenzadeh S., Rensing L. The Goodwin model: simulating the effect of cycloheximide and heat shock on the sporulation rhythm of Neurospora crassa. J Theor Biol. 1999 Feb 21;196(4):483–494. doi: 10.1006/jtbi.1998.0846. [DOI] [PubMed] [Google Scholar]
- Ruoff P., Vinsjevik M., Monnerjahn C., Rensing L. The Goodwin model: simulating the effect of light pulses on the circadian sporulation rhythm of Neurospora crassa. J Theor Biol. 2001 Mar 7;209(1):29–42. doi: 10.1006/jtbi.2000.2239. [DOI] [PubMed] [Google Scholar]
- Ruoff P., Vinsjevik M., Monnerjahn C., Rensing L. The Goodwin oscillator: on the importance of degradation reactions in the circadian clock. J Biol Rhythms. 1999 Dec;14(6):469–479. doi: 10.1177/074873099129001037. [DOI] [PubMed] [Google Scholar]
- Schwerdtfeger C., Linden H. Localization and light-dependent phosphorylation of white collar 1 and 2, the two central components of blue light signaling in Neurospora crassa. Eur J Biochem. 2000 Jan;267(2):414–422. doi: 10.1046/j.1432-1327.2000.01016.x. [DOI] [PubMed] [Google Scholar]
- Shinohara M. L., Loros J. J., Dunlap J. C. Glyceraldehyde-3-phosphate dehydrogenase is regulated on a daily basis by the circadian clock. J Biol Chem. 1998 Jan 2;273(1):446–452. doi: 10.1074/jbc.273.1.446. [DOI] [PubMed] [Google Scholar]
- Talora C., Franchi L., Linden H., Ballario P., Macino G. Role of a white collar-1-white collar-2 complex in blue-light signal transduction. EMBO J. 1999 Sep 15;18(18):4961–4968. doi: 10.1093/emboj/18.18.4961. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Taylor B. L., Zhulin I. B. PAS domains: internal sensors of oxygen, redox potential, and light. Microbiol Mol Biol Rev. 1999 Jun;63(2):479–506. doi: 10.1128/mmbr.63.2.479-506.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Welsh D. K., Logothetis D. E., Meister M., Reppert S. M. Individual neurons dissociated from rat suprachiasmatic nucleus express independently phased circadian firing rhythms. Neuron. 1995 Apr;14(4):697–706. doi: 10.1016/0896-6273(95)90214-7. [DOI] [PubMed] [Google Scholar]