Abstract
目的
缺血性脑卒中的发病率和致残率均极高,缺血再灌注损伤(ischemia reperfusion injury,IRI)是治疗的关键。UbiA类异戊烯转移酶结构域1蛋白(UbiA prenyltransferase domain containing 1 protein,UBIAD1)是一类具有多种生物学功能的酶,参与线粒体呼吸链电子传递、脂代谢、氧化应激等,这些过程均与IRI有关。本研究探讨UBIAD1在脑IRI中的作用及其作用机制。
方法
以小鼠成神经细胞瘤(mouse neuroblastoma Neuro2a,N2a)细胞为研究对象,构建氧糖剥夺再灌注(oxygen-glucose deprivation/reoxygenation,OGD/R)损伤模型,以过表达UBIAD1的慢病毒载体转染N2a细胞,构建稳定过表达UBIAD1的细胞模型。第1部分实验将N2a细胞分为5组:未经OGD处理(non-OGD)组、经OGD处理4 h后分别再灌注0、4、12、24 h组;第2部分实验将N2a细胞分为6组:正常细胞(Con)+non-OGD组、转染空载体细胞(EV)+non-OGD组、UBIAD1过表达细胞(OE)+non-OGD组、Con+OGD处理(OGD/R)组、EV+OGD/R组、OE+OGD/R组;第3部分将N2a细胞分为8组:Con+non-OGD组、OE+non-OGD组、Con+non-OGD+NOS特异性抑制剂7-硝基吲唑(7-nitroindazole,7-NI)组、OE+non-OGD+7-NI组、Con+OGD/R组、OE+OGD/R组、Con+OGD/R+7-NI组、OE+OGD/R+7-NI组。使用激光共聚焦扫描显微镜观察高尔基体形态改变,流式细胞术检测细胞凋亡率,MTT法检测细胞活力,Griess试剂盒检测NO的释放,分别通过real-time PCR和蛋白质印迹法检测细胞UBIAD1、分泌途径衍生钙离子转运ATP酶1(secretory pathway Ca2+-ATPase isoform 1,SPCA1)、NOS的mRNA和蛋白质表达水平。
结果
与non-OGD组相比,经OGD处理4 h后再灌注0、4、12及24 h的各组N2a细胞中UBIAD1 mRNA和蛋白质表达水平均明显下调(P<0.05或P<0.01),且再灌注时间越长,UBIAD1表达水平下调越显著。与Con+OGD/R组、EV+OGD/R组相比,OE+OGD/R组UBIAD1 mRNA和蛋白质表达水平均明显上调(均P<0.01),细胞凋亡率均下降(均P<0.01),细胞活力均增高(均P<0.01),高尔基体碎裂较少,形态保存较完整,SPCA1 mRNA和蛋白质表达水平均明显上调(均P<0.05)。OE+non-OGD组与Con+non-OGD组相比,OE+OGD/R组与Con+OGD/R组相比,内皮型NOS(endothelial NOS,eNOS)及神经元型NOS(neuronal NOS,nNOS)的mRNA和蛋白质表达均下调(P<0.05或P<0.01),NO含量均减少(均P<0.01);Con+OGD/R+7-NI组与Con+OGD/R组相比,OE+OGD/R+7-NI组与OE+OGD/R组相比,NO含量均减少(均P<0.01),N2a细胞凋亡率均下降(均P<0.01)。
结论
UBIAD1可减轻神经细胞OGD/R损伤,改善OGD/R后高尔基体功能,其机制可能与抑制nNOS/NO途径有关。
Keywords: 氧糖剥夺再灌注, UbiA类异戊烯转移酶结构域1蛋白, 缺血再灌注损伤, 高尔基体, 分泌途径衍生钙离子转运ATP酶1, 神经元型一氧化氮合酶/NO途径
Abstract
Objective
Cerebral infarction is a subtype of stroke with high incidence and disability rate. Ischemia reperfusion injury (IRI) is the key point of cerebral infarction treatment. UbiA prenyltransferase domain containing 1 (UBIAD1) is a kind of enzyme with various biological functions including electron transport in mitochondrial respiratory chain, lipid metabolism, and oxidative stress which are related to IRI. The purpose of this study aims to determine the neuroprotective effects and the underlying mechanisms of UBIAD1 in cerebral IRI.
