Skip to main content
ACS Pharmacology & Translational Science logoLink to ACS Pharmacology & Translational Science
. 2024 Feb 7;7(3):570–585. doi: 10.1021/acsptsci.3c00325

Functional Roles of Furin in Cardio-Cerebrovascular Diseases

Surasak Wichaiyo †,‡,*, Pimpisid Koonyosying §, Noppawan Phumala Morales
PMCID: PMC10928904  PMID: 38481703

Abstract

graphic file with name pt3c00325_0007.jpg

Furin plays a major role in post-translational modification of several biomolecules, including endogenous hormones, growth factors, and cytokines. Recent reports have demonstrated the association of furin and cardio-cerebrovascular diseases (CVDs) in humans. This review describes the possible pathogenic contribution of furin and its substrates in CVDs. Early-stage hypertension and diabetes mellitus show a negative correlation with furin. A reduction in furin might promote hypertension by decreasing maturation of B-type natriuretic peptide (BNP) or by decreasing shedding of membrane (pro)renin receptor (PRR), which facilitates activation of the renin–angiotensin–aldosterone system (RAAS). In diabetes, furin downregulation potentially leads to insulin resistance by reducing maturation of the insulin receptor. In contrast, the progression of other CVDs is associated with an increase in furin, including dyslipidemia, atherosclerosis, ischemic stroke, myocardial infarction (MI), and heart failure. Upregulation of furin might promote maturation of membrane type 1-matrix metalloproteinase (MT1-MMP), which cleaves low-density lipoprotein receptor (LDLR), contributing to dyslipidemia. In atherosclerosis, elevated levels of furin possibly enhance maturation of several substrates related to inflammation, cell proliferation, and extracellular matrix (ECM) deposition and degradation. Neuronal cell death following ischemic stroke has also been shown to involve furin substrates (e.g., MT1-MMP, hepcidin, and hemojuvelin). Moreover, furin and its substrates, including tumor necrosis factor-α (TNF-α), endothelin-1 (ET-1), and transforming growth factor-β1 (TGF-β1), are capable of mediating inflammation, hypertrophy, and fibrosis in MI and heart failure. Taken together, this evidence provides functional significance of furin in CVDs and might suggest a potential novel therapeutic modality for the management of CVDs.

Keywords: Furin, Proprotein convertase subtilisin/kexin type 3, Protein modification, Cardiovascular diseases


Cardio-cerebrovascular diseases (CVDs) are the leading cause of death globally.1,2 A recent report demonstrated that ischemic heart disease and ischemic stroke ranked as the first and second most common causes of cardiovascular (CV) death, respectively.1 In addition, hypertension, dyslipidemia, and diabetes mellitus are important modifiable risk factors for CVDs.1,2 Current management guidelines for these diseases recommend risk assessment prior to prescribing medications, such as antihypertensive, hypoglycemic, and lipid-lowering agents, together with lifestyle interventions that might help prevent incident CVDs.37 However, there are several limitations of pharmacological approaches, such as adverse drug reactions8 and response variability.9,10 Therefore, identification of novel targets that play a major role in the pathogenesis of CVDs might allow the discovery and development of more effective and safer drugs for the management of CVDs.

Furin plays a major role in post-translational modification of several biomolecules, including endogenous hormones, growth factors, and cytokines.11,12 In addition, furin has been proposed to promote various pathological contexts, including infections, cancers, and neuropsychiatric disorders.1315 At present, evidence suggests the association between furin expression and CVD risk. Therefore, it would be interesting to understand the functional role of furin in CVDs. This review comprehensively describes the significance of furin in cardiac development and the potential mechanisms of how furin and its substrates might contribute to the pathogenesis of CVDs. These data suggest that furin is a feasible target for the development of novel therapeutic agents in the management of CVDs.

Expression and Localization of Furin

Furin is a member of eukaryotic proprotein convertase (PC) family. It is also called proprotein convertase subtilisin/kexin type 3 (PCSK3), given that the PC family has structural similarities to bacterial subtilisin and yeast kexin proteases.13 Furin is expressed by the FES upstream region (FUR) gene on chromosome 15 of humans,16,17 which is regulated by three promoters: P1, P1A, and P1B (Figure 1).18 P1 shares the characteristics of cytokine-activated genes, but P1A and P1B are housekeeping genes.19 The transcription factor CCAAT/enhancer binding protein (C/EBP) β can bind to the promoters and cooperate with cytokines, such as interferon-γ (IFN-γ), transforming growth factor-β (TGF-β), and interleukin (IL)-12, to stimulate furin transcription. Furin is expressed in early development and is involved in the processing of many proteins.20,21 The messenger RNA (mRNA) and protein levels vary depending on the cell type and tissue. High levels of furin are detected in liver, bone marrow, and salivary glands, whereas low levels of furin are observed in muscle cells.

Figure 1.

Figure 1

Furin structure and its localization. Furin is initially expressed as a proprotein (inactive form). The Ct domain (blue) is inserted into the endoplasmic reticulum (ER) as a transmembrane region. The N-terminal signal peptide (black) is removed via autocatalytic cleavage, which reveals the prodomain region (magenta). Then, the prodomain is cleaved via an autoproteolytic process during trafficking from the ER to the trans-Golgi network (TGN). At this stage, the enzymatic activity of furin is increased due to the exposed catalytic domain (blue). Intracellular mature furin is active and promotes maturation of proproteins in the TGN. Moreover, mature active furin is transported from the TGN to the cell membrane. Proteolytic cleavage of the Ct domain (transmembrane region) allows shedding of mature furin into the extracellular space. (Created with BioRender.com)

Following translation, furin is initially presented as a proprotein, which is inactive. The Ct domain of furin proprotein is integrated into the endoplasmic reticulum (ER) and acts as a transmembrane region (Figure 1). Post-translational glycosylation of furin also occurs in the ER. Next, the N-terminal signal peptide is removed via autocatalytic cleavage, which reveals a prodomain region.13,22 At this stage, the catalytic domain is folded correctly.19 Then, the prodomain region is cleaved via an autoproteolytic process during trafficking to the trans-Golgi network (TGN), which increases the enzymatic activity of furin due to the exposed catalytic domain.23 Intracellular mature furin is active and promotes maturation of proproteins in the TGN. Moreover, mature or active furin is transported to the cell membrane via endosomes. Proteolytic cleavage of the transmembrane region (the Ct domain) results in shedding of mature furin into the extracellular space. The protease catalytic triad (Asp, His, and Ser) in the catalytic domain plays a role in endoproteolytic processing of many proproteins, including prohormones, growth factors, receptors, membrane channels, adhesion molecules, collagens, metalloproteinases, coagulation factors, and albumin, among others.24

Furin in Cardiac Development

In developmental biology, furin plays an important function in cardiac development. A lack of furin in various cardiac cell types induces cardiac abnormalities in mice. First, homozygous global furin deletion induces lethality at embryonic day 10–11 due to failure of heart morphogenesis and hemodynamic insufficiency.25 Second, embryonic lethality is observed in cardiac progenitor cell-specific furin deficiency, in association with decreased proliferation and premature differentiation of cardiac progenitor cells, cardiac abnormalities in the outflow tract, and decreased expression in mature bone morphogenetic protein 4 (BMP4),26 which plays a role in embryogenesis, including cardiac development.27 Third, furin deficiency in endothelial cells (ECs) leads to ventricular septal defects and/or valve malformations in embryos, which is associated with decreased levels of mature BMP4 and endothelin-1 (ET-1).28 Newborns from the EC-specific furin knockout colony die shortly after birth.28 Fourth, in the model of furin deletion in differentiated cardiomyocytes, although mice are viable, there is an elongated PR interval,26 indicating abnormal cardiac function. Together, these data support the functional role of furin during embryogenesis, at least via post-translational regulation of BMP4 and ET-1, the key players in CV development.27,29

Pathological Contributions of Furin in Cardio-Cerebrovascular Diseases

In CV medicine, furin and its substrates (Table 1) have been demonstrated to play important physiological and pathological roles, including in hypertension, diabetes mellitus, dyslipidemia, atherosclerosis, atherosclerotic cardiovascular diseases (ASCVDs) mainly ischemic stroke and myocardial infarction (MI), and heart failure.

Table 1. Substrates of Furin and Their Cardiovascular-Associated Functiona.

Substrate Product Function
Pro-BMP4 BMP4 Cardiac development
Pro-BNP BNP Vasodilation, diuresis, natriuresis, inhibition of cardiac remodeling, and fibrosis
Pro-ET-1 ET-1 Cardiac development, vasoconstriction, cardiac remodeling, and fibrosis
PRR Soluble PRR Regulation of blood pressure and sodium–water homeostasis
ENaC Active ENaC Regulation of blood pressure and sodium-water homeostasis
Pro-insulin Insulin Glucose and metabolic regulation
Pro-insulin receptor Insulin receptor Glucose and metabolic regulation
LPL Less active LPL Lipoprotein regulation
Pro-MT1-MMP MT1-MMP LDLR shedding, MMP2 maturation and extracellular matrix degradation, cardiac remodeling, and fibrosis
TGF-β1 precursor Mature TGF-β1 VSMC differentiation, promotion of furin expression on EC, fibroblast differentiation, cardiac remodeling, and fibrosis
Pro-β-NGF β-NGF VSMC survival and migration
TNF-α precursor TNF-α Inflammation
Notch receptor precursor Mature Notch receptor Inflammation
ADAM10 and ADAM17 Active ADAMs Inflammation (via activation of Notch signaling)
Pro-hepcidin Hepcidin Regulation of systemic/cellular iron homeostasis
a

Abbreviations: BMP4 = bone morphogenetic protein-4, BNP = B-type natriuretic peptide, ET-1 = endothelin-1, PRR = (pro)renin receptor, ENaC = epithelial sodium channel, LPL = lipoprotein lipase, MT1-MMP = membrane type 1-matrix metalloproteinase, LDLR = low-density lipoprotein receptor, MMP2 = matrix metalloproteinase 2, TGF-β1 = transforming growth factor-β1, VSMC = vascular smooth muscle cell, EC = endothelial cell, β-NGF = β-nerve growth factor, TNF-α = tumor necrosis factor-α, ADAM = a disintegrin and metalloproteinase domain-containing protein.

Hypertension

The prevalence of hypertension increases with age.30 This non-communicable disease cannot be cured by current medical therapy.31 In humans, many studies have demonstrated the association of decreased furin and hypertension. Lower serum levels of furin are associated with high blood pressure and might help predict an increased risk of hypertension.32 In addition, epigenetic modification by DNA methylation in the promoter region of the FURIN gene (suppressed furin expression) is associated with the risk of hypertension (Table 2).33,34 Moreover, an individual who carries the 1970C > G (rs2071410) or 5604C > G single nucleotide polymorphism (SNP) in the FURIN gene has a significantly lower urinary sodium excretion rate, suggesting decreased furin activity (Table 2),35,36 given that furin substrates are responsible for the regulation of sodium excretion. These G alleles are associated with the risk of hypertension.35,37 Consistently, a genome-wide association study (GWAS) has reported that the rs4702 A variant of the FURIN gene, which results in decreased furin expression, is associated with an increase in systolic blood pressure, diastolic blood pressure, and peripheral vascular resistance.38

Table 2. Evidence Supporting the Roles of Furin in Cardio-Cerebrovascular Diseasesa.

Study models Furin expression/activity Effects Refs
Human
Epigenetic modification by DNA methylation in the promoter region of the FURIN gene - Suppresses furin expression - Increases the risk of hypertension (3334)
- Decreases serum furin - Increases the risk of diabetes mellitus (66)
FURIN gene Decreases furin activity - Increases the risk of hypertension (3536)
1970C > G (rs2071410) or 5604C > G SNP - Increases the risk of transient ischemic attack (95)
rs4702 A SNP Decreases furin expression - Increases the risk of hypertension (38)
SNP on 15q26.1 (rs17514846) Furin upregulation - Associated with hypertriglyceridemia (7576)
- Correlated with CAD risk (96,97)
Clinical study - High baseline plasma furin - Increases the risk of diabetes mellitus and mortality (73)
- Increased plasma furin after acute MI - Associated with risk of recurrent MI or cardiovascular events (9899)
 
In Vivo
β cell-specific furin knockout in mice Decreases furin activity β cell dysfunction and glucose intolerance (67)
Mice treated with homocysteine Hinders furin cleavage site on pro-insulin receptor Insulin resistance (72)
Balloon-induced aortic injury in rats Furin upregulation VSMC proliferation (100)
Ldlr–/– and Apoe–/– mice treated with a furin inhibitor (α-1-PDX) Irreversible inhibition of furin Reduces the size of atherosclerotic lesion and plaque progression (101)
Apoe–/– mice with furin overexpression Furin upregulation Promotes plaque formation (101)
Spontaneous hypertensive rats with MCAO and reperfusion Furin upregulation Contributes to neuronal cell death during MCAO (102)
Rat model of decompensated heart failure Furin upregulation Progression of heart failure (103)
 
In Vitro
β cells deficient in furin Decreases furin activity Reduces cell proliferation and function (67)
FURIN knockdown in EC Decreases furin activity - Reduces monocyte migration (97)
- Decreases ET-1, VCAM-1, MCP-1, and NF-κB expression
EC treated with a furin inhibitor (decanoyl-RVKR-CMK) Decreases furin activity Reduces inflammatory gene expression (101)
Macrophages treated with a furin inhibitor (decanoyl-RVKR-CMK) Decreases furin activity Reduces monocyte migration and inflammatory gene expression (101)
a

Abbreviations: SNP = single nucleotide polymorphism, CAD = coronary artery disease, MI = myocardial infarction, VSMC = vascular smooth muscle cell, Ldlr–/– = low-density lipoprotein receptor knockout, Apoe–/– = apolipoprotein E knockout, MCAO = middle cerebral artery occlusion, EC = endothelial cell, ET-1 = endothelin-1, VCAM-1 = vascular cell adhesion molecule 1, MCP-1 = monocyte chemotactic protein 1, NF-κB = nuclear factor-kappa B.

