Skip to main content
Proceedings of the Royal Society B: Biological Sciences logoLink to Proceedings of the Royal Society B: Biological Sciences
. 2001 Dec 7;268(1484):2435–2443. doi: 10.1098/rspb.2001.1829

A new approach to analysing texture-defined motion.

C P Benton 1, A Johnston 1
PMCID: PMC1088897  PMID: 11747561

Abstract

It has been widely accepted that standard low-level computational approaches to motion processing cannot extract texture-defined motion without applying some pre-processing nonlinearity. This has motivated accounts of motion perception in which luminance- and texture-defined motion are processed by separate mechanisms. Here, we introduce a novel method of image description where motion sequences may be described in terms of their local spatial and temporal gradients. This allows us to assess the local velocity information available to standard low-level motion mechanisms. Our analysis of several texture-motion stimuli shows that the information indicating correct texture-motion velocity and/or direction is present in the raw luminance measures. This raises the possibility that luminance-motion and texture-motion may be processed by the same cortical mechanisms. Our analysis offers a way of looking at texture-motion processing that is, to our knowledge, new and original.

Full Text

The Full Text of this article is available as a PDF (979.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adelson E. H., Bergen J. R. Spatiotemporal energy models for the perception of motion. J Opt Soc Am A. 1985 Feb;2(2):284–299. doi: 10.1364/josaa.2.000284. [DOI] [PubMed] [Google Scholar]
  2. Benton C. P., Johnston A. First-order motion from contrast modulated noise? Vision Res. 1997 Nov;37(22):3073–3078. doi: 10.1016/s0042-6989(97)00174-0. [DOI] [PubMed] [Google Scholar]
  3. Benton C. P., Johnston A., McOwan P. W. Computational modelling of interleaved first- and second-order motion sequences and translating 3f+4f beat patterns. Vision Res. 2000;40(9):1135–1142. doi: 10.1016/s0042-6989(00)00026-2. [DOI] [PubMed] [Google Scholar]
  4. Benton C. P., Johnston A., McOwan P. W., Victor J. D. Computational modeling of non-Fourier motion: further evidence for a single luminance-based mechanism. J Opt Soc Am A Opt Image Sci Vis. 2001 Sep;18(9):2204–2208. doi: 10.1364/josaa.18.002204. [DOI] [PubMed] [Google Scholar]
  5. Braun D., Petersen D., Schönle P., Fahle M. Deficits and recovery of first- and second-order motion perception in patients with unilateral cortical lesions. Eur J Neurosci. 1998 Jun;10(6):2117–2128. doi: 10.1046/j.1460-9568.1998.00224.x. [DOI] [PubMed] [Google Scholar]
  6. Cavanagh P. Attention-based motion perception. Science. 1992 Sep 11;257(5076):1563–1565. doi: 10.1126/science.1523411. [DOI] [PubMed] [Google Scholar]
  7. Cavanagh P., Mather G. Motion: the long and short of it. Spat Vis. 1989;4(2-3):103–129. doi: 10.1163/156856889x00077. [DOI] [PubMed] [Google Scholar]
  8. Chubb C., Sperling G. Drift-balanced random stimuli: a general basis for studying non-Fourier motion perception. J Opt Soc Am A. 1988 Nov;5(11):1986–2007. doi: 10.1364/josaa.5.001986. [DOI] [PubMed] [Google Scholar]
  9. Chubb C., Sperling G. Two motion perception mechanisms revealed through distance-driven reversal of apparent motion. Proc Natl Acad Sci U S A. 1989 Apr;86(8):2985–2989. doi: 10.1073/pnas.86.8.2985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Derrington A. M., Ukkonen O. I. Second-order motion discrimination by feature-tracking. Vision Res. 1999 Apr;39(8):1465–1475. doi: 10.1016/s0042-6989(98)00227-2. [DOI] [PubMed] [Google Scholar]
  11. Greenlee M. W., Smith A. T. Detection and discrimination of first- and second-order motion in patients with unilateral brain damage. J Neurosci. 1997 Jan 15;17(2):804–818. doi: 10.1523/JNEUROSCI.17-02-00804.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. HUBEL D. H., WIESEL T. N. Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. J Physiol. 1962 Jan;160:106–154. doi: 10.1113/jphysiol.1962.sp006837. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Heeger D. J., Simoncelli E. P., Movshon J. A. Computational models of cortical visual processing. Proc Natl Acad Sci U S A. 1996 Jan 23;93(2):623–627. doi: 10.1073/pnas.93.2.623. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hubel D. H., Wiesel T. N. Receptive fields and functional architecture of monkey striate cortex. J Physiol. 1968 Mar;195(1):215–243. doi: 10.1113/jphysiol.1968.sp008455. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Johnston A., Benton C. P., McOwan P. W. Induced motion at texture-defined motion boundaries. Proc Biol Sci. 1999 Dec 7;266(1436):2441–2450. doi: 10.1098/rspb.1999.0944. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Johnston A., Clifford C. W. A unified account of three apparent motion illusions. Vision Res. 1995 Apr;35(8):1109–1123. doi: 10.1016/0042-6989(94)00175-l. [DOI] [PubMed] [Google Scholar]