Methods
We employed oxygen-glucose deprivation/reoxygenation (OGD/R) model in mouse neuroblastoma Neuro2a (N2a) cells to mimic cerebral IRI. Lentivirus vector over-expressed UBIAD1 was transfacted into N2a cells to maintain high and stable expression of UBIAD1. In the first part of the experiment, N2a cells were divided into 5 groups: A non-OGD (N2a cells without exposure to OGD) group, groups of reoxygenation 0, 4, 12 and 24 h after 4 h of OGD, respectively. In the second part of the experiment, N2a cells were divided into 6 groups: A Con (normal cell)+non-OGD group, an EV (cell transfected with empty vector)+non-OGD group, an OE (over-expressed UBIAD1)+non-OGD group, a Con+OGD/R group, an EV+OGD/R group, and an OE+OGD/R group. In the third part, the N2a cells were divided into 8 groups: A Con+non-OGD group, an OE+non-OGD group, a Con+non-OGD+nNOS inhibitior 7-nitroindazole (7-NI) group, an OE+non-OGD+7-NI group, a Con+OGD/R group, an OE+OGD/R group, a Con+OGD/R+7-NI group, and an OE+OGD/R+7-NI group. The morphological changes of Golgi apparatus were observed under the confocal laser scanning microscope. The mRNA and protein levels of UBIAD1, secretory pathway Ca2+-ATPase isoform 1 (SPCA1), and NOS were determined by real-time PCR and Western blotting, respectively. Cell apoptosis rate was detected with flow cytometry; cell viability was detected with MTT assay, and NO release was determined with Griess assay.
Results
Compared with the non-OGD group, the expression levels of UBIAD1 mRNA and protein in N2a cells in the groups of 0, 4, 12 and 24 h reoxygenation after OGD 4 h decreased significantly (P<0.05 or P<0.01), and the longer the reoxygenation time, the more significant the reduction of UBIAD1 expression. Compared with the Con+OGD/R group and the EV+OGD/R group, mRNA and protein levels of UBIAD1 and SPCA1 were increased (P<0.05 or P<0.01), the apoptosis rate was decreased (all P<0.01), and the cell viability was increased (all P<0.01) in the OE+OGD/R group. The Golgi fragmentation was less in the OE+OGD/R group than that in the Con+ OGD/R group and the EV+OGD/R group. The mRNA and protein levels of endothelial NOS (eNOS) and neuronal NOS (nNOS) were decreased (P<0.05 or P<0.01), and the level of NO was decreased (all P<0.01) in the groups over-expressed UBIAD1 (OE+non-OGD group vs Con+non-OGD group, OE+OGD/R group vs Con+OGD/R group). The level of NO and apoptosis rate of N2a cells were decreased (all P<0.01) in the the groups pretreated with 7-NI (Con+OGD/R+7-NI group vs Con+OGD/R group, OE+OGD/R+7-NI group vs OE+OGD/R group).
Conclusion
UBIAD1 may exerts protective effects on OGD/R induced N2a cells by ameliorating Golgi apparatus dysfunction via the nNOS/NO pathway.
Keywords: oxygen-glucose deprivation/reoxygenation, UbiA prenyltransferase domain containing 1, ischemia reperfusion injury, Golgi apparatus, secretory pathway Ca2+-ATPase isoform 1, neuronal NOS/NO pathway
缺血性脑卒中的发病率和致残率均极高,对人类健康造成了极大的危害,早期静脉溶栓及血管内介入治疗等可挽救缺血半暗带,是目前最有效的治疗方式,但受到时间窗及缺血半暗带的限制[1]。缺血再灌注后会诱发缺血再灌注损伤,包括炎症反应、氧化应激、细胞内钙超载、线粒体功能紊乱、细胞凋亡等多种病理生理过程,可进一步加重脑梗死后的脑损伤[2]。因此探讨缺血再灌注损伤的机制,寻找有效的治疗方法十分重要。
UbiA类异戊烯转移酶结构域1蛋白(UbiA prenyltransferase domain containing 1 protein,UBIAD1)参与许多生理及病理过程,是抗氧化剂辅酶Q10(coenzyme Q10,CoQ10)和维生素K2生物合成中的关键酶,参与对脂质代谢的调控[3]。UBIAD1在不同的细胞定位于不同的亚细胞器,从而发挥不同的功能。定位在人成骨样MG63细胞内质网上的UBIAD1可通过促进维生素的侧链交换催化维生素K1向维生素K2转换[4];定位于人角膜细胞及果蝇S2细胞线粒体上的UBIAD1对维生素K2的合成及线粒体呼吸链电子传递至关重要[5-6];定位在人上皮细胞高尔基体上的UBIAD1主要参与高尔基体合成CoQ10,即非线粒体型CoQ10,并通过NO发挥抗氧化作用[7]。UBIAD1能影响呼吸链电子传递、调节脂代谢、抗氧化应激等,这些均与缺血再灌注损伤有关。本课题组前期的研究[8]发现UBIAD1共定位于小鼠脑神经瘤细胞株(N2a)细胞的线粒体、内质网及高尔基体,且UBIAD1过表达对氧糖剥夺再灌注(oxygen-glucose deprivation/reoxygenation,OGD/R)损伤后的N2a细胞亚细胞器功能障碍及裂解发挥保护作用。研究[9]还发现嗅黏膜间充质干细胞可通过调节UBIAD1表达对N2a细胞OGD/R损伤发挥保护作用。可见UBIAD1具有多种生物学功能,且与肿瘤、脂代谢紊乱、氧化应激及多种心脑血管疾病等密切相关。
高尔基体可通过改变自身结构和功能、调节分泌途径衍生钙离子转运ATP酶1(secretory pathway Ca2+-ATPase isoform 1,SPCA1)活性、表达自身氧化还原蛋白等参与氧化应激反应,并与线粒体、溶酶体和内质网协作,触发下游信号适应性修复细胞[10]。笔者前期的研究[11]还发现SPCA1活性受氧化应激的影响,SPCA1具有维持钙稳态、减轻高尔基体应激的作用,发挥神经保护的功能。如上所述,UBIAD1可参与高尔基体CoQ10合成,并通过NO发挥抗氧化作用。NO的生物合成主要受NOS的影响。按细胞和组织来源NOS共有3种亚型:神经元型NOS(neuronal NOS,nNOS)、内皮型NOS(endothelial NOS,eNOS)、诱导型NOS(inducible,iNOS),前2种在细胞处于生理状态下即可表达,是钙离子和钙调蛋白依赖型,合称为结构型NOS,后一种为非钙依赖型,在细胞受到刺激时可大量表达。nNOS能被Ca2+激活,生成NO影响细胞外调节蛋白激酶(extracellular regulated protein kinases,ERK)表达,促环磷酸腺苷(cyclic adenosine monophosphate,cAMP)反应元件结合蛋白(cAMP responsive element binding protein,CREB)磷酸化,CREB可介导线粒体应激对高尔基体的调控[12]以及高尔基体应激[13]。基于以上研究背景,本研究以N2a细胞为实验对象,研究UBIAD1是否通过调节SPCA1表达,从而影响nNOS/NO通路,减轻高尔基体应激,发挥神经保护作用。
1. 材料与方法
1.1. 材料
N2a细胞购于美国模式培养物集存库(American Type Culture Collection,ATCC),使用含1%青霉素/链霉素双抗的DMEM高糖培养基(含10%胎牛血清)在37 ℃、5% CO2的饱和湿度恒温箱中培养。