Alterations in B-type natriuretic peptide (BNP) and (pro)renin receptor (PRR) might contribute to hypertension following furin reduction (Figure 2). Furin plays a role in cleaving pro-BNP to active BNP before it is secreted from cardiac ventricles.39,40 BNP promotes vasodilation, diuresis, and natriuresis, but inhibits cardiac remodeling and fibrosis.4042 These activities compensate for the cardiac function in response to volume overload, myocardial stretch, elevated angiotensin II (ATII) levels, increased sympathetic outflow, and vasoconstriction.4042 The blood-pressure-lowering effect of BNP against ATII has been demonstrated in dogs.43 Therefore, a reduction in furin may decrease mature BNP levels, thus leading to hypertension (Figure 2). Consistently, BNP knockout Dahl salt-sensitive rats present hypertension, in association with left ventricular hypertrophy,44 and abnormal function in the heart (i.e., cardiac stiffness, fibrosis, QT interval prolongation, and thrombosis) and the kidneys (i.e., glomerular damage, proteinuria, and fibrosis).44 The human data revealed that deficiency in BNP activation is observed in the early stage, including pre-hypertension and stage 1 hypertension,45,46 supporting the reports of furin reduction in hypertension. However, BNP levels are increased in the later stages of hypertension,45 suggesting the alteration of furin expression and/or the compensatory role of other enzymes, such as PCSK6 and corin.47 These enzymes also play an essential role in blood pressure control via the activation of atrial natriuretic peptide (ANP).4850

Figure 2.

Figure 2

Possible role of furin in hypertension. A decrease in furin levels might result in lower levels of mature (active) B-type natriuretic peptide (BNP) and a subsequent reduction in diuresis, natriuresis, and vasodilation, which promotes hypertension, particularly at the early stage. Other enzymes, such as proprotein convertase subtilisin/kexin type 6 (PCSK6) and corin, may compensate for BNP and atrial natriuretic peptide (ANP) maturation in controlling blood pressure. In addition, cleavage of membrane (pro)renin receptors (PRR) might be reduced if furin is downregulated. Membrane PRR converts prorenin to active renin, which activates the renin-angiotensin-aldosterone system (RAAS). Moreover, stimulation of membrane PRR promotes mitogen-activated protein kinase (MAPK) signaling, leading to vascular tissue hypertrophy, remodeling, and fibrosis. Therefore, RAAS and MAPK activations due to furin reduction potentially contribute to hypertension. (Created with BioRender.com)

PRR is a receptor for prorenin and renin, which is widely expressed (e.g., in the brain, heart, kidneys, adrenal gland, and pancreas).5154 Binding of prorenin/renin with membrane-bound PRR promotes hypertension, inflammation, tissue remodeling, and fibrosis5154 by activating prorenin (to active renin) and subsequent AT II generation, or by stimulating mitogen-activated protein kinases (MAPKs), including extracellular signal-regulated kinase 1/2 (ERK1/2) signaling, which leads to upregulation of cyclooxygenase-2, TGF-β1, collagen, and fibronectin.5154 Soluble PRR is generated by furin, and it may localize inside the cells or be secreted.5154 Therefore, a reduction in furin levels may retain the intact membrane PRR to mediate pathological processes (Figure 2). Notably, the current evidence suggests that soluble PRR also produces pathobiological functions, including sodium–water retention (via activation of epithelial sodium channel [ENaC]), hypertension (via the local renin–angiotensin–aldosterone system [RAAS]), and heart failure.53,55 However, there are inconsistencies between preclinical and human data. Several animal studies have demonstrated the association between soluble PRR and hypertension.5660 In patients with essential hypertension, serum soluble PRR levels are not associated with blood pressure; rather, soluble PRR levels appear to reflect reduced renal function.61

ENaC also requires activation by furin before it participates in regulating sodium re-absorption and vascular tone.62 A recent systematic review of human studies reported that pharmacological inhibition of ENaC have no statistically or clinically significant blood-pressure-lowering effect,63 indicating that decreased ENaC activity due to furin reduction might not have a significant impact on blood pressure.

Diabetes Mellitus

Diabetes mellitus is characterized by hyperglycemia due to a reduction in insulin secretion and/or insulin resistance.64 In patients with diabetes, serum furin is decreased, relative to individuals with normal plasma glucose levels,65 indicating the association between lower serum furin levels and the risk of pre-diabetes and diabetes.65 Similarly to what is seen in hypertension, a study with 4 years of follow up found that non-diabetic individuals with DNA hypermethylation of the promoter region of the FURIN gene might have an increased risk of diabetes (Table 2).66

Pancreatic β cell dysfunction and insulin resistance might occur if furin is downregulated. Furin is highly expressed in pancreatic islets. Mice with β cell–specific furin knockout are glucose intolerant67,68 and have lower plasma insulin levels, in association with β cell dysfunction, denoted by smaller islets, decreased β cell density, and lower insulin content (Table 2).67 Although furin is capable of mediating the maturation of insulin,69 there are no defects in insulin maturation in mice with β cell–specific furin knockout,67 suggesting the compensatory function of other PCs, such as PC1 and PC2.70 An in vitro study in murine pancreatic β cells suggested that furin deficiency attenuates cell proliferation (Table 2),67 given that furin regulates intracellular machinery that is crucial for β cell growth and survival, including the ATPase proton pump, protein cargo (e.g., secretory granules and lysosomes), enzymes, transporters, and stress-related genes (Figure 3).67 Moreover, the pro-insulin receptor is a furin substrate.68,71 Data from mice have shown that using homocysteine to hinder furin binding to the pro-insulin receptor prevents cleavage of the pro-insulin receptor in peripheral tissues, including muscle, adipose tissue, and, to a lesser extent, the liver; this impaired cleavage promotes insulin resistance (Table 2).72 The less pronounced impairment of pro-insulin receptor cleavage in the liver is supported by observations in mice with liver-specific furin knockout, suggesting a redundant function of other PCs for insulin receptor maturation in this organ.68 Taken together, this evidence supports the association between furin reduction and diabetes (Figure 3).

Figure 3.

Figure 3

Proposed mechanisms for the role of furin in promoting diabetes mellitus. A reduction in furin during diabetes contributes to decreased function of cellular machinery in pancreatic β cells, resulting in β cell dysfunction and death. In peripheral tissues, including skeletal muscle, adipose tissue, and liver, furin downregulation might lead to insulin resistance by decreasing the maturation of insulin receptors. However, there is less pronounced impairment of insulin receptor maturation in the liver, possibly due to a compensatory function from other proprotein convertases (PCs), including proprotein convertase subtilisin/kexin type 6 (PCSK6). (Created with BioRender.com)

In an opposite manner, a study with 21 years of follow up demonstrated that baseline plasma furin levels positively correlate with increased risk of diabetes and mortality in humans (Table 2), indicating the role of furin in diabetes development.73 Although this study suggested that individuals might have elevated plasma furin levels for several years before the onset of diabetes, a potential limitation is measuring furin levels just once at baseline.73 To fully understand this observation, future studies elucidating the fluctuation of furin expression during diabetes progression, together with alterations of other furin substrates, are needed.

Dyslipidemia

Dyslipidemia is one of the most common chronic conditions throughout the world.74 Meta-analyses of GWAS in Caucasian populations have revealed that a SNP on chromosome 15q26.1 (rs17514846), which is located in the FURIN gene, results in furin upregulation, and it is associated with dyslipidemia, particularly hypertriglyceridemia (Table 2).75,76 Triglyceride lipase family members, including lipoprotein lipase (LPL) and endothelial lipase (EL), are furin substrates.77,78 Furin-cleaved LPL and EL are less active in triglyceride catabolism.77,78 However, hypertriglyceridemia following increased furin levels might be due to LPL malfunction, given that EL primarily hydrolyzes phospholipids in high-density lipoprotein cholesterol (HDL-C), contributing to a reduction in HDL-C particle size.7983 LPL is abundantly synthesized by the heart, skeletal muscle, and adipose tissue, then released and anchored at luminal sites of ECs.84 Researchers have demonstrated a significant role of LPL in triglyceride hydrolysis based on the observation of severe hypertriglyceridemia in homozygous global LPL knockout in mice, which leads to postnatal death.84,85 Heterozygous LPL-deficient mice survive but display hypertriglyceridemia.84 Similarly, adult mice (8 weeks old) with cardiac-specific deletion of LPL have increased plasma triglyceride levels and cardiac dysfunction (Figure 4).86

Figure 4.

Figure 4

Potential contribution of furin in dyslipidemia. Increased furin levels may contribute to hypertriglyceridemia, given that furin-cleaved lipoprotein lipase (LPL) is less active in triglyceride catabolism. In addition, the elevated furin levels may activate maturation of membrane type 1-matrix metalloproteinase (MT1-MMP), which mediate the shedding of low-density lipoprotein receptor (LDLR), leading to increased plasma levels of low-density lipoprotein cholesterol (LDL-C). (Created with BioRender.com)

Furin upregulation might also affect low-density lipoprotein cholesterol (LDL-C) levels. There is abundant evidence that LDL-C is a strong etiological factor of atherosclerosis and adverse CV events.8789 LDL-C is taken up by hepatocytes; this uptake is a major mechanism for lowering plasma LDL-C levels. Following binding of LDL-C to the low-density lipoprotein receptor (LDLR) on the surface of hepatocytes, this ligand–receptor complex is internalized to hydrolyze LDL-C.87 Recently, membrane-type 1 matrix metalloproteinase (MT1-MMP) has been demonstrated to play a role in LDLR shedding. MT1-MMP colocalizes with the LDLR in hepatocytes in vitro.90 In addition, mice with liver-specific MT1-MMP deletion have increased LDLR in the liver, but lower plasma levels of soluble LDLR, in association with a reduction in plasma cholesterol levels.90 Given that furin is responsible for the MT1-MMP maturation,91 an increase in furin activity might elevate plasma LDL-C levels by promoting LDLR shedding (Figure 4).90 Although PCSK9 is another furin substrate,92,93 furin-cleaved PCSK9 remains active in LDLR degradation and cholesterol catabolism.94 Therefore, PCSK9 might not be a primary target of furin in promoting dyslipidemia.

Atherosclerosis

Atherosclerosis is a chronic inflammatory disease of the arteries due to plaque development.104 Interestingly, high furin levels are detected within human atherosclerotic plaques, including in the carotid artery, aorta, and femoral artery.105 Consistently, a GWAS revealed that FURIN rs17514846 strongly correlates with CAD risk in humans (Table 2).96 Macrophages from individuals carrying the A/A genotype for rs17514846 (the CAD risk allele) have higher FURIN expression than those carrying the C/C genotype. In addition, ECs collected from individuals carrying the A/A genotype for rs17514846 present furin upregulation, in association with higher circulating levels of monocyte chemotactic protein-1 (MCP-1) and increased thickness of the carotid intima-media.97

Furin is responsible for various pathophysiological processes of atherosclerosis, including lipid metabolism (Figure 4), inflammation, and VSMC proliferation.11 Furin is expressed on ECs, VSMCs, and monocytes/macrophages.101 An in vitro study showed that FURIN knockdown in ECs reduces the secretion of ET-1, a furin substrate vasoactive peptide,106 as well as the expression of vascular cell adhesion molecule 1 (VCAM-1), MCP-1, and nuclear factor-kappa B (NF-κB).97 These alterations are associated with a reduction in monocyte adhesion and trans-endothelial migration (Table 2), suggesting that EC-expressed furin may promote endothelial activation and inflammation (e.g., monocyte/macrophage recruitment) during the progression of atherosclerosis (Figure 5).97 Consistently, researchers found that decanoyl-RVKR-CMK, a competitive furin inhibitor, reduces inflammatory gene expression in tumor necrosis factor-α (TNF-α)-stimulated primary human coronary artery ECs, including VCAM-1, MCP-1, NF-κB, and IL-1β (Table 2).101 Moreover, shear stress flow promotes upregulation of TGF-β1 and furin on bovine aortic ECs in vitro.107 TGF-β1 induces furin expression, whereas furin processes TGF-β1 precursor to an active form during shear flow setting.107 Arterial specimens taken proximal to the aortic arch following carotid arteriovenous shunt formation in rabbits showed that TGF-β1 and furin are co-expressed on ECs.107 Given that mature TGF-β1 promotes inflammation, fibroblast differentiation, and matrix deposition (Figure 5),108 endothelial upregulation of TGF-β1 and furin during disturbed shear stress potentially contributes to atherosclerotic plaque formation, plaque vulnerability, stent restenosis, and intimal hyperplasia.104,109 In addition to ECs, activated platelets are capable of secreting furin, which promotes latent TGF-β1 activation and potentially mediates the progression of atherosclerosis.110,111

Figure 5.

