Skip to main content
Proceedings of the Royal Society B: Biological Sciences logoLink to Proceedings of the Royal Society B: Biological Sciences
. 2001 Oct 22;268(1481):2123–2130. doi: 10.1098/rspb.2001.1769

Finding the tree of life: matching phylogenetic trees to the fossil record through the 20th century.

M J Benton 1
PMCID: PMC1088856  PMID: 11600076

Abstract

Phylogenies, or evolutionary trees, are fundamental to biology. Systematists have laboured since the time of Darwin to discover the tree of life. Recent developments in systematics, such as cladistics and molecular sequencing, have led practitioners to believe that their phylogenies are more testable now than equivalent efforts from the 1960s or earlier. Whole trees, and nodes within trees, may be assessed for their robustness. However, these quantitative approaches cannot be used to demonstrate that one tree is more likely to be correct than another. Congruence assessments may help. Comparison of a sample of 1000 published trees with an essentially independent standard (dates of origin of groups in geological time) shows that the order of branching has improved slightly, but the disparity between estimated times of origination from phylogeny and stratigraphy has, if anything, become worse. Controlled comparisons of phylogenies of four major groups (Agnatha, Sarcopterygii, Sauria and Mammalia) do not show uniform improvement, or decline, of fit to stratigraphy through the twentieth century. Nor do morphological or molecular trees differ uniformly in their performance.

Full Text

The Full Text of this article is available as a PDF (169.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alroy J., Marshall C. R., Bambach R. K., Bezusko K., Foote M., Fursich F. T., Hansen T. A., Holland S. M., Ivany L. C., Jablonski D. Effects of sampling standardization on estimates of Phanerozoic marine diversification. Proc Natl Acad Sci U S A. 2001 May 15;98(11):6261–6266. doi: 10.1073/pnas.111144698. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ayala F. J., Rzhetsky A., Ayala F. J. Origin of the metazoan phyla: molecular clocks confirm paleontological estimates. Proc Natl Acad Sci U S A. 1998 Jan 20;95(2):606–611. doi: 10.1073/pnas.95.2.606. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Benton M. J. Early origins of modern birds and mammals: molecules vs. morphology. Bioessays. 1999 Dec;21(12):1043–1051. doi: 10.1002/(SICI)1521-1878(199912)22:1<1043::AID-BIES8>3.0.CO;2-B. [DOI] [PubMed] [Google Scholar]
  4. Benton M. J., Hitchin R., Wills M. A. Assessing congruence between cladistic and stratigraphic data. Syst Biol. 1999 Sep;48(3):581–596. doi: 10.1080/106351599260157. [DOI] [PubMed] [Google Scholar]
  5. Benton M. J. Molecular and morphological phylogenies of mammals: congruence with stratigraphic data. Mol Phylogenet Evol. 1998 Jun;9(3):398–407. doi: 10.1006/mpev.1998.0492. [DOI] [PubMed] [Google Scholar]
  6. Benton M. J., Wills M. A., Hitchin R. Quality of the fossil record through time. Nature. 2000 Feb 3;403(6769):534–537. doi: 10.1038/35000558. [DOI] [PubMed] [Google Scholar]
  7. Conway Morris S. The Cambrian "explosion": slow-fuse or megatonnage? Proc Natl Acad Sci U S A. 2000 Apr 25;97(9):4426–4429. doi: 10.1073/pnas.97.9.4426. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cooper A., Penny D. Mass survival of birds across the Cretaceous-Tertiary boundary: molecular evidence. Science. 1997 Feb 21;275(5303):1109–1113. doi: 10.1126/science.275.5303.1109. [DOI] [PubMed] [Google Scholar]
  9. Cutler D. J. Estimating divergence times in the presence of an overdispersed molecular clock. Mol Biol Evol. 2000 Nov;17(11):1647–1660. doi: 10.1093/oxfordjournals.molbev.a026264. [DOI] [PubMed] [Google Scholar]
  10. Gu X. Early metazoan divergence was about 830 million years ago. J Mol Evol. 1998 Sep;47(3):369–371. doi: 10.1007/pl00013150. [DOI] [PubMed] [Google Scholar]
  11. Hedges S. B., Parker P. H., Sibley C. G., Kumar S. Continental breakup and the ordinal diversification of birds and mammals. Nature. 1996 May 16;381(6579):226–229. doi: 10.1038/381226a0. [DOI] [PubMed] [Google Scholar]
  12. Hillis D. M. Biology recapitulates phylogeny. Science. 1997 Apr 11;276(5310):218–219. doi: 10.1126/science.276.5310.218. [DOI] [PubMed] [Google Scholar]
  13. Huelsenbeck J. P., Rannala B. Phylogenetic methods come of age: testing hypotheses in an evolutionary context. Science. 1997 Apr 11;276(5310):227–232. doi: 10.1126/science.276.5310.227. [DOI] [PubMed] [Google Scholar]
  14. Lee M. S. Molecular clock calibrations and metazoan divergence dates. J Mol Evol. 1999 Sep;49(3):385–391. doi: 10.1007/pl00006562. [DOI] [PubMed] [Google Scholar]
  15. Norell M. A., Novacek M. J. The fossil record and evolution: comparing cladistic and paleontologic evidence for vertebrate history. Science. 1992 Mar 27;255(5052):1690–1693. doi: 10.1126/science.255.5052.1690. [DOI] [PubMed] [Google Scholar]
  16. doi: 10.1098/rspb.1997.0123. [DOI] [PMC free article] [Google Scholar]
  17. Pagel M. Inferring the historical patterns of biological evolution. Nature. 1999 Oct 28;401(6756):877–884. doi: 10.1038/44766. [DOI] [PubMed] [Google Scholar]
  18. Purvis A., Hector A. Getting the measure of biodiversity. Nature. 2000 May 11;405(6783):212–219. doi: 10.1038/35012221. [DOI] [PubMed] [Google Scholar]
  19. Sepkoski J. J., Jr Ten years in the library: new data confirm paleontological patterns. Paleobiology. 1993 Winter;19(1):43–51. doi: 10.1017/s0094837300012306. [DOI] [PubMed] [Google Scholar]
  20. Shoshani J. Mammalian phylogeny: comparison of morphological and molecular results. Mol Biol Evol. 1986 May;3(3):222–242. doi: 10.1093/oxfordjournals.molbev.a040389. [DOI] [PubMed] [Google Scholar]
  21. Wagner P. J. Exhaustion of morphologic character states among fossil taxa. Evolution. 2000 Apr;54(2):365–386. doi: 10.1111/j.0014-3820.2000.tb00040.x. [DOI] [PubMed] [Google Scholar]
  22. Wagner P. J., Sidor C. A. Age rank/clade rank metrics--sampling, taxonomy, and the meaning of "stratigraphic consistency". Syst Biol. 2000 Sep;49(3):463–479. doi: 10.1080/10635159950127349. [DOI] [PubMed] [Google Scholar]
  23. Wagner P. J. The quality of the fossil record and the accuracy of phylogenetic inferences about sampling and diversity. Syst Biol. 2000 Mar;49(1):65–86. doi: 10.1080/10635150050207393. [DOI] [PubMed] [Google Scholar]
  24. Wang D. Y., Kumar S., Hedges S. B. Divergence time estimates for the early history of animal phyla and the origin of plants, animals and fungi. Proc Biol Sci. 1999 Jan 22;266(1415):163–171. doi: 10.1098/rspb.1999.0617. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES