Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1978 Sep;62(3):383–386. doi: 10.1104/pp.62.3.383

Nucleoside Diphosphate Sugar-Starch Glucosyl Transferase Activity of wx Starch Granules 1

Oliver E Nelson 1, Prem S Chourey 1,2, Ming Tu Chang 1,3
PMCID: PMC1092131  PMID: 16660522

Abstract

Starch granule preparations from the endosperm tissue of all waxy maize (Zea mays L.) mutants tested have low and approximately equal capability to incorporate glucose from adenosine diphosphate glucose into starch. As the substrate concentration is reduced, however, the activity of waxy preparations relative to nonmutant increases until, at the lowest substrate concentration utilized (0.1 μM), the activity of the waxy preparations is nearly equal to that of the nonmutant preparation. The apparent Km (adenosine diphosphate glucose) for starch granule preparations from wx-C/wx-C/wx-C endosperms was 7.1 × 10−5 M, which is compared to 3 × 10−3 M for preparations from nonwaxy endosperms. Starch granule preparations from three other waxy mutants of independent mutational origin have levels of enzymic activity approximately equal to wx-C at a given substrate concentration giving rise to similar apparent Km estimates. We conclude that there is in maize endosperm starch granules a second starch granule-bound glycosyl transferase, whose presence is revealed when mutation eliminates activity of the more active glucosyl transferase catalyzing the same reaction.

Full text

PDF
385

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akatsuka T., Nelson O. E. Starch granule-bound adenosine diphosphate glucose-starch glucosyltransferases of maize seeds. J Biol Chem. 1966 May 25;241(10):2280–2285. [PubMed] [Google Scholar]
  2. Burr B., Nelson O. E. Maize alpha-glucan phosphorylase. Eur J Biochem. 1975 Aug 15;56(2):539–546. doi: 10.1111/j.1432-1033.1975.tb02260.x. [DOI] [PubMed] [Google Scholar]
  3. FRYDMAN R. B. STARCH SYNTHETASE OF POTATOES AND WAXY MAIZE. Arch Biochem Biophys. 1963 Aug;102:242–248. doi: 10.1016/0003-9861(63)90177-2. [DOI] [PubMed] [Google Scholar]
  4. LELOIR L. F., DE FEKETE M. A., CARDINI C. E. Starch and oligosaccharide synthesis from uridine diphosphate glucose. J Biol Chem. 1961 Mar;236:636–641. [PubMed] [Google Scholar]
  5. Lavintman N., Tandecarz J., Carceller M., Mendiara S., Cardini C. E. Role of uridine diphosphate glucose in the biosynthesis of starch. Mechanism of formation and enlargement of a glucoproteic acceptor. Eur J Biochem. 1974 Dec 16;50(1):145–155. doi: 10.1111/j.1432-1033.1974.tb03882.x. [DOI] [PubMed] [Google Scholar]
  6. NELSON O. E., RINES H. W. The enzymatic deficiency in the waxy mutant of maize. Biochem Biophys Res Commun. 1962 Oct 31;9:297–300. doi: 10.1016/0006-291x(62)90043-8. [DOI] [PubMed] [Google Scholar]
  7. NELSON O. E., TSAI C. Y. GLUCOSE TRANSFER FROM ADENOSINE DIPHOSPHATE-GLUCOSE TO STARCH IN PREPARATIONS OF WAXY SEEDS. Science. 1964 Sep 11;145(3637):1194–1195. doi: 10.1126/science.145.3637.1194. [DOI] [PubMed] [Google Scholar]
  8. Nelson O. E. The WAXY Locus in Maize. II. the Location of the Controlling Element Alleles. Genetics. 1968 Nov;60(3):507–524. doi: 10.1093/genetics/60.3.507. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. RECONDO E., LELOIR L. F. Adenosine diphosphate glucose and starch synthesis. Biochem Biophys Res Commun. 1961 Nov 1;6:85–88. doi: 10.1016/0006-291x(61)90389-8. [DOI] [PubMed] [Google Scholar]
  10. Tsai C. Y., Salamini F., Nelson O. E. Enzymes of carbohydrate metabolism in the developing endosperm of maize. Plant Physiol. 1970 Aug;46(2):299–306. doi: 10.1104/pp.46.2.299. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES