Abstract
The causes of the variation between genomes in their guanine (G) and cytosine (C) content is one of the central issues in evolutionary genomics. The thermal adaptation hypothesis conjectures that, as G:C pairs in DNA are more thermally stable than adenonine:thymine pairs, high GC content may he a selective response to high temperature. A compilation of data on genomic GC content and optimal growth temperature for numerous prokaryotes failed to demonstrate the predicted correlation. By contrast, the GC content of Structural RNAs is higher at high temperatures. The issue that we address here is whether more freely evolving sites in exons (i.e. codonic third positions) evolve in the same manner as genomic DNA as a whole, Showing no correlated response, or like structural RNAs showing a strong correlation. The latter pattern would provide strong support for the thermal adaptation hypothesis, as the variation in GC content between orthologous genes is typically most profoundly seen at codon third sites (GC3). Simple analysis of completely sequenced prokaryotic genomes shows that GC3, but not genomic GC, is higher on average in thermophilic species. This demonstrates, if nothing else, that the results from the two measures cannot be presumed to be the same. A proper analysis, however, requires phylogenetic control. Here, therefore, we report the results of a comparative analysis of GC composition and optimal growth temperature for over 100 prokaryotes. Comparative analysis fails to show, in either Archea or Eubacteria, any hint of connection between optimal growth temperature and GC content in the genome as a whole, in protein-coding regions or, more crucially at GC. Conversely, comparable analysis confirms that GC content of structural RNA is strongly correlated with optimal temperature. Against the expectations of the thermal adaptation hypothesis, within prokaryotes GC content in protein-coding genies, even at relatively freely evolving sites, cannot be considered an adaptation to the thermal environment.
Full Text
The Full Text of this article is available as a PDF (104.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bernardi G., Bernardi G. Compositional constraints and genome evolution. J Mol Evol. 1986;24(1-2):1–11. doi: 10.1007/BF02099946. [DOI] [PubMed] [Google Scholar]
- Bernardi G. Isochores and the evolutionary genomics of vertebrates. Gene. 2000 Jan 4;241(1):3–17. doi: 10.1016/s0378-1119(99)00485-0. [DOI] [PubMed] [Google Scholar]
- Bruno W. J., Socci N. D., Halpern A. L. Weighted neighbor joining: a likelihood-based approach to distance-based phylogeny reconstruction. Mol Biol Evol. 2000 Jan;17(1):189–197. doi: 10.1093/oxfordjournals.molbev.a026231. [DOI] [PubMed] [Google Scholar]
- Clay O., Cacciò S., Zoubak S., Mouchiroud D., Bernardi G. Human coding and noncoding DNA: compositional correlations. Mol Phylogenet Evol. 1996 Feb;5(1):2–12. doi: 10.1006/mpev.1996.0002. [DOI] [PubMed] [Google Scholar]
- Galtier N., Lobry J. R. Relationships between genomic G+C content, RNA secondary structures, and optimal growth temperature in prokaryotes. J Mol Evol. 1997 Jun;44(6):632–636. doi: 10.1007/pl00006186. [DOI] [PubMed] [Google Scholar]
- Grayling R. A., Sandman K., Reeve J. N. Histones and chromatin structure in hyperthermophilic Archaea. FEMS Microbiol Rev. 1996 May;18(2-3):203–213. doi: 10.1111/j.1574-6976.1996.tb00237.x. [DOI] [PubMed] [Google Scholar]
- Harvey P. H., Purvis A. Comparative methods for explaining adaptations. Nature. 1991 Jun 20;351(6328):619–624. doi: 10.1038/351619a0. [DOI] [PubMed] [Google Scholar]
- Hughes S., Zelus D., Mouchiroud D. Warm-blooded isochore structure in Nile crocodile and turtle. Mol Biol Evol. 1999 Nov;16(11):1521–1527. doi: 10.1093/oxfordjournals.molbev.a026064. [DOI] [PubMed] [Google Scholar]
- Kagawa Y., Nojima H., Nukiwa N., Ishizuka M., Nakajima T., Yasuhara T., Tanaka T., Oshima T. High guanine plus cytosine content in the third letter of codons of an extreme thermophile. DNA sequence of the isopropylmalate dehydrogenase of Thermus thermophilus. J Biol Chem. 1984 Mar 10;259(5):2956–2960. [PubMed] [Google Scholar]
- Maidak B. L., Cole J. R., Lilburn T. G., Parker C. T., Jr, Saxman P. R., Stredwick J. M., Garrity G. M., Li B., Olsen G. J., Pramanik S. The RDP (Ribosomal Database Project) continues. Nucleic Acids Res. 2000 Jan 1;28(1):173–174. doi: 10.1093/nar/28.1.173. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Muto A., Osawa S. The guanine and cytosine content of genomic DNA and bacterial evolution. Proc Natl Acad Sci U S A. 1987 Jan;84(1):166–169. doi: 10.1073/pnas.84.1.166. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Purvis A., Rambaut A. Comparative analysis by independent contrasts (CAIC): an Apple Macintosh application for analysing comparative data. Comput Appl Biosci. 1995 Jun;11(3):247–251. doi: 10.1093/bioinformatics/11.3.247. [DOI] [PubMed] [Google Scholar]
- Salinas J., Matassi G., Montero L. M., Bernardi G. Compositional compartmentalization and compositional patterns in the nuclear genomes of plants. Nucleic Acids Res. 1988 May 25;16(10):4269–4285. doi: 10.1093/nar/16.10.4269. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wada A., Suyama A. Local stability of DNA and RNA secondary structure and its relation to biological functions. Prog Biophys Mol Biol. 1986;47(2):113–157. doi: 10.1016/0079-6107(86)90012-x. [DOI] [PubMed] [Google Scholar]
- Winter G., Koch G. L., Hartley B. S., Barker D. G. The amino acid sequence of the tyrosyl-tRNA synthetase from Bacillus stearothermophilus. Eur J Biochem. 1983 May 2;132(2):383–387. doi: 10.1111/j.1432-1033.1983.tb07374.x. [DOI] [PubMed] [Google Scholar]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.