Figure 5

Function of furin in the progression of atherosclerosis. Furin expression is elevated during atherosclerotic progression. In vascular endothelial cells (ECs), furin promotes maturation of endothelin-1 (ET-1), which contributes to vasoconstriction and vascular remodeling. Maturation of transforming growth factor-β1 (TGF-β1) in ECs is also mediated by furin. TGF-β1 stimulates inflammation, fibroblast differentiation and extracellular matrix (ECM) deposition. In addition, TGF-β1 is capable of activating furin expression in ECs. Moreover, furin is secreted by activated platelets, which promotes latent TGF-β1 activation. In vascular smooth muscle cells (VSMCs), furin processes active β-nerve growth factor (β-NGF), which promotes survival and migration of the cells. Maturation of membrane type 1-matrix metalloproteinase (MT1-MMP) in VSMCs and macrophages is mediated by furin. MT1-MMP activates matrix metalloproteinase 2 (MMP2), which regulates cell migration (via stimulation of sphingosine-1 phosphate [S1P]) and ECM degradation. In macrophages, furin also processes the maturation of Notch signaling-related molecules, including Notch receptors, A disintegrin and metalloproteinase domain-containing protein 10 (ADAM10) and ADAM17, which promote inflammation. Moreover, a liver-derived furin substrate, hepcidin, is increased and plays a role in limiting macrophage iron export, which results in macrophage iron accumulation and inflammation. (Created with BioRender.com)

Furin promotes survival and migration of VSMCs by mediating the maturation of β-nerve growth factor (β-NGF).100,112 VSMCs stimulated with platelet-derived growth factor BB (PDGF-BB), a pro-proliferative cytokine and TGF-β1 (a pro-differentiating cytokine) have increased furin activity and β-NGF levels (Figure 5).112 β-NGF promotes in vitro migration of VSMCs in a concentration-dependent manner.112 Moreover, furin is upregulated in proliferating VSMCs following balloon-induced aortic injury in rats,100 suggesting its role in VSMC proliferation (Figure 5). Consistently, furin may convert pro-MT1-MMP to mature MT1-MMP, which further mediates the maturation of matrix metalloproteinase 2 (MMP2) to promote proliferation of TNF-α-stimulated VSMCs through the induction of sphingolipid metabolism (Figure 5).91

In monocytes/macrophages, furin contributes to cell proliferation and migration, but protects against cell apoptosis.96 A furin inhibitor attenuates in vitro monocyte migration and inflammatory cytokine gene expression, including VCAM-1, intercellular adhesion molecule 1 (ICAM-1), MCP-1, and IL-1β in stimulated monocytes/macrophages (Table 2),101 suggesting the role of furin in promoting inflammatory macrophages. A recent study suggested that furin might drive inflammation by activating Notch signaling (Figure 5). This phenomenon includes maturation of Notch receptors,113115 A disintegrin and metalloproteinase domain-containing protein 10 (ADAM10),116 and ADAM17.117 An intracellular precursor of Notch receptors is cleaved by furin before trafficking to the plasma membrane. Upon activation by its ligands, the extracellular domain of Notch receptors is cleaved by ADAMs, and the remaining transmembrane domain is cleaved by γ-secretase, finally releasing the intracellular domain into the cytoplasm.113115 The Notch intracellular domain is capable of translocating to nucleus and promoting the expression of genes, including inflammatory cytokines.113115 An in vitro study revealed that lipopolysaccharide (LPS) induces furin upregulation and Notch activation, in association with the production of inflammatory cytokines in macrophages.118 In atherosclerosis, Notch signaling promotes the inflammatory phenotype of macrophages.119 Moreover, an in vitro study revealed that furin mediates the maturation of MT1-MMP in macrophages, which later activates MMP2 secreted from other cells, including VSMCs (Figure 5).120

The functional significance of furin has been supported by animal models of atherosclerosis. In male LDLR knockout (Ldlr–/–) mice fed a Western diet, α-1-PDX (an irreversible furin inhibitor) reduces the size of the atherosclerotic lesion, macrophage infiltration, MMP2 activity, and collagen accumulation in aortic sinus (Table 2).101 Given that mature MMP2 is an indirect furin substrate91—it plays an important role in extracellular matrix degradation and contributes to a weakened plaque cap101—reduced MMP2 activity following treatment with a furin inhibitor might protect against plaque rupture. There was a similar observation in male apolipoprotein E knockout (Apoe–/–) mice fed a Western diet and subjected to wire-induced endothelial injury of the common carotid artery.101 The authors found that the furin inhibitor reduces the thickness of the intima, macrophage infiltration, TNF-α levels, and the number of VSMCs in the plaque area.101 In contrast, furin overexpression promotes neointimal plaque formation in Apoe–/–mice with a wire injury model of atherosclerosis (Table 2),101 supporting the role of furin in promoting atherosclerotic plaque progression in vivo (Figure 4). However, the role of furin in vivo has been complicated by a recent study demonstrating that an increase in furin might suppress the progression of atherosclerosis.121 Female Apoe–/– mice fed a high-fat diet and with furin overexpression have enhanced macrophage autophagy, attenuated growth of intra-aortic plaques, and reduced plaque vulnerability.121 In addition, aortic tissues from five patients who underwent the Bentall procedure showed increased furin levels and autophagic markers in the plaque.121 Whether this controversial observation is a result of sex difference requires further research.

Moreover, hepcidin, a central iron regulator, has been shown to promote atherosclerosis. Prohepcidin is cleaved by furin (to active hepcidin) before being secreted by hepatocytes.122124 Hepcidin limits iron absorption by enterocytes and reduces iron recycling by macrophages.125 Mice with hepcidin and LDLR knockout (Hamp–/–, Ldlr–/–) present a reduction in macrophage iron, an aortic macrophage inflammatory phenotype, and aortic lipid accumulation.126,127 Therefore, it has been proposed that increased hepcidin levels (e.g., due to furin upregulation) attenuate iron mobilization from macrophages. The iron accumulation in macrophages promotes atherogenesis, including oxidative stress and inflammation (Figure 5).126128 Consistently, serum hepcidin levels are associated with atherosclerosis in postmenopausal women.128

Ischemic Stroke

To emphasize rapid interventions, which help prevent neuronal loss during ischemic stroke, the phrase “time is brain” is widely used.129 Nevertheless, the success rate for complete re-canalization following intravenous thrombolytic therapy is less than 50%, suggesting the need for novel therapeutic agents.130 A genetic study reported that the CG/GG genotypes of the FURIN rs2071410 SNP are associated with ∼50% increased risk of transient ischemic attack (TIA), compared with the homozygous CC genotype (Table 2).95 This SNP potentially contributes to a reduction in furin activity and an increase in hypertension,35 a strong associated risk factor of TIA.131 In stroke, however, GWAS meta-analyses have revealed that FURIN is one of the putative causal genes.132 This observation is supported by a study in spontaneous hypertensive rats with middle cerebral artery occlusion (MCAO) and reperfusion that demonstrated upregulation and co-localization of furin and MT1-MMP (the activators of MMP2) in ischemic cells (Table 2).102 In addition, MMP2 and MMP9 activity in the nucleus is increased in the ischemic hemisphere.102 In this model, the authors suggested that ischemia/reperfusion injury induces oxidative DNA damage. The increase in intranuclear MMPs disrupts the DNA repair process, which contributes to cell death (Figure 6).102

Figure 6.

Figure 6

Mechanisms responsible for the pathogenic role of furin in ischemic stroke, myocardial infarction, and heart failure. After ischemic stroke, the increase in furin promotes maturation of membrane type 1-matrix metalloproteinase (MT1-MMP), which activates matrix metalloproteinase 2 (MMP2) in ischemic cells. MMP2 attenuates DNA repair due to oxidative damage following ischemic/reperfusion in the brain, leading to neuronal cell death. Hepcidin and hemojuvelin, which regulate iron levels, are also elevated, and thus contribute to iron accumulation and inflammation in the ischemic brain. After acute myocardial infarction and in heart failure, furin may contribute to cardiac remodeling by processing the precursors of several substrates, including (1) inflammatory mediators, such as tumor necrosis factor-α (TNF-α) and interferon-γ (IFN-γ); (2) factors that promote fibrosis, such as transforming growth factor-β1 (TGF-β1) and MMP2; and (3) hypertrophic factors, such as endothelin-1 (ET-1), platelet-derived growth factor (PDGF), and insulin-like growth factor-1 (IGF-1), which result in cell death and impaired contractility. Moreover, elevation of B-type natriuretic peptide (BNP) due to furin upregulation might partially compensate for cardiac function. (Created with BioRender.com)

Another murine MCAO model showed that expression of furin substrates, including hepcidin122,123 and hemojuvelin,133,134 is increased in the ischemic brain.135 Given that hepcidin is upregulated due to iron overload and inflammation,128 this pathological process in the brain might contribute to neuronal damage during ischemia-reperfusion. Consistently, the hepcidin level is significantly elevated, in association with IL-6 upregulation and iron accumulation, in the ischemic brain following MCAO in rats (Figure 6).136 The elevated serum hepcidin levels, in association with serum iron profiles and IL-6 levels, are also detected in childhood-onset ischemic stroke, which emphasizes the pathogenic contribution of furin and hepcidin in mediating iron overload and inflammation in ischemic stroke.137

Moreover, researchers suggest that hemojuvelin might act as a prognostic marker of acute ischemic stroke, given that patients with acute ischemic stroke have increased brain and plasma levels of hemojuvelin.135 This protein acts as a dietary iron sensor and hepcidin activator.138 Mice with hemojuvelin deficiency present a smaller infarct area and lower levels of apoptotic proteins, including cleaved caspase-3,135 evidence that again supports the role of iron overload in ischemic stroke. Notably, the evidence also indicates that furin is involved in the maturation of several thrombogenic factors, including von Willebrand factor,139,140 clotting factor VIII,141,142 and clotting factor IX.143 Additional studies are required to understand the association between furin and these factors in cardio-cerebrovascular thrombosis.

Myocardial Infarction

In a similar manner to ischemic stroke, the phrase “time is muscle” reflects the need for an early initiation of revascularization following acute MI.129,144 Recent evidence indicates that plasma furin levels in patients after acute MI are strongly associated with the risk of recurrent nonfatal MI alone98 or recurrent CV events (i.e., a composite of all-cause mortality, hospitalization for heart failure, and recurrent MI) (Table 2).99 In addition, furin might act as a better prognostic indicator than BNP and troponin I.99 Moreover, bioinformatic analysis revealed that furin may contribute to cardiac remodeling after acute MI by processing the precursors of several substrates, including (1) TNF-α and IFN-γ, which drives inflammation; (2) TGF-β1 and MMP2 for extracellular matrix remodeling and fibrosis; and (3) ET-1, PDGF, and insulin-like growth factor-1 that promote hypertrophy, subsequently leading to cell death and impaired contractility (Figure 6).145 Therefore, furin inhibition has been proposed as a potential cardioprotective strategy after MI.145

Notably, furin-mediated generation of active BNP is increased in a rat model of MI induced by coronary artery ligation,146 supporting the increase in furin and the compensatory role of BNP (Figure 6). In patients with MI, plasma BNP increases up to 60-fold within 24 h after the infarction, and the levels decrease gradually.147,148 A second peak might be detected approximately 5 days later, which is reflective of cardiac remodeling.147,148 Similarly to an increase in furin, an increase in BNP during MI is associated with all-cause mortality and major adverse cardiovascular events (MACEs), which is a composite endpoint of all death, any MI, and any revascularization.149,150

Heart Failure

Given that heart failure represents the final outcome of various heart diseases,151 its pathological mechanisms are multifactorial.152 These include inflammation, oxidative stress, mitochondrial dysfunction, abnormal calcium handling, and endothelial dysfunction, which lead to cardiac remodeling, hypertrophy, and fibrosis.152,153 In a rat model of decompensated heart failure, the authors noted upregulation of furin in the left ventricle (Table 2), which potentially contributes to the progression of heart failure (Figure 6).103 In addition, there is elevated BNP protein and furin in a canine model of early stage heart failure, in association with collagen deposition in left atria and ventricle.154

In patients with acute decompensated heart failure and chronic heart failure, furin activity is increased due to myocardial stress, which contributes to the elevated levels of BNP to compensate for cardiac function.39 Consistently, several furin substrates have been shown to contribute to the pathogenesis of heart failure (Figure 5), including inflammatory (TNF-α), remodeling/fibrosis (TGF-β1 and MMP2), and hypertrophic (soluble PRR-mediated AT II, BNP, and ET-1) factors, supporting the role of furin in this setting.53,55,155157

Conclusions

The observations regarding the association between furin and CVDs in humans have captured the attention of biomedical scientists to understand the potential mechanisms of how this proprotein-converting enzyme contributes to CVDs. Based on the available data, furin shows a positive correlation with the progression of most CVDs, including dyslipidemia, atherosclerosis, ASCVD (i.e., ischemic stroke and MI), and heart failure. The pathological function of elevated furin and its substrates is supported by direct and indirect preclinical data. In clinical practice, treatment of CVDs requires polypharmacy, which leads to poor compliance and potential adverse reactions due to drug interactions. Therefore, targeting furin might be an interesting treatment option, particularly for atherosclerosis and ASCVD, given that it could simultaneously attenuate the activity of several pathogenic substrates. At present, several furin inhibitors, including small molecules158161 and peptides,101,162164 have been developed, but their clinical implications remain inconclusive. Furin inhibitor α-1-PDX recently demonstrated in vivo benefits in atherosclerosis,101 which supports the therapeutic significance of targeting furin. Given that several PCs show some redundant or complementary function, selective furin inhibitors might have an acceptable safety profile.48 For example, PCSK6 has 70% structural homology with furin, and it plays an essential role in blood pressure control via the activation of ANP4850 and BNP47 in cardiomyocytes. In addition, other PCSKs, including PCSK6, appear to compensate for pro-insulin receptor processing in the absence of furin in the liver.68 Therefore, targeting furin might not dramatically worsen comorbid hypertension and diabetes, although a reduction in furin is associated with the risk of these diseases. Additional studies would provide better understanding for mechanistic insight into the functional roles of furin in CVDs or whether furin inhibitors produce significant side effects by increasing blood pressure and plasma glucose levels.

The authors declare no competing financial interest.