  17. Johnston A., Clifford C. W. Perceived motion of contrast-modulated gratings: predictions of the multi-channel gradient model and the role of full-wave rectification. Vision Res. 1995 Jun;35(12):1771–1783. doi: 10.1016/0042-6989(94)00258-n. [DOI] [PubMed] [Google Scholar]
  18. Johnston A., McOwan P. W., Buxton H. A computational model of the analysis of some first-order and second-order motion patterns by simple and complex cells. Proc Biol Sci. 1992 Dec 22;250(1329):297–306. doi: 10.1098/rspb.1992.0162. [DOI] [PubMed] [Google Scholar]
  19. Lu Z. L., Sperling G. Attention-generated apparent motion. Nature. 1995 Sep 21;377(6546):237–239. doi: 10.1038/377237a0. [DOI] [PubMed] [Google Scholar]
  20. doi: 10.1098/rspb.1999.0666. [DOI] [PMC free article] [Google Scholar]
  21. Patzwahl D. R., Zanker J. M., Altenmüller E. O. Cortical potentials reflecting motion processing in humans. Vis Neurosci. 1994 Nov-Dec;11(6):1135–1147. doi: 10.1017/s0952523800006945. [DOI] [PubMed] [Google Scholar]
  22. Plant G. T., Laxer K. D., Barbaro N. M., Schiffman J. S., Nakayama K. Impaired visual motion perception in the contralateral hemifield following unilateral posterior cerebral lesions in humans. Brain. 1993 Dec;116(Pt 6):1303–1335. doi: 10.1093/brain/116.6.1303. [DOI] [PubMed] [Google Scholar]
  23. Plant G. T., Nakayama K. The characteristics of residual motion perception in the hemifield contralateral to lateral occipital lesions in humans. Brain. 1993 Dec;116(Pt 6):1337–1353. doi: 10.1093/brain/116.6.1337. [DOI] [PubMed] [Google Scholar]
  24. Seiffert A. E., Cavanagh P. Position displacement, not velocity, is the cue to motion detection of second-order stimuli. Vision Res. 1998 Nov;38(22):3569–3582. doi: 10.1016/s0042-6989(98)00035-2. [DOI] [PubMed] [Google Scholar]
  25. Seiffert A. E., Cavanagh P. Position-based motion perception for color and texture stimuli: effects of contrast and speed. Vision Res. 1999;39(25):4172–4185. doi: 10.1016/s0042-6989(99)00129-7. [DOI] [PubMed] [Google Scholar]
  26. Simoncelli E. P., Heeger D. J. A model of neuronal responses in visual area MT. Vision Res. 1998 Mar;38(5):743–761. doi: 10.1016/s0042-6989(97)00183-1. [DOI] [PubMed] [Google Scholar]
  27. Smith A. T., Greenlee M. W., Singh K. D., Kraemer F. M., Hennig J. The processing of first- and second-order motion in human visual cortex assessed by functional magnetic resonance imaging (fMRI). J Neurosci. 1998 May 15;18(10):3816–3830. doi: 10.1523/JNEUROSCI.18-10-03816.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Ukkonen O. I., Derrington A. M. Motion of contrast-modulated gratings is analysed by different mechanisms at low and at high contrasts. Vision Res. 2000;40(24):3359–3371. doi: 10.1016/s0042-6989(00)00197-8. [DOI] [PubMed] [Google Scholar]
  29. Vaina L. M., Cowey A. Impairment of the perception of second order motion but not first order motion in a patient with unilateral focal brain damage. Proc Biol Sci. 1996 Sep 22;263(1374):1225–1232. doi: 10.1098/rspb.1996.0180. [DOI] [PubMed] [Google Scholar]
  30. Vaina L. M., Cowey A., Kennedy D. Perception of first- and second-order motion: separable neurological mechanisms? Hum Brain Mapp. 1999;7(1):67–77. doi: 10.1002/(SICI)1097-0193(1999)7:1<67::AID-HBM6>3.0.CO;2-K. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Vaina L. M., Makris N., Kennedy D., Cowey A. The selective impairment of the perception of first-order motion by unilateral cortical brain damage. Vis Neurosci. 1998 Mar-Apr;15(2):333–348. doi: 10.1017/s0952523898152082. [DOI] [PubMed] [Google Scholar]
  32. Verri A., Straforini M., Torre V. Computational aspects of motion perception in natural and artificial vision systems. Philos Trans R Soc Lond B Biol Sci. 1992 Sep 29;337(1282):429–443. doi: 10.1098/rstb.1992.0119. [DOI] [PubMed] [Google Scholar]
  33. Victor J. D., Conte M. M. Evoked potential and psychophysical analysis of Fourier and non-Fourier motion mechanisms. Vis Neurosci. 1992 Aug;9(2):105–123. doi: 10.1017/s0952523800009573. [DOI] [PubMed] [Google Scholar]
  34. Watson A. B., Ahumada A. J., Jr Model of human visual-motion sensing. J Opt Soc Am A. 1985 Feb;2(2):322–341. doi: 10.1364/josaa.2.000322. [DOI] [PubMed] [Google Scholar]
  35. van Santen J. P., Sperling G. Elaborated Reichardt detectors. J Opt Soc Am A. 1985 Feb;2(2):300–321. doi: 10.1364/josaa.2.000300. [DOI] [PubMed] [Google Scholar]
  36. van Santen J. P., Sperling G. Temporal covariance model of human motion perception. J Opt Soc Am A. 1984 May;1(5):451–473. doi: 10.1364/josaa.1.000451. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings. Biological sciences / The Royal Society are provided here courtesy of The Royal Society

RESOURCES