References

  1. Vaduganathan M.; Mensah G. A.; Turco J. V.; Fuster V.; Roth G. A. The Global Burden of Cardiovascular Diseases and Risk: A Compass for Future Health. J. Am. Coll. Cardiol. 2022, 80 (25), 2361–2371. 10.1016/j.jacc.2022.11.005. [DOI] [PubMed] [Google Scholar]
  2. Dagenais G. R.; Leong D. P.; Rangarajan S.; Lanas F.; Lopez-Jaramillo P.; Gupta R.; Diaz R.; Avezum A.; Oliveira G. B. F.; Wielgosz A.; Parambath S. R.; Mony P.; Alhabib K. F.; Temizhan A.; Ismail N.; Chifamba J.; Yeates K.; Khatib R.; Rahman O.; Zatonska K.; Kazmi K.; Wei L.; Zhu J.; Rosengren A.; Vijayakumar K.; Kaur M.; Mohan V.; Yusufali A.; Kelishadi R.; Teo K. K.; Joseph P.; Yusuf S. Variations in common diseases, hospital admissions, and deaths in middle-aged adults in 21 countries from five continents (PURE): a prospective cohort study. Lancet 2020, 395 (10226), 785–794. 10.1016/S0140-6736(19)32007-0. [DOI] [PubMed] [Google Scholar]
  3. Unger T.; Borghi C.; Charchar F.; Khan N. A.; Poulter N. R.; Prabhakaran D.; Ramirez A.; Schlaich M.; Stergiou G. S.; Tomaszewski M.; Wainford R. D.; Williams B.; Schutte A. E. 2020 International Society of Hypertension Global Hypertension Practice Guidelines. Hypertension 2020, 75 (6), 1334–1357. 10.1161/hypertensionaha.120.15026. [DOI] [PubMed] [Google Scholar]
  4. Handelsman Y.; Jellinger P. S.; Guerin C. K.; Bloomgarden Z. T.; Brinton E. A.; Budoff M. J.; Davidson M. H.; Einhorn D.; Fazio S.; Fonseca V. A.; Garber A. J.; Grunberger G.; Krauss R. M.; Mechanick J. I.; Rosenblit P. D.; Smith D. A.; Wyne K. L. Consensus Statement by the American Association of Clinical Endocrinologists and American College of Endocrinology on the Management of Dyslipidemia and Prevention of Cardiovascular Disease Algorithm - 2020 Executive Summary. Endocr. Pract. 2020, 26 (10), 1196–1224. 10.4158/CS-2020-0490. [DOI] [PubMed] [Google Scholar]
  5. ElSayed N. A.; Aleppo G.; Aroda V. R.; Bannuru R. R.; Brown F. M.; Bruemmer D.; Collins B. S.; Das S. R.; Hilliard M. E.; Isaacs D.; Johnson E. L.; Kahan S.; Khunti K.; Kosiborod M.; Leon J.; Lyons S. K.; Perry M. L.; Prahalad P.; Pratley R. E.; Seley J. J.; Stanton R. C.; Gabbay R. A. 10. Cardiovascular Disease and Risk Management: Standards of Care in Diabetes-2023. Diabetes Care 2023, 46 (Suppl 1), S158–S190. 10.2337/dc23-S010. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Byrne R. A.; Rossello X.; Coughlan J. J.; Barbato E.; Berry C.; Chieffo A.; Claeys M. J.; Dan G. A.; Dweck M. R.; Galbraith M.; Gilard M.; Hinterbuchner L.; Jankowska E. A.; Juni P.; Kimura T.; Kunadian V.; Leosdottir M.; Lorusso R.; Pedretti R. F. E.; Rigopoulos A. G.; Rubini Gimenez M.; Thiele H.; Vranckx P.; Wassmann S.; Wenger N. K.; Ibanez B.; Group E. S. C. S. D.; et al. 2023 ESC Guidelines for the management of acute coronary syndromes. Eur. Heart J. 2023, 44, 3720–3826. 10.1093/eurheartj/ehad191. [DOI] [PubMed] [Google Scholar]
  7. Kleindorfer D. O.; Towfighi A.; Chaturvedi S.; Cockroft K. M.; Gutierrez J.; Lombardi-Hill D.; Kamel H.; Kernan W. N.; Kittner S. J.; Leira E. C.; Lennon O.; Meschia J. F.; Nguyen T. N.; Pollak P. M.; Santangeli P.; Sharrief A. Z.; Smith S. C. Jr.; Turan T. N.; Williams L. S. 2021 Guideline for the Prevention of Stroke in Patients With Stroke and Transient Ischemic Attack: A Guideline From the American Heart Association/American Stroke Association. Stroke 2021, 52 (7), e364-e467 10.1161/STR.0000000000000375. [DOI] [PubMed] [Google Scholar]
  8. Kovacevic M.; Vezmar Kovacevic S.; Radovanovic S.; Stevanovic P.; Miljkovic B. Adverse drug reactions caused by drug-drug interactions in cardiovascular disease patients: introduction of a simple prediction tool using electronic screening database items. Curr. Med. Res. Opin. 2019, 35 (11), 1873–1883. 10.1080/03007995.2019.1647021. [DOI] [PubMed] [Google Scholar]
  9. El Desoky E. S.; Derendorf H.; Klotz U. Variability in response to cardiovascular drugs. Curr. Clin. Pharmacol. 2006, 1 (1), 35–46. 10.2174/157488406775268273. [DOI] [PubMed] [Google Scholar]
  10. De T.; Park C. S.; Perera M. A. Cardiovascular Pharmacogenomics: Does It Matter If You’re Black or White?. Annu. Rev. Pharmacol. Toxicol. 2019, 59, 577–603. 10.1146/annurev-pharmtox-010818-021154. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Ren K.; Jiang T.; Zheng X. L.; Zhao G. J. Proprotein convertase furin/PCSK3 and atherosclerosis: New insights and potential therapeutic targets. Atherosclerosis 2017, 262, 163–170. 10.1016/j.atherosclerosis.2017.04.005. [DOI] [PubMed] [Google Scholar]
  12. Artenstein A. W.; Opal S. M. Proprotein convertases in health and disease. N Engl J. Med. 2011, 365 (26), 2507–2518. 10.1056/NEJMra1106700. [DOI] [PubMed] [Google Scholar]
  13. Braun E.; Sauter D. Furin-mediated protein processing in infectious diseases and cancer. Clin. Transl. Immunol. 2019, 8 (8), e1073 10.1002/cti2.1073. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Thomas G. Furin at the cutting edge: from protein traffic to embryogenesis and disease. Nat. Rev. Mol. Cell Biol. 2002, 3 (10), 753–766. 10.1038/nrm934. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Zhang Y.; Gao X.; Bai X.; Yao S.; Chang Y. Z.; Gao G. The emerging role of furin in neurodegenerative and neuropsychiatric diseases. Transl. Neurodegener. 2022, 11 (1), 39. 10.1186/s40035-022-00313-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Steiner D. F.; Cunningham D.; Spigelman L.; Aten B. Insulin biosynthesis: evidence for a precursor. Science 1967, 157 (3789), 697–700. 10.1126/science.157.3789.697. [DOI] [PubMed] [Google Scholar]
  17. Roebroek A. J.; Schalken J. A.; Leunissen J. A.; Onnekink C.; Bloemers H. P.; Van de Ven W. J. Evolutionary conserved close linkage of the c-fes/fps proto-oncogene and genetic sequences encoding a receptor-like protein. EMBO J. 1986, 5 (9), 2197–2202. 10.1002/j.1460-2075.1986.tb04484.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Ayoubi T. A.; Creemers J. W.; Roebroek A. J.; Van de Ven W. J. Expression of the dibasic proprotein processing enzyme furin is directed by multiple promoters. J. Biol. Chem. 1994, 269 (12), 9298–9303. 10.1016/S0021-9258(17)37107-7. [DOI] [PubMed] [Google Scholar]
  19. Shinde U.; Inouye M. Intramolecular chaperones: polypeptide extensions that modulate protein folding. Semin. Cell Dev. Biol. 2000, 11 (1), 35–44. 10.1006/scdb.1999.0349. [DOI] [PubMed] [Google Scholar]
  20. Lindskog C. The potential clinical impact of the tissue-based map of the human proteome. Expert Rev. Proteomics 2015, 12 (3), 213–215. 10.1586/14789450.2015.1040771. [DOI] [PubMed] [Google Scholar]
  21. Uhlen M.; Fagerberg L.; Hallstrom B. M.; Lindskog C.; Oksvold P.; Mardinoglu A.; Sivertsson A.; Kampf C.; Sjostedt E.; Asplund A.; Olsson I.; Edlund K.; Lundberg E.; Navani S.; Szigyarto C. A.; Odeberg J.; Djureinovic D.; Takanen J. O.; Hober S.; Alm T.; Edqvist P. H.; Berling H.; Tegel H.; Mulder J.; Rockberg J.; Nilsson P.; Schwenk J. M.; Hamsten M.; von Feilitzen K.; Forsberg M.; Persson L.; Johansson F.; Zwahlen M.; von Heijne G.; Nielsen J.; Ponten F. Proteomics. Tissue-based map of the human proteome. Science 2015, 347 (6220), 1260419. 10.1126/science.1260419. [DOI] [PubMed] [Google Scholar]
  22. Anderson E. D.; VanSlyke J. K.; Thulin C. D.; Jean F.; Thomas G. Activation of the furin endoprotease is a multiple-step process: requirements for acidification and internal propeptide cleavage. EMBO J. 1997, 16 (7), 1508–1518. 10.1093/emboj/16.7.1508. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Dahms S. O.; Arciniega M.; Steinmetzer T.; Huber R.; Than M. E. Structure of the unliganded form of the proprotein convertase furin suggests activation by a substrate-induced mechanism. Proc. Natl. Acad. Sci. U. S. A. 2016, 113 (40), 11196–11201. 10.1073/pnas.1613630113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Tian S.; Huang Q.; Fang Y.; Wu J. FurinDB: A database of 20-residue furin cleavage site motifs, substrates and their associated drugs. Int. J. Mol. Sci. 2011, 12 (2), 1060–1065. 10.3390/ijms12021060. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Roebroek A. J.; Umans L.; Pauli I. G.; Robertson E. J.; van Leuven F.; Van de Ven W. J.; Constam D. B. Failure of ventral closure and axial rotation in embryos lacking the proprotein convertase Furin. Development 1998, 125 (24), 4863–4876. 10.1242/dev.125.24.4863. [DOI] [PubMed] [Google Scholar]
  26. Dupays L.; Towers N.; Wood S.; David A.; Stuckey D. J.; Mohun T. Furin, a transcriptional target of NKX2–5, has an essential role in heart development and function. PLoS One 2019, 14 (3), e0212992 10.1371/journal.pone.0212992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. McCulley D. J.; Kang J. O.; Martin J. F.; Black B. L. BMP4 is required in the anterior heart field and its derivatives for endocardial cushion remodeling, outflow tract septation, and semilunar valve development. Dev. Dyn. 2008, 237 (11), 3200–3209. 10.1002/dvdy.21743. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Kim W.; Essalmani R.; Szumska D.; Creemers J. W.; Roebroek A. J.; D’Orleans-Juste P.; Bhattacharya S.; Seidah N. G.; Prat A. Loss of endothelial furin leads to cardiac malformation and early postnatal death. Mol. Cell. Biol. 2012, 32 (17), 3382–3391. 10.1128/MCB.06331-11. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Kurihara H.; Kurihara Y.; Maemura K.; Yazaki Y. The role of endothelin-1 in cardiovascular development. Ann. N.Y. Acad. Sci. 1997, 811, 168–176. 10.1111/j.1749-6632.1997.tb51999.x. [DOI] [PubMed] [Google Scholar]
  30. Lloyd-Jones D. M.; Evans J. C.; Levy D. Hypertension in adults across the age spectrum: current outcomes and control in the community. JAMA 2005, 294 (4), 466–472. 10.1001/jama.294.4.466. [DOI] [PubMed] [Google Scholar]
  31. Carey R. M.; Wright J. T. Jr.; Taler S. J.; Whelton P. K. Guideline-Driven Management of Hypertension: An Evidence-Based Update. Circ. Res. 2021, 128 (7), 827–846. 10.1161/circresaha.121.318083. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. He Y.; Ren L.; Zhang Q.; Zhang M.; Shi J.; Hu W.; Peng H.; Zhang Y. Serum furin as a biomarker of high blood pressure: findings from a longitudinal study in Chinese adults. Hypertens. Res. 2019, 42 (11), 1808–1815. 10.1038/s41440-019-0295-6. [DOI] [PubMed] [Google Scholar]
  33. Ma S. Q.; Zhu J. H.; Wu L.; He Y.; Ren L. Y.; Shen B.; Yu J.; Zhang R. Y.; Li J.; Zhang M. Z.; Peng H. FURIN promoter methylation predicts the risk of incident hypertension: A prospective analysis of the gusu cohort. Cardiol. Plus 2021, 6, 56–64. 10.4103/2470-7511.312596. [DOI] [Google Scholar]
  34. Huidobro C.; Urdinguio R. G.; Rodriguez R. M.; Mangas C.; Calvanese V.; Martinez-Camblor P.; Ferrero C.; Parra-Blanco A.; Rodrigo L.; Obaya A. J.; Suarez-Fernandez L.; Astudillo A.; Hernando H.; Ballestar E.; Fernandez A. F.; Fraga M. F. A DNA methylation signature associated with aberrant promoter DNA hypermethylation of DNMT3B in human colorectal cancer. Eur. J. Cancer 2012, 48 (14), 2270–2281. 10.1016/j.ejca.2011.12.019. [DOI] [PubMed] [Google Scholar]
  35. Li N.; Luo W.; Juhong Z.; Yang J.; Wang H.; Zhou L.; Chang J. Associations between genetic variations in the FURIN gene and hypertension. BMC Med. Genet. 2010, 11, 124. 10.1186/1471-2350-11-124. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Zhang J.; Li N. Evidence for genetic variations in the FURIN gene contributing to hypertension. Int. J. Cardiol. 2011, 152, S78–S79. 10.1016/j.ijcard.2011.08.730. [DOI] [Google Scholar]
  37. Ganesh S. K.; Tragante V.; Guo W.; Guo Y.; Lanktree M. B.; Smith E. N.; Johnson T.; Castillo B. A.; Barnard J.; Baumert J.; Chang Y.-P. C.; Elbers C. C.; Farrall M.; Fischer M. E.; Franceschini N.; Gaunt T. R.; Gho J. M.I.H.; Gieger C.; Gong Y.; Isaacs A.; Kleber M. E.; Leach I. M.; McDonough C. W.; Meijs M. F.L.; Mellander O.; Molony C. M.; Nolte I. M.; Padmanabhan S.; Price T. S.; Rajagopalan R.; Shaffer J.; Shah S.; Shen H.; Soranzo N.; van der Most P. J.; Van Iperen E. P.A.; Van Setten J. A.; Vonk J. M.; Zhang L.; Beitelshees A. L.; Berenson G. S.; Bhatt D. L.; Boer J. M.A.; Boerwinkle E.; Burkley B.; Burt A.; Chakravarti A.; Chen W.; Cooper-DeHoff R. M.; Curtis S. P.; Dreisbach A.; Duggan D.; Ehret G. B.; Fabsitz R. R.; Fornage M.; Fox E.; Furlong C. E.; Gansevoort R. T.; Hofker M. H.; Hovingh G. K.; Kirkland S. A.; Kottke-Marchant K.; Kutlar A.; LaCroix A. Z.; Langaee T. Y.; Li Y. R.; Lin H.; Liu K.; Maiwald S.; Malik R.; Murugesan G.; Newton-Cheh C.; O’Connell J. R.; Onland-Moret N. C.; Ouwehand W. H.; Palmas W.; Penninx B. W.; Pepine C. J.; Pettinger M.; Polak J. F.; Ramachandran V. S.; Ranchalis J.; Redline S.; Ridker P. M.; Rose L. M.; Scharnag H.; Schork N. J.; Shimbo D.; Shuldiner A. R.; Srinivasan S. R.; Stolk R. P.; Taylor H. A.; Thorand B.; Trip M. D.; van Duijn C. M.; Verschuren W. M.; Wijmenga C.; Winkelmann B. R.; Wyatt S.; Young J. H.; Boehm B. O.; Caulfield M. J.; Chasman D. I.; Davidson K. W.; Doevendans P. A.; FitzGerald G. A.; Gums J. G.; Hakonarson H.; Hillege H. L.; Illig T.; Jarvik G. P.; Johnson J. A.; Kastelein J. J.P.; Koenig W.; Marz W.; Mitchell B. D.; Murray S. S.; Oldehinkel A. J.; Rader D. J.; Reilly M. P.; Reiner A. P.; Schadt E. E.; Silverstein R. L.; Snieder H.; Stanton A. V.; Uitterlinden A. G.; van der Harst P.; van der Schouw Y. T.; Samani N. J.; Johnson A. D.; Munroe P. B.; de Bakker P. I.W.; Zhu X.; Levy D.; Keating B. J.; Asselbergs F. W. Loci influencing blood pressure identified using a cardiovascular gene-centric array. Hum. Mol. Genet. 2013, 22 (8), 1663–1678. 10.1093/hmg/dds555. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Turpeinen H.; Seppala I.; Lyytikainen L. P.; Raitoharju E.; Hutri-Kahonen N.; Levula M.; Oksala N.; Waldenberger M.; Klopp N.; Illig T.; Mononen N.; Laaksonen R.; Raitakari O.; Kahonen M.; Lehtimaki T.; Pesu M. A genome-wide expression quantitative trait loci analysis of proprotein convertase subtilisin/kexin enzymes identifies a novel regulatory gene variant for FURIN expression and blood pressure. Hum. Genet. 2015, 134 (6), 627–636. 10.1007/s00439-015-1546-5. [DOI] [PubMed] [Google Scholar]
  39. Vodovar N.; Seronde M.-F.; Laribi S.; Gayat E.; Lassus J.; Boukef R.; Nouira S.; Manivet P.; Samuel J.-L.; Logeart D.; Ishihara S.; Cohen Solal A.; Januzzi J. L.; Richards A. M.; Launay J.-M.; Mebazaa A. Post-translational modifications enhance NT-proBNP and BNP production in acute decompensated heart failure. Eur. Heart J. 2014, 35 (48), 3434–3441. 10.1093/eurheartj/ehu314. [DOI] [PubMed] [Google Scholar]
  40. Daniels L. B.; Maisel A. S. Natriuretic peptides. J. Am. Coll. Cardiol. 2007, 50 (25), 2357–2368. 10.1016/j.jacc.2007.09.021. [DOI] [PubMed] [Google Scholar]
  41. Lee N. S.; Daniels L. B. Current Understanding of the Compensatory Actions of Cardiac Natriuretic Peptides in Cardiac Failure: A Clinical Perspective. Card. Fail Rev. 2016, 2 (1), 14–19. 10.15420/cfr.2016:4:2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Volpe M. Natriuretic peptides and cardio-renal disease. Int. J. Cardiol. 2014, 176 (3), 630–639. 10.1016/j.ijcard.2014.08.032. [DOI] [PubMed] [Google Scholar]
  43. Cataliotti A.; Chen H. H.; Schirger J. A.; Martin F. L.; Boerrigter G.; Costello-Boerrigter L. C.; James K. D.; Polowy K.; Miller M. A.; Malkar N. B.; Bailey K. R.; Burnett J. C. Jr. Chronic actions of a novel oral B-type natriuretic peptide conjugate in normal dogs and acute actions in angiotensin II-mediated hypertension. Circulation 2008, 118 (17), 1729–1736. 10.1161/circulationaha.107.759241. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Holditch S. J.; Schreiber C. A.; Nini R.; Tonne J. M.; Peng K. W.; Geurts A.; Jacob H. J.; Burnett J. C.; Cataliotti A.; Ikeda Y. B-Type Natriuretic Peptide Deletion Leads to Progressive Hypertension, Associated Organ Damage, and Reduced Survival: Novel Model for Human Hypertension. Hypertension 2015, 66 (1), 199–210. 10.1161/hypertensionaha.115.05610. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Belluardo P.; Cataliotti A.; Bonaiuto L.; Giuffre E.; Maugeri E.; Noto P.; Orlando G.; Raspa G.; Piazza B.; Babuin L.; Chen H. H.; Martin F. L.; McKie P. M.; Heublein D. M.; Burnett J. C. Jr.; Malatino L. S. Lack of activation of molecular forms of the BNP system in human grade 1 hypertension and relationship to cardiac hypertrophy. Am. J. Physiol. Heart Circ. Physiol. 2006, 291 (4), H1529–1535. 10.1152/ajpheart.00107.2006. [DOI] [PubMed] [Google Scholar]
  46. Macheret F.; Heublein D.; Costello-Boerrigter L. C.; Boerrigter G.; McKie P.; Bellavia D.; Mangiafico S.; Ikeda Y.; Bailey K.; Scott C. G.; Sandberg S.; Chen H. H.; Malatino L.; Redfield M. M.; Rodeheffer R.; Burnett J. Jr.; Cataliotti A. Human hypertension is characterized by a lack of activation of the antihypertensive cardiac hormones ANP and BNP. J. Am. Coll. Cardiol. 2012, 60 (16), 1558–1565. 10.1016/j.jacc.2012.05.049. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Fu S.; Ping P.; Zhu Q.; Ye P.; Luo L. Brain Natriuretic Peptide and Its Biochemical, Analytical, and Clinical Issues in Heart Failure: A Narrative Review. Front. Physiol. 2018, 9, 692. 10.3389/fphys.2018.00692. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Seidah N. G.; Sadr M. S.; Chretien M.; Mbikay M. The multifaceted proprotein convertases: their unique, redundant, complementary, and opposite functions. J. Biol. Chem. 2013, 288 (30), 21473–21481. 10.1074/jbc.R113.481549. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Volpe M.; Rubattu S. Novel Insights Into the Mechanisms Regulating Pro-Atrial Natriuretic Peptide Cleavage in the Heart and Blood Pressure Regulation: Proprotein Convertase Subtilisin/Kexin 6 Is the Corin Activating Enzyme. Circ. Res. 2016, 118 (2), 196–198. 10.1161/circresaha.115.307875. [DOI] [PubMed] [Google Scholar]
  50. Chen S.; Cao P.; Dong N.; Peng J.; Zhang C.; Wang H.; Zhou T.; Yang J.; Zhang Y.; Martelli E. E.; Naga Prasad S. V.; Miller R. E.; Malfait A. M.; Zhou Y.; Wu Q. PCSK6-mediated Corin activation is essential for normal blood pressure. Nat. Med. 2015, 21 (9), 1048–1053. 10.1038/nm.3920. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Nguyen G.; Muller D. N. The biology of the (pro)renin receptor. J. Am. Soc. Nephrol. 2010, 21 (1), 18–23. 10.1681/ASN.2009030300. [DOI] [PubMed] [Google Scholar]
  52. Cousin C.; Bracquart D.; Contrepas A.; Corvol P.; Muller L.; Nguyen G. Soluble form of the (pro)renin receptor generated by intracellular cleavage by furin is secreted in plasma. Hypertension 2009, 53 (6), 1077–1082. 10.1161/hypertensionaha.108.127258. [DOI] [PubMed] [Google Scholar]
  53. Wang B.; Jie H.; Wang S.; Dong B.; Zou Y. The role of (pro)renin receptor and its soluble form in cardiovascular diseases. Front. Cardiovasc. Med. 2023, 10, 1086603. 10.3389/fcvm.2023.1086603. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Sun Y.; Danser A. H. J.; Lu X. (Pro)renin receptor as a therapeutic target for the treatment of cardiovascular diseases?. Pharmacol. Res. 2017, 125, 48–56. 10.1016/j.phrs.2017.05.016. [DOI] [PubMed] [Google Scholar]
  55. Qin M.; Xu C.; Yu J. The Soluble (Pro)Renin Receptor in Health and Diseases: Foe or Friend?. J. Pharmacol. Exp. Ther. 2021, 378 (3), 251–261. 10.1124/jpet.121.000576. [DOI] [PubMed] [Google Scholar]
  56. Gatineau E.; Gong M. C.; Yiannikouris F. Soluble Prorenin Receptor Increases Blood Pressure in High Fat-Fed Male Mice. Hypertension 2019, 74 (4), 1014–1020. 10.1161/hypertensionaha.119.12906. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Wang F.; Chen Y.; Zou C. J.; Luo R.; Yang T. Mutagenesis of the Cleavage Site of Pro Renin Receptor Abrogates Angiotensin II-Induced Hypertension in Mice. Hypertension 2021, 78 (1), 115–127. 10.1161/hypertensionaha.121.16770. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Feng Y.; Peng K.; Luo R.; Wang F.; Yang T. Site-1 Protease-Derived Soluble (Pro)Renin Receptor Contributes to Angiotensin II-Induced Hypertension in Mice. Hypertension 2021, 77 (2), 405–416. 10.1161/hypertensionaha.120.15100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Ramkumar N.; Stuart D.; Peterson C. S.; Hu C.; Wheatley W.; Min Cho J.; Symons J. D.; Kohan D. E. Loss of Soluble (Pro)renin Receptor Attenuates Angiotensin-II Induced Hypertension and Renal Injury. Circ. Res. 2021, 129 (1), 50–62. 10.1161/circresaha.120.317532. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Saigo S.; Kino T.; Uchida K.; Sugawara T.; Chen L.; Sugiyama M.; Azushima K.; Wakui H.; Tamura K.; Ishigami T. Blood Pressure Elevation of Tubular Specific (P)RR Transgenic Mice and Lethal Tubular Degeneration due to Possible Intracellular Interactions between (P)RR and Alternative Renin Products. Int. J. Mol. Sci. 2022, 23 (1), 302. 10.3390/ijms23010302. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Morimoto S.; Ando T.; Niiyama M.; Seki Y.; Yoshida N.; Watanabe D.; Kawakami-Mori F.; Kobori H.; Nishiyama A.; Ichihara A. Serum soluble (pro)renin receptor levels in patients with essential hypertension. Hypertens. Res. 2014, 37 (7), 642–648. 10.1038/hr.2014.46. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Sheng S.; Carattino M. D.; Bruns J. B.; Hughey R. P.; Kleyman T. R. Furin cleavage activates the epithelial Na+ channel by relieving Na+ self-inhibition. Am. J. Physiol. Renal Physiol. 2006, 290 (6), F1488–1496. 10.1152/ajprenal.00439.2005. [DOI] [PubMed] [Google Scholar]
  63. Heran B. S.; Chen J. M.; Wang J. J.; Wright J. M. Blood pressure lowering efficacy of potassium-sparing diuretics (that block the epithelial sodium channel) for primary hypertension. Cochrane Database Syst. Rev. 2012, 11, CD008167 10.1002/14651858.CD008167.pub3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  64. ElSayed N. A.; Aleppo G.; Aroda V. R.; Bannuru R. R.; Brown F. M.; Bruemmer D.; Collins B. S.; Gaglia J. L.; Hilliard M. E.; Isaacs D.; Johnson E. L.; Kahan S.; Khunti K.; Leon J.; Lyons S. K.; Perry M. L.; Prahalad P.; Pratley R. E.; Seley J. J.; Stanton R. C.; Gabbay R. A. 2. Classification and Diagnosis of Diabetes: Standards of Care in Diabetes-2023. Diabetes Care 2023, 46 (Suppl 1), S19–S40. 10.2337/dc23-S002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. He Y.; Zhu H.; Zhang M.; Li J.; Ma S.; Lu Y.; Chen L.; Zhang M.; Peng H. Association Between Serum Furin and Fasting Glucose: A Cross-Sectional Study in Chinese Adults. Front. Endocrinol. (Lausanne) 2022, 12, 781890. 10.3389/fendo.2021.781890. [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. He Y.; Li Y.; Zhang J.; Chen L.; Li J.; Zhang M.; Zhang Q.; Lu Y.; Jiang J.; Zhang X.; Hu J.; Ding Y.; Zhang M.; Peng H. FURIN Promoter Methylation Predicts the Risk of Incident Diabetes: A Prospective Analysis in the Gusu Cohort. Front. Endocrinol. (Lausanne) 2022, 13, 873012. 10.3389/fendo.2022.873012. [DOI] [PMC free article] [PubMed] [Google Scholar]
  67. Brouwers B.; Coppola I.; Vints K.; Dislich B.; Jouvet N.; Van Lommel L.; Segers C.; Gounko N. V.; Thorrez L.; Schuit F.; Lichtenthaler S. F.; Estall J. L.; Declercq J.; Ramos-Molina B.; Creemers J. W. M. Loss of Furin in beta-Cells Induces an mTORC1-ATF4 Anabolic Pathway That Leads to beta-Cell Dysfunction. Diabetes. 2021, 70 (2), 492–503. 10.2337/db20-0474. [DOI] [PubMed] [Google Scholar]
  68. Coppola I.; Brouwers B.; Meulemans S.; Ramos-Molina B.; Creemers J. W. M. Differential Effects of Furin Deficiency on Insulin Receptor Processing and Glucose Control in Liver and Pancreatic beta Cells of Mice. Int. J. Mol. Sci. 2021, 22 (12), 6344. 10.3390/ijms22126344. [DOI] [PMC free article] [PubMed] [Google Scholar]
  69. Vollenweider F.; Kaufmann J.; Irminger J. C.; Halban P. A. Processing of proinsulin by furin, PC2, and PC3 in (co) transfected COS (monkey kidney) cells. Diabetes 1995, 44 (9), 1075–1080. 10.2337/diab.44.9.1075. [DOI] [PubMed] [Google Scholar]
  70. Teitelman G. Heterogeneous Expression of Proinsulin Processing Enzymes in Beta Cells of Non-diabetic and Type 2 Diabetic Humans. J. Histochem. Cytochem. 2019, 67 (6), 385–400. 10.1369/0022155419831641. [DOI] [PMC free article] [PubMed] [Google Scholar]
  71. Bass J.; Turck C.; Rouard M.; Steiner D. F. Furin-mediated processing in the early secretory pathway: sequential cleavage and degradation of misfolded insulin receptors. Proc. Natl. Acad. Sci. U. S. A. 2000, 97 (22), 11905–11909. 10.1073/pnas.97.22.11905. [DOI] [PMC free article] [PubMed] [Google Scholar]
  72. Zhang X.; Qu Y. Y.; Liu L.; Qiao Y. N.; Geng H. R.; Lin Y.; Xu W.; Cao J.; Zhao J. Y. Homocysteine inhibits pro-insulin receptor cleavage and causes insulin resistance via protein cysteine-homocysteinylation. Cell Rep. 2021, 37 (2), 109821. 10.1016/j.celrep.2021.109821. [DOI] [PubMed] [Google Scholar]
  73. Fernandez C.; Rysa J.; Almgren P.; Nilsson J.; Engstrom G.; Orho-Melander M.; Ruskoaho H.; Melander O. Plasma levels of the proprotein convertase furin and incidence of diabetes and mortality. J. Intern. Med. 2018, 284 (4), 377–387. 10.1111/joim.12783. [DOI] [PMC free article] [PubMed] [Google Scholar]
  74. Berberich A. J.; Hegele R. A. A Modern Approach to Dyslipidemia. Endocr. Rev. 2022, 43 (4), 611–653. 10.1210/endrev/bnab037. [DOI] [PMC free article] [PubMed] [Google Scholar]
  75. Abe S.; Tokoro F.; Matsuoka R.; Arai M.; Noda T.; Watanabe S.; Horibe H.; Fujimaki T.; Oguri M.; Kato K.; Minatoguchi S.; Yamada Y. Association of genetic variants with dyslipidemia. Mol. Med. Rep. 2015, 12 (4), 5429–5436. 10.3892/mmr.2015.4081. [DOI] [PubMed] [Google Scholar]
  76. Al-Sharshani D.; Velayutham D.; Samara M.; Gazal R.; Al Haj Zen A.; Ismail M. A.; Ahmed M.; Nasrallah G.; Younes S.; Rizk N.; Hammuda S.; Qoronfleh M. W.; Farrell T.; Zayed H.; Abdulrouf P. V.; AlDweik M.; Silang J. P. B.; Rahhal A.; Al-Jurf R.; Mahfouz A.; Salam A.; Al Rifai H.; Al-Dewik N. I. Association of single nucleotide polymorphisms with dyslipidemia and risk of metabolic disorders in the State of Qatar. Mol. Genet. Genomic Med. 2023, 11, e2178 10.1002/mgg3.2178. [DOI] [PMC free article] [PubMed] [Google Scholar]
  77. Jin W.; Fuki I. V.; Seidah N. G.; Benjannet S.; Glick J. M.; Rader D. J. Proprotein convertases [corrected] are responsible for proteolysis and inactivation of endothelial lipase. J. Biol. Chem. 2005, 280 (44), 36551–36559. 10.1074/jbc.M502264200. [DOI] [PubMed] [Google Scholar]
  78. Gauster M.; Hrzenjak A.; Schick K.; Frank S. Endothelial lipase is inactivated upon cleavage by the members of the proprotein convertase family. J. Lipid Res. 2005, 46 (5), 977–987. 10.1194/jlr.M400500-JLR200. [DOI] [PubMed] [Google Scholar]
  79. Yasuda T.; Ishida T.; Rader D. J. Update on the role of endothelial lipase in high-density lipoprotein metabolism, reverse cholesterol transport, and atherosclerosis. Circ. J. 2010, 74 (11), 2263–2270. 10.1253/circj.CJ-10-0934. [DOI] [PubMed] [Google Scholar]
  80. Ishida T.; Choi S.; Kundu R. K.; Hirata K.; Rubin E. M.; Cooper A. D.; Quertermous T. Endothelial lipase is a major determinant of HDL level. J. Clin. Invest. 2003, 111 (3), 347–355. 10.1172/JCI16306. [DOI] [PMC free article] [PubMed] [Google Scholar]
  81. Jin W.; Millar J. S.; Broedl U.; Glick J. M.; Rader D. J. Inhibition of endothelial lipase causes increased HDL cholesterol levels in vivo. J. Clin. Invest. 2003, 111 (3), 357–362. 10.1172/JCI16146. [DOI] [PMC free article] [PubMed] [Google Scholar]
  82. Broedl U. C.; Maugeais C.; Millar J. S.; Jin W.; Moore R. E.; Fuki I. V.; Marchadier D.; Glick J. M.; Rader D. J. Endothelial lipase promotes the catabolism of ApoB-containing lipoproteins. Circ. Res. 2004, 94 (12), 1554–1561. 10.1161/01.res.0000130657.00222.39. [DOI] [PubMed] [Google Scholar]
  83. Essalmani R.; Susan-Resiga D.; Chamberland A.; Asselin M. C.; Canuel M.; Constam D.; Creemers J. W.; Day R.; Gauthier D.; Prat A.; Seidah N. G. Furin is the primary in vivo convertase of angiopoietin-like 3 and endothelial lipase in hepatocytes. J. Biol. Chem. 2013, 288 (37), 26410–26418. 10.1074/jbc.M113.501304. [DOI] [PMC free article] [PubMed] [Google Scholar]
  84. Weinstock P. H.; Bisgaier C. L.; Aalto-Setala K.; Radner H.; Ramakrishnan R.; Levak-Frank S.; Essenburg A. D.; Zechner R.; Breslow J. L. Severe hypertriglyceridemia, reduced high density lipoprotein, and neonatal death in lipoprotein lipase knockout mice. Mild hypertriglyceridemia with impaired very low density lipoprotein clearance in heterozygotes. J. Clin. Invest. 1995, 96 (6), 2555–2568. 10.1172/jci118319. [DOI] [PMC free article] [PubMed] [Google Scholar]
  85. Ross C. J.D.; Liu G.; Kuivenhoven J. A.; Twisk J.; Rip J.; van Dop W.; Ashbourne Excoffon K. J.D.; Lewis S. M.E.; Kastelein J. J.; Hayden M. R. Complete rescue of lipoprotein lipase-deficient mice by somatic gene transfer of the naturally occurring LPLS447X beneficial mutation. Arterioscler. Thromb. Vasc. Biol. 2005, 25 (10), 2143–2150. 10.1161/01.atv.0000176971.27302.b0. [DOI] [PubMed] [Google Scholar]
  86. Noh H. L.; Okajima K.; Molkentin J. D.; Homma S.; Goldberg I. J. Acute lipoprotein lipase deletion in adult mice leads to dyslipidemia and cardiac dysfunction. Am. J. Physiol. Endocrinol. Metab. 2006, 291 (4), E755–E760. 10.1152/ajpendo.00111.2006. [DOI] [PubMed] [Google Scholar]
  87. Wichaiyo S.; Supharattanasitthi W. Bempedoic Acid: A New Non-statin Drug for the Treatment of Dyslipidemia. Clin. Drug Invest. 2021, 41 (10), 843–851. 10.1007/s40261-021-01075-w. [DOI] [PubMed] [Google Scholar]
  88. Boren J.; Chapman M. J.; Krauss R. M.; Packard C. J.; Bentzon J. F.; Binder C. J.; Daemen M. J.; Demer L. L.; Hegele R. A.; Nicholls S. J.; Nordestgaard B. G.; Watts G. F.; Bruckert E.; Fazio S.; Ference B. A.; Graham I.; Horton J. D.; Landmesser U.; Laufs U.; Masana L.; Pasterkamp G.; Raal F. J.; Ray K. K.; Schunkert H.; Taskinen M. R.; van de Sluis B.; Wiklund O.; Tokgozoglu L.; Catapano A. L.; Ginsberg H. N. Low-density lipoproteins cause atherosclerotic cardiovascular disease: pathophysiological, genetic, and therapeutic insights: a consensus statement from the European Atherosclerosis Society Consensus Panel. Eur. Heart J. 2020, 41 (24), 2313–2330. 10.1093/eurheartj/ehz962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  89. Preiss D.; Tobert J. A.; Hovingh G. K.; Reith C. Lipid-Modifying Agents, From Statins to PCSK9 Inhibitors: JACC Focus Seminar. J. Am. Coll. Cardiol. 2020, 75 (16), 1945–1955. 10.1016/j.jacc.2019.11.072. [DOI] [PubMed] [Google Scholar]
  90. Alabi A.; Xia X. D.; Gu H. M.; Wang F.; Deng S. J.; Yang N.; Adijiang A.; Douglas D. N.; Kneteman N. M.; Xue Y.; Chen L.; Qin S.; Wang G.; Zhang D. W. Membrane type 1 matrix metalloproteinase promotes LDL receptor shedding and accelerates the development of atherosclerosis. Nat. Commun. 2021, 12 (1), 1889. 10.1038/s41467-021-22167-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  91. Tellier E.; Negre-Salvayre A.; Bocquet B.; Itohara S.; Hannun Y. A.; Salvayre R.; Auge N. Role for furin in tumor necrosis factor alpha-induced activation of the matrix metalloproteinase/sphingolipid mitogenic pathway. Mol. Cell. Biol. 2007, 27 (8), 2997–3007. 10.1128/mcb.01485-06. [DOI] [PMC free article] [PubMed] [Google Scholar]
  92. Benjannet S.; Rhainds D.; Hamelin J.; Nassoury N.; Seidah N. G. The proprotein convertase (PC) PCSK9 is inactivated by furin and/or PC5/6A: functional consequences of natural mutations and post-translational modifications. J. Biol. Chem. 2006, 281 (41), 30561–30572. 10.1074/jbc.M606495200. [DOI] [PubMed] [Google Scholar]
  93. Essalmani R.; Susan-Resiga D.; Chamberland A.; Abifadel M.; Creemers J. W.; Boileau C.; Seidah N. G.; Prat A. In vivo evidence that furin from hepatocytes inactivates PCSK9. J. Biol. Chem. 2011, 286 (6), 4257–4263. 10.1074/jbc.M110.192104. [DOI] [PMC free article] [PubMed] [Google Scholar]
  94. Lipari M. T.; Li W.; Moran P.; Kong-Beltran M.; Sai T.; Lai J.; Lin S. J.; Kolumam G.; Zavala-Solorio J.; Izrael-Tomasevic A.; Arnott D.; Wang J.; Peterson A. S.; Kirchhofer D. Furin-cleaved proprotein convertase subtilisin/kexin type 9 (PCSK9) is active and modulates low density lipoprotein receptor and serum cholesterol levels. J. Biol. Chem. 2012, 287 (52), 43482–43491. 10.1074/jbc.M112.380618. [DOI] [PMC free article] [PubMed] [Google Scholar]
  95. Sun Q. X.; Zhou H. M.; Du Q. W. Association of Rs2071410 on Furin with Transient Ischemic Attack Susceptibility and Prognosis in a Chinese Population. Med. Sci. Monit. 2016, 22, 3828–3834. 10.12659/msm.897122. [DOI] [PMC free article] [PubMed] [Google Scholar]
  96. Zhao G.; Yang W.; Wu J.; Chen B.; Yang X.; Chen J.; McVey D. G.; Andreadi C.; Gong P.; Webb T. R.; Samani N. J.; Ye S. Influence of a Coronary Artery Disease-Associated Genetic Variant on FURIN Expression and Effect of Furin on Macrophage Behavior. Arterioscler. Thromb. Vasc. Biol. 2018, 38 (8), 1837–1844. 10.1161/atvbaha.118.311030. [DOI] [PMC free article] [PubMed] [Google Scholar]
  97. Yang X.; Yang W.; McVey D. G.; Zhao G.; Hu J.; Poston R. N.; Ren M.; Willeit K.; Coassin S.; Willeit J.; Webb T. R.; Samani N. J.; Mayr M.; Kiechl S.; Ye S. FURIN Expression in Vascular Endothelial Cells Is Modulated by a Coronary Artery Disease-Associated Genetic Variant and Influences Monocyte Transendothelial Migration. J. Am. Heart Assoc. 2020, 9 (4), e014333 10.1161/JAHA.119.014333. [DOI] [PMC free article] [PubMed] [Google Scholar]
  98. Liu Z. W.; Ma Q.; Liu J.; Li J. W.; Chen Y. D. The association between plasma furin and cardiovascular events after acute myocardial infarction. BMC Cardiovasc. Disord. 2021, 21 (1), 468. 10.1186/s12872-021-02029-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
  99. Wang Y. K.; Tang J. N.; Han L.; Liu X. D.; Shen Y. L.; Zhang C. Y.; Liu X. B. Elevated FURIN levels in predicting mortality and cardiovascular events in patients with acute myocardial infarction. Metabolism 2020, 111, 154323. 10.1016/j.metabol.2020.154323. [DOI] [PubMed] [Google Scholar]
  100. Stawowy P.; Marcinkiewicz J.; Graf K.; Seidah N.; Chretien M.; Fleck E.; Marcinkiewicz M. Selective expression of the proprotein convertases furin, pc5, and pc7 in proliferating vascular smooth muscle cells of the rat aorta in vitro. J. Histochem, Cytochem. 2001, 49 (3), 323–332. 10.1177/002215540104900306. [DOI] [PubMed] [Google Scholar]
  101. Yakala G. K.; Cabrera-Fuentes H. A.; Crespo-Avilan G. E.; Rattanasopa C.; Burlacu A.; George B. L.; Anand K.; Mayan D. C.; Corliano M.; Hernandez-Resendiz S.; Wu Z.; Schwerk A. M. K.; Tan A. L. J.; Trigueros-Motos L.; Chevre R.; Chua T.; Kleemann R.; Liehn E. A.; Hausenloy D. J.; Ghosh S.; Singaraja R. R. FURIN Inhibition Reduces Vascular Remodeling and Atherosclerotic Lesion Progression in Mice. Arterioscler, Thromb, Vasc, Biol. 2019, 39 (3), 387–401. 10.1161/atvbaha.118.311903. [DOI] [PMC free article] [PubMed] [Google Scholar]
  102. Yang Y.; Candelario-Jalil E.; Thompson J. F.; Cuadrado E.; Estrada E. Y.; Rosell A.; Montaner J.; Rosenberg G. A. Increased intranuclear matrix metalloproteinase activity in neurons interferes with oxidative DNA repair in focal cerebral ischemia. J. Neurochem. 2010, 112 (1), 134–149. 10.1111/j.1471-4159.2009.06433.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  103. Khoury E. E.; Knaney Y.; Fokra A.; Kinaneh S.; Azzam Z.; Heyman S. N.; Abassi Z. Pulmonary, cardiac and renal distribution of ACE2, furin, TMPRSS2 and ADAM17 in rats with heart failure: Potential implication for COVID-19 disease. J. Cell Mol. Med. 2021, 25 (8), 3840–3855. 10.1111/jcmm.16310. [DOI] [PMC free article] [PubMed] [Google Scholar]
  104. Baeyens N.; Bandyopadhyay C.; Coon B. G.; Yun S.; Schwartz M. A. Endothelial fluid shear stress sensing in vascular health and disease. J. Clin. Invest. 2016, 126 (3), 821–828. 10.1172/jci83083. [DOI] [PMC free article] [PubMed] [Google Scholar]
  105. Turpeinen H.; Raitoharju E.; Oksanen A.; Oksala N.; Levula M.; Lyytikainen L. P.; Jarvinen O.; Creemers J. W.; Kahonen M.; Laaksonen R.; Pelto-Huikko M.; Lehtimaki T.; Pesu M. Proprotein convertases in human atherosclerotic plaques: the overexpression of FURIN and its substrate cytokines BAFF and APRIL. Atherosclerosis 2011, 219 (2), 799–806. 10.1016/j.atherosclerosis.2011.08.011. [DOI] [PubMed] [Google Scholar]
  106. Denault J. B.; Claing A.; D’Orleans-Juste P.; Sawamura T.; Kido T.; Masaki T.; Leduc R. Processing of proendothelin-1 by human furin convertase. FEBS Lett. 1995, 362 (3), 276–280. 10.1016/0014-5793(95)00249-9. [DOI] [PubMed] [Google Scholar]
  107. Negishi M.; Lu D.; Zhang Y. Q.; Sawada Y.; Sasaki T.; Kayo T.; Ando J.; Izumi T.; Kurabayashi M.; Kojima I.; Masuda H.; Takeuchi T. Upregulatory expression of furin and transforming growth factor-beta by fluid shear stress in vascular endothelial cells. Arterioscler. Thromb. Vasc. Biol. 2001, 21 (5), 785–790. 10.1161/01.ATV.21.5.785. [DOI] [PubMed] [Google Scholar]
  108. Toma I.; McCaffrey T. A. Transforming growth factor-beta and atherosclerosis: interwoven atherogenic and atheroprotective aspects. Cell Tissue Res. 2012, 347 (1), 155–175. 10.1007/s00441-011-1189-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  109. Cunningham K. S.; Gotlieb A. I. The role of shear stress in the pathogenesis of atherosclerosis. Lab Invest. 2005, 85 (1), 9–23. 10.1038/labinvest.3700215. [DOI] [PubMed] [Google Scholar]
  110. Langnau C.; Rohlfing A. K.; Gekeler S.; Gunter M.; Poschel S.; Petersen-Uribe A.; Jaeger P.; Avdiu A.; Harm T.; Kreisselmeier K. P.; Castor T.; Bakchoul T.; Rath D.; Gawaz M. P.; Autenrieth S. E.; Mueller K. A. L. Platelet Activation and Plasma Levels of Furin Are Associated With Prognosis of Patients With Coronary Artery Disease and COVID-19. Arterioscler. Thromb. Vasc. Biol. 2021, 41 (6), 2080–2096. 10.1161/atvbaha.120.315698. [DOI] [PMC free article] [PubMed] [Google Scholar]
  111. Blakytny R.; Ludlow A.; Martin G. E.; Ireland G.; Lund L. R.; Ferguson M. W.; Brunner G. Latent TGF-beta1 activation by platelets. J. Cell Physiol. 2004, 199 (1), 67–76. 10.1002/jcp.10454. [DOI] [PubMed] [Google Scholar]
  112. Urban D.; Lorenz J.; Meyborg H.; Ghosh S.; Kintscher U.; Kaufmann J.; Fleck E.; Kappert K.; Stawowy P. Proprotein convertase furin enhances survival and migration of vascular smooth muscle cells via processing of pro-nerve growth factor. J. Biochem. 2013, 153 (2), 197–207. 10.1093/jb/mvs137. [DOI] [PubMed] [Google Scholar]
  113. Chen W.; Liu Y.; Chen J.; Ma Y.; Song Y.; Cen Y.; You M.; Yang G. The Notch signaling pathway regulates macrophage polarization in liver diseases. Int. Immunopharmacol. 2021, 99, 107938. 10.1016/j.intimp.2021.107938. [DOI] [PubMed] [Google Scholar]
  114. Kopan R.; Ilagan M. X. The canonical Notch signaling pathway: unfolding the activation mechanism. Cell 2009, 137 (2), 216–233. 10.1016/j.cell.2009.03.045. [DOI] [PMC free article] [PubMed] [Google Scholar]
  115. Keewan E.; Naser S. A. The Role of Notch Signaling in Macrophages during Inflammation and Infection: Implication in Rheumatoid Arthritis?. Cells 2020, 9 (1), 111. 10.3390/cells9010111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  116. Wong E.; Maretzky T.; Peleg Y.; Blobel C. P.; Sagi I. The Functional Maturation of A Disintegrin and Metalloproteinase (ADAM) 9, 10, and 17 Requires Processing at a Newly Identified Proprotein Convertase (PC) Cleavage Site. J. Biol. Chem. 2015, 290 (19), 12135–12146. 10.1074/jbc.M114.624072. [DOI] [PMC free article] [PubMed] [Google Scholar]
  117. Lorenzen I.; Lokau J.; Korpys Y.; Oldefest M.; Flynn C. M.; Kunzel U.; Garbers C.; Freeman M.; Grotzinger J.; Dusterhoft S. Control of ADAM17 activity by regulation of its cellular localisation. Sci. Rep. 2016, 6, 35067. 10.1038/srep35067. [DOI] [PMC free article] [PubMed] [Google Scholar]
  118. Lopez-Lopez S.; Monsalve E. M.; Romero de Avila M. J.; Gonzalez-Gomez J.; Hernandez de Leon N.; Ruiz-Marcos F.; Baladron V.; Nueda M. L.; Garcia-Leon M. J.; Screpanti I.; Felli M. P.; Laborda J.; Garcia-Ramirez J. J.; Diaz-Guerra M. J. M. NOTCH3 signaling is essential for NF-kappaB activation in TLR-activated macrophages. Sci. Rep. 2020, 10 (1), 14839. 10.1038/s41598-020-71810-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  119. Vieceli Dalla Sega F.; Fortini F.; Aquila G.; Campo G.; Vaccarezza M.; Rizzo P. Notch Signaling Regulates Immune Responses in Atherosclerosis. Front. Immunol. 2019, 10, 1130. 10.3389/fimmu.2019.01130. [DOI] [PMC free article] [PubMed] [Google Scholar]
  120. Stawowy P.; Meyborg H.; Stibenz D.; Borges Pereira Stawowy N.; Roser M.; Thanabalasingam U.; Veinot J. P.; Chretien M.; Seidah N. G.; Fleck E.; Graf K. Furin-like proprotein convertases are central regulators of the membrane type matrix metalloproteinase-pro-matrix metalloproteinase-2 proteolytic cascade in atherosclerosis. Circulation 2005, 111 (21), 2820–2827. 10.1161/circulationaha.104.502617. [DOI] [PubMed] [Google Scholar]
  121. Chen H.; Zhang L.; Mi S.; Wang H.; Wang C.; Jia W.; Gong L.; Dong H.; Xu B.; Jing Y.; Ge P.; Pei Z.; Zhong L.; Yang J. FURIN suppresses the progression of atherosclerosis by promoting macrophage autophagy. FASEB J. 2023, 37 (5), e22933 10.1096/fj.202201762RR. [DOI] [PubMed] [Google Scholar]
  122. Gagliardo B.; Kubat N.; Faye A.; Jaouen M.; Durel B.; Deschemin J. C.; Canonne-Hergaux F.; Sari M. A.; Vaulont S. Pro-hepcidin is unable to degrade the iron exporter ferroportin unless maturated by a furin-dependent process. J. Hepatol. 2009, 50 (2), 394–401. 10.1016/j.jhep.2008.09.018. [DOI] [PubMed] [Google Scholar]
  123. Valore E. V.; Ganz T. Posttranslational processing of hepcidin in human hepatocytes is mediated by the prohormone convertase furin. Blood Cells Mol. Dis. 2008, 40 (1), 132–138. 10.1016/j.bcmd.2007.07.009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  124. Wichaiyo S.; Yatmark P.; Morales Vargas R. E.; Sanvarinda P.; Svasti S.; Fucharoen S.; Morales N. P. Effect of iron overload on furin expression in wild-type and beta-thalassemic mice. Toxicol. Rep. 2015, 2, 415–422. 10.1016/j.toxrep.2015.01.004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  125. Ganz T. Hepcidin and iron regulation, 10 years later. Blood. 2011, 117 (17), 4425–4433. 10.1182/blood-2011-01-258467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  126. Malhotra R.; Wunderer F.; Barnes H. J.; Bagchi A.; Buswell M. D.; O’Rourke C. D.; Slocum C. L.; Ledsky C. D.; Peneyra K. M.; Sigurslid H.; Corman B.; Johansson K. B.; Rhee D. K.; Bloch K. D.; Bloch D. B. Hepcidin Deficiency Protects Against Atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 2019, 39 (2), 178–187. 10.1161/atvbaha.118.312215. [DOI] [PMC free article] [PubMed] [Google Scholar]
  127. Guo L.; Sakamoto A.; Cornelissen A.; Hong C. C.; Finn A. V. Ironing-Out the Role of Hepcidin in Atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 2019, 39 (3), 303–305. 10.1161/atvbaha.119.312369. [DOI] [PMC free article] [PubMed] [Google Scholar]
  128. Galesloot T. E.; Holewijn S.; Kiemeney L. A.; de Graaf J.; Vermeulen S. H.; Swinkels D. W. Serum hepcidin is associated with presence of plaque in postmenopausal women of a general population. Arterioscler. Thromb. Vasc. Biol. 2014, 34 (2), 446–456. 10.1161/atvbaha.113.302381. [DOI] [PubMed] [Google Scholar]
  129. Saver J. L. Time is brain-quantified. Stroke 2006, 37 (1), 263–266. 10.1161/01.STR.0000196957.55928.ab. [DOI] [PubMed] [Google Scholar]
  130. Wichaiyo S.; Parichatikanond W.; Rattanavipanon W. Glenzocimab: A GPVI (Glycoprotein VI)-Targeted Potential Antiplatelet Agent for the Treatment of Acute Ischemic Stroke. Stroke 2022, 53 (11), 3506–3513. 10.1161/strokeaha.122.039790. [DOI] [PubMed] [Google Scholar]
  131. Zhang W. W.; Cadilhac D. A.; Donnan G. A.; O’Callaghan C.; Dewey H. M. Hypertension and TIA. Int. J. Stroke 2009, 4 (3), 206–214. 10.1111/j.1747-4949.2009.00277.x. [DOI] [PubMed] [Google Scholar]
  132. Mishra A.; Malik R.; Hachiya T.; Jurgenson T.; Namba S.; Posner D. C.; Kamanu F. K.; Koido M.; Le Grand Q.; Shi M.; He Y.; Georgakis M. K.; Caro I.; Krebs K.; Liaw Y. C.; Vaura F. C.; Lin K.; Winsvold B. S.; Srinivasasainagendra V.; Parodi L.; Bae H. J.; Chauhan G.; Chong M. R.; Tomppo L.; Akinyemi R.; Roshchupkin G. V.; Habib N.; Jee Y. H.; Thomassen J. Q.; Abedi V.; Carcel-Marquez J.; Nygaard M.; Leonard H. L.; Yang C.; Yonova-Doing E.; Knol M. J.; Lewis A. J.; Judy R. L.; Ago T.; Amouyel P.; Armstrong N. D.; Bakker M. K.; Bartz T. M.; Bennett D. A.; Bis J. C.; Bordes C.; Borte S.; Cain A.; Ridker P. M.; Cho K.; Chen Z.; Cruchaga C.; Cole J. W.; de Jager P. L.; de Cid R.; Endres M.; Ferreira L. E.; Geerlings M. I.; Gasca N. C.; Gudnason V.; Hata J.; He J.; Heath A. K.; Ho Y. L.; Havulinna A. S.; Hopewell J. C.; Hyacinth H. I.; Inouye M.; Jacob M. A.; Jeon C. E.; Jern C.; Kamouchi M.; Keene K. L.; Kitazono T.; Kittner S. J.; Konuma T.; Kumar A.; Lacaze P.; Launer L. J.; Lee K. J.; Lepik K.; Li J.; Li L.; Manichaikul A.; Markus H. S.; Marston N. A.; Meitinger T.; Mitchell B. D.; Montellano F. A.; Morisaki T.; Mosley T. H.; Nalls M. A.; Nordestgaard B. G.; O’Donnell M. J.; Okada Y.; Onland-Moret N. C.; Ovbiagele B.; Peters A.; Psaty B. M.; Rich S. S.; Rosand J.; Sabatine M. S.; Sacco R. L.; Saleheen D.; Sandset E. C.; Salomaa V.; Sargurupremraj M.; Sasaki M.; Satizabal C. L.; Schmidt C. O.; Shimizu A.; Smith N. L.; Sloane K. L.; Sutoh Y.; Sun Y. V.; Tanno K.; Tiedt S.; Tatlisumak T.; Torres-Aguila N. P.; Tiwari H. K.; Tregouet D. A.; Trompet S.; Tuladhar A. M.; Tybjaerg-Hansen A.; van Vugt M.; Vibo R.; Verma S. S.; Wiggins K. L.; Wennberg P.; Woo D.; Wilson P. W. F.; Xu H.; Yang Q.; Yoon K.; Millwood I. Y.; Gieger C.; Ninomiya T.; Grabe H. J.; Jukema J. W.; Rissanen I. L.; Strbian D.; Kim Y. J.; Chen P. H.; Mayerhofer E.; Howson J. M. M.; Irvin M. R.; Adams H.; Wassertheil-Smoller S.; Christensen K.; Ikram M. A.; Rundek T.; Worrall B. B.; Lathrop G. M.; Riaz M.; Simonsick E. M.; Korv J.; Franca P. H. C.; Zand R.; Prasad K.; Frikke-Schmidt R.; de Leeuw F. E.; Liman T.; Haeusler K. G.; Ruigrok Y. M.; Heuschmann P. U.; Longstreth W. T.; Jung K. J.; Bastarache L.; Pare G.; Damrauer S. M.; Chasman D. I.; Rotter J. I.; Anderson C. D.; Zwart J. A.; Niiranen T. J.; Fornage M.; Liaw Y. P.; Seshadri S.; Fernandez-Cadenas I.; Walters R. G.; Ruff C. T.; Owolabi M. O.; Huffman J. E.; Milani L.; Kamatani Y.; Dichgans M.; Debette S. Stroke genetics informs drug discovery and risk prediction across ancestries. Nature 2022, 611 (7934), 115–123. 10.1038/s41586-022-05165-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  133. Kautz L.; Nemeth E. Novel tools for the evaluation of iron metabolism. Haematologica 2010, 95 (12), 1989–1991. 10.3324/haematol.2010.033993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  134. Silvestri L.; Pagani A.; Camaschella C. Furin-mediated release of soluble hemojuvelin: a new link between hypoxia and iron homeostasis. Blood 2008, 111 (2), 924–931. 10.1182/blood-2007-07-100677. [DOI] [PubMed] [Google Scholar]
  135. Young G. H.; Tang S. C.; Wu V. C.; Wang K. C.; Nong J. Y.; Huang P. Y.; Hu C. J.; Chiou H. Y.; Jeng J. S.; Hsu C. Y. The functional role of hemojuvelin in acute ischemic stroke. J. Cereb. Blood Flow Metab. 2020, 40 (6), 1316–1327. 10.1177/0271678X19861448. [DOI] [PMC free article] [PubMed] [Google Scholar]
  136. Ding H.; Yan C. Z.; Shi H.; Zhao Y. S.; Chang S. Y.; Yu P.; Wu W. S.; Zhao C. Y.; Chang Y. Z.; Duan X. L. Hepcidin is involved in iron regulation in the ischemic brain. PLoS One 2011, 6 (9), e25324 10.1371/journal.pone.0025324. [DOI] [PMC free article] [PubMed] [Google Scholar]
  137. Azab S. F.; Akeel N. E.; Abdalhady M. A.; Elhewala A. A.; Ali A. S. A.; Amin E. K.; Sarhan D. T.; Almalky M. A. A.; Elhindawy E. M.; Salam M. M. A.; Soliman A. A.; Abdellatif S. H.; Ismail S. M.; Elsamad N. A.; Hashem M. I. A.; Aziz K. A.; Elazouni O. M. A.; Arafat M. S. Serum Hepcidin Levels in Childhood-Onset Ischemic Stroke: A Case-Control Study. Medicine (Baltimore) 2016, 95 (9), e2921 10.1097/MD.0000000000002921. [DOI] [PMC free article] [PubMed] [Google Scholar]
  138. Zhao N.; Zhang A. S.; Enns C. A. Iron regulation by hepcidin. J. Clin. Invest. 2013, 123 (6), 2337–2343. 10.1172/JCI67225. [DOI] [PMC free article] [PubMed] [Google Scholar]
  139. de Wit T. R.; van Mourik J. A. Biosynthesis, processing and secretion of von Willebrand factor: biological implications. Best Pract. Res. Clin. Haematol. 2001, 14 (2), 241–255. 10.1053/beha.2001.0132. [DOI] [PubMed] [Google Scholar]
  140. Risser F.; Urosev I.; Lopez-Morales J.; Sun Y.; Nash M. A. Engineered Molecular Therapeutics Targeting Fibrin and the Coagulation System: a Biophysical Perspective. Biophys. Rev. 2022, 14 (2), 427–461. 10.1007/s12551-022-00950-w. [DOI] [PMC free article] [PubMed] [Google Scholar]
  141. Siner J. I.; Samelson-Jones B. J.; Crudele J. M.; French R. A.; Lee B. J.; Zhou S.; Merricks E.; Raymer R.; Nichols T. C.; Camire R. M.; Arruda V. R. Circumventing furin enhances factor VIII biological activity and ameliorates bleeding phenotypes in hemophilia models. JCI Insight. 2016, 1 (16), e89371 10.1172/jci.insight.89371. [DOI] [PMC free article] [PubMed] [Google Scholar]
  142. Nguyen G. N.; George L. A.; Siner J. I.; Davidson R. J.; Zander C. B.; Zheng X. L.; Arruda V. R.; Camire R. M.; Sabatino D. E. Novel factor VIII variants with a modified furin cleavage site improve the efficacy of gene therapy for hemophilia A. J. Thromb. Haemost. 2017, 15 (1), 110–121. 10.1111/jth.13543. [DOI] [PMC free article] [PubMed] [Google Scholar]
  143. Wasley L. C.; Rehemtulla A.; Bristol J. A.; Kaufman R. J. PACE/furin can process the vitamin K-dependent pro-factor IX precursor within the secretory pathway. J. Biol. Chem. 1993, 268 (12), 8458–8465. 10.1016/S0021-9258(18)52897-0. [DOI] [PubMed] [Google Scholar]
  144. Antman E. M. Time is muscle: translation into practice. J. Am. Coll. Cardiol. 2008, 52 (15), 1216–1221. 10.1016/j.jacc.2008.07.011. [DOI] [PubMed] [Google Scholar]
  145. Aimo A.; Iborra-Egea O.; Martini N.; Galvez-Monton C.; Burchielli S.; Panichella G.; Passino C.; Emdin M.; Bayes-Genis A. Cardiac protection by pirfenidone after myocardial infarction: a bioinformatic analysis. Sci. Rep. 2022, 12 (1), 4691. 10.1038/s41598-022-08523-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  146. Sawada Y.; Inoue M.; Kanda T.; Sakamaki T.; Tanaka S.; Minamino N.; Nagai R.; Takeuchi T. Co-elevation of brain natriuretic peptide and proprotein-processing endoprotease furin after myocardial infarction in rats. FEBS Lett. 1997, 400 (2), 177–182. 10.1016/S0014-5793(96)01385-3. [DOI] [PubMed] [Google Scholar]
  147. Morita E.; Yasue H.; Yoshimura M.; Ogawa H.; Jougasaki M.; Matsumura T.; Mukoyama M.; Nakao K. Increased plasma levels of brain natriuretic peptide in patients with acute myocardial infarction. Circulation 1993, 88 (1), 82–91. 10.1161/01.CIR.88.1.82. [DOI] [PubMed] [Google Scholar]
  148. de Lemos J. A.; Morrow D. A. Brain natriuretic peptide measurement in acute coronary syndromes: ready for clinical application?. Circulation 2002, 106 (23), 2868–2870. 10.1161/01.CIR.0000042763.07757.C0. [DOI] [PubMed] [Google Scholar]
  149. Lee J. W.; Choi E.; Khanam S. S.; Son J. W.; Youn Y. J.; Ahn M. S.; Ahn S. G.; Kim J. Y.; Lee S. H.; Yoon J.; Yoo B. S. Prognostic value of short-term follow-up B-type natriuretic peptide levels after hospital discharge in patients with acute myocardial infarction. Int. J. Cardiol. 2019, 289, 19–23. 10.1016/j.ijcard.2019.01.026. [DOI] [PubMed] [Google Scholar]
  150. Fazlinezhad A.; Rezaeian M. K.; Yousefzadeh H.; Ghaffarzadegan K.; Khajedaluee M. Plasma Brain Natriuretic Peptide (BNP) as an Indicator of Left Ventricular Function, Early Outcome and Mechanical Complications after Acute Myocardial Infarction. Clin. Med. Insights Cardiol. 2011, 5, 77–83. 10.4137/CMC.S7189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  151. Martinez-Selles M.; Vidan M. T.; Lopez-Palop R.; Rexach L.; Sanchez E.; Datino T.; Cornide M.; Carrillo P.; Ribera J. M.; Diaz-Castro O.; Banuelos C. End-stage heart disease in the elderly. Rev. Esp. Cardiol. 2009, 62 (4), 409–421. 10.1016/s1885-5857(09)71668-8. [DOI] [PubMed] [Google Scholar]
  152. Wichaiyo S.; Saengklub N. Alterations of sodium-hydrogen exchanger 1 function in response to SGLT2 inhibitors: what is the evidence?. Heart Fail. Rev. 2022, 27 (6), 1973–1990. 10.1007/s10741-022-10220-2. [DOI] [PubMed] [Google Scholar]
  153. Mishra S.; Kass D. A. Cellular and molecular pathobiology of heart failure with preserved ejection fraction. Nat. Rev. Cardiol. 2021, 18 (6), 400–423. 10.1038/s41569-020-00480-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  154. Ichiki T.; Boerrigter G.; Huntley B. K.; Sangaralingham S. J.; McKie P. M.; Harty G. J.; Harders G. E.; Burnett J. C. Jr. Differential expression of the pro-natriuretic peptide convertases Corin and furin in experimental heart failure and atrial fibrosis. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2013, 304 (2), R102–109. 10.1152/ajpregu.00233.2012. [DOI] [PMC free article] [PubMed] [Google Scholar]
  155. Shah S. J.; Borlaug B. A.; Kitzman D. W.; McCulloch A. D.; Blaxall B. C.; Agarwal R.; Chirinos J. A.; Collins S.; Deo R. C.; Gladwin M. T.; Granzier H.; Hummel S. L.; Kass D. A.; Redfield M. M.; Sam F.; Wang T. J.; Desvigne-Nickens P.; Adhikari B. B. Research Priorities for Heart Failure With Preserved Ejection Fraction: National Heart, Lung, and Blood Institute Working Group Summary. Circulation 2020, 141 (12), 1001–1026. 10.1161/circulationaha.119.041886. [DOI] [PMC free article] [PubMed] [Google Scholar]
  156. Hanna A.; Frangogiannis N. G. Inflammatory Cytokines and Chemokines as Therapeutic Targets in Heart Failure. Cardiovasc. Drugs Ther. 2020, 34 (6), 849–863. 10.1007/s10557-020-07071-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  157. Paulus W. J. Unfolding Discoveries in Heart Failure. N. Engl. J. Med. 2020, 382 (7), 679–682. 10.1056/nejmcibr1913825. [DOI] [PubMed] [Google Scholar]
  158. Jiao G. S.; Cregar L.; Wang J.; Millis S. Z.; Tang C.; O’Malley S.; Johnson A. T.; Sareth S.; Larson J.; Thomas G. Synthetic small molecule furin inhibitors derived from 2,5-dideoxystreptamine. Proc. Natl. Acad. Sci. U. S. A. 2006, 103 (52), 19707–19712. 10.1073/pnas.0606555104. [DOI] [PMC free article] [PubMed] [Google Scholar]
  159. Dahms S. O.; Haider T.; Klebe G.; Steinmetzer T.; Brandstetter H. OFF-State-Specific Inhibition of the Proprotein Convertase Furin. ACS Chem. Biol. 2021, 16 (9), 1692–1700. 10.1021/acschembio.1c00411. [DOI] [PMC free article] [PubMed] [Google Scholar]
  160. Dahms S. O.; Schnapp G.; Winter M.; Buttner F. H.; Schleputz M.; Gnamm C.; Pautsch A.; Brandstetter H. Dichlorophenylpyridine-Based Molecules Inhibit Furin through an Induced-Fit Mechanism. ACS Chem. Biol. 2022, 17 (4), 816–821. 10.1021/acschembio.2c00103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  161. Douglas L. E. J.; Reihill J. A.; Ho M. W. Y.; Axten J. M.; Campobasso N.; Schneck J. L.; Rendina A. R.; Wilcoxen K. M.; Martin S. L. A highly selective, cell-permeable furin inhibitor BOS-318 rescues key features of cystic fibrosis airway disease. Cell Chem. Biol. 2022, 29 (6), 947–957. 10.1016/j.chembiol.2022.02.001. [DOI] [PubMed] [Google Scholar]
  162. Gitlin-Domagalska A.; Debowski D.; Maciejewska A.; Samsonov S.; Maszota-Zieleniak M.; Ptaszynska N.; Legowska A.; Rolka K. Cyclic Peptidic Furin Inhibitors Developed by Combinatorial Chemistry. ACS Med. Chem. Lett. 2023, 14 (4), 458–465. 10.1021/acsmedchemlett.3c00008. [DOI] [PMC free article] [PubMed] [Google Scholar]
  163. Cameron A.; Appel J.; Houghten R. A.; Lindberg I. Polyarginines are potent furin inhibitors. J. Biol. Chem. 2000, 275 (47), 36741–36749. 10.1074/jbc.M003848200. [DOI] [PubMed] [Google Scholar]
  164. Becker G. L.; Sielaff F.; Than M. E.; Lindberg I.; Routhier S.; Day R.; Lu Y.; Garten W.; Steinmetzer T. Potent inhibitors of furin and furin-like proprotein convertases containing decarboxylated P1 arginine mimetics. J. Med. Chem. 2010, 53 (3), 1067–1075. 10.1021/jm9012455. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from ACS Pharmacology & Translational Science are provided here courtesy of American Chemical Society

RESOURCES