MTT、聚凝胺、山羊抗兔IgG二抗、山羊抗鼠IgG二抗、荧光素标记的山羊抗兔IgG二抗、4',6-二脒基-2-苯基吲哚(4',6-diamidino-2-phenylindole,DAPI)购自美国Sigma公司;细胞总RNA提取试剂盒购自天根生化科技(北京)有限公司;TRIzol、蛋白质分子量标准Marker购自美国Invitrogen公司;RIPA裂解液、BCA试剂盒、NO检测试剂盒、Griess试剂盒购自江苏碧云天生物技术公司;SYBR Green PCR Master Mix购自美国Applied Biosystems公司;反转录第一链cDNA合成试剂盒、RNA酶抑制剂、DNA酶I购自加拿大Fermentas公司;单克隆抗体UBIAD1购自美国GeneTex公司;单克隆抗体SPCA1、GM130购自美国Proteintech公司;单克隆抗体eNOS、iNOS购自英国Abcam公司;单克隆抗体nNOS购自美国Bioss公司;单克隆抗体GAPDH购自美国SANTA公司;Annexin V-FICT/PI凋亡检测试剂盒购自美国Mbchem公司;过表达UBIAD1的慢病毒(LV5-小鼠UBIAD1)购自苏州吉玛基因;7-硝基吲唑(7-nitroindazole,7-NI)购自上海谱振生物科技有限公司。
1.2. OGD/R
本研究用OGD/R模型来模拟体内的缺血再灌注过程。以无糖的D-Hanks’s平衡盐溶液替代原有含糖培养基,并向密闭盒内充入95% N2和5% CO2的混合气体以造成无氧环境,将该密闭盒放入37 ℃饱和湿度的恒温培养箱中。N2a细胞在氧糖剥夺(oxygen- glucose deprivation,OGD)的密闭容器内培养4 h后恢复有氧环境,并将无糖D-Hank’s平衡盐溶液替换成新鲜的含有10%胎牛血清的DMEM高糖培养基,然后将培养瓶重新放入37 ℃饱和湿度的恒温培养箱中,再根据实验分组分别继续培养0、4、12及24 h。选取合适的实验时间点进行后续实验。
1.3. MTT法
采用MTT法检测细胞活力。各组细胞处理完毕后每孔加入10 μL MTT(5 g/L),将细胞培养板重新放入37 ℃饱和湿度的恒温培养箱中孵育4 h,使MTT还原为甲臜,吸出上清液,加入DMSO并用水平摇床摇匀,使甲臜溶解。用酶标仪在570 nm波长处检测每孔的吸光度值,实验重复3次。
1.4. Real-time PCR
使用TRIzol提取N2a细胞的总RNA,检测RNA的纯度和完整性。使用SYBR Green PCR Master Mix试剂盒配置PCR反应体系。在ABI 7900 real-time PCR仪上进行扩增反应,反应条件:95 ℃预变性5 min;94 ℃变性20 s;72 ℃退火20 s;72 ℃延伸5 min,共40个循环。引物(表1)由上海生工生物工程技术有限公司合成。收集扩增各循环荧光信号,循环结束后进行融解曲线分析;检测并记录相应的Ct值,以GAPDH为内参进行荧光校正和定量分析。
表1.
Real-time PCR引物序列
Table 1 Primer sequences of real-time PCR
| 基因 | 引物序列(5'-3') | 片段大小/bp |
|---|---|---|
| UBIAD1 |
正向:GGCCATTCTCCATTCCAACA 反向:GCCAGCCTCTCGGTCAGA |
183 |
| SPCA1 |
正向:TCAGATGTGGCAAAGCAAAG 反向:TAACCAGCCAACCAACATGA |
191 |
| eNOS |
正向:TCAGCCATCACAGTGTTCCC 反向:ATAGCCCGCATAGCGTATCAG |
87 |
| nNOS |
正向:CCCAACGTCATTTCTGTCCGT 反向:TCTACCAGGGGCCGATCATT |
182 |
| iNOS |
正向:CACCTTGGAGTTCACCCAGT 反向:ACCACTCGTACTTGGGATGC |
170 |
UBIAD1:UbiA类异戊烯转移酶结构域1蛋白;SPCA1:分泌途径衍生钙离子转运ATP酶1;eNOS:内皮型NOS;nNOS:神经元型NOS;iNOS:诱导型NOS。
1.5. 蛋白质印迹法
使用RIPA裂解液裂解细胞,提取N2a细胞的总蛋白质后用BCA法对蛋白质进行定量。取等量蛋白质行SDS-PAGE分离,转移到PVDF膜上,经封闭处理后分别加入单克隆抗体UBIAD1(1꞉1 000)、SPCA1(1꞉500)、eNOS(1꞉400)、nNOS(1꞉400)、iNOS(1꞉200)、GAPDH(1꞉800),在4 ℃下孵育过夜,洗膜后加入山羊抗兔IgG二抗(1꞉4 000)或山羊抗鼠IgG二抗(1꞉8 000),在室温下孵育2 h,洗膜后采用ECL试剂盒显影。运用Gel pro4.0凝胶光密度分析软件分析结果,计算各条带积分光密度值(integrated optical density,IOD)。
1.6. 流式细胞术
使用Annexin V-FICT/PI凋亡检测试剂盒检测N2a细胞的凋亡情况。用0.25%的胰酶消化细胞,并吹打成细胞悬液;在室温下,以300 r/min离心5~10 min;用预冷(4 ℃)的1×PBS洗涤细胞,再以300 r/min离心5~10 min,以上操作重复2次。用100 μL细胞洗液重悬细胞后加入预冷的400 μL 1×结合缓冲液;然后加入5 μL Annexin V-异硫氰酸荧光素(fluorescein isothiocyanate,FITC)和5 μL碘化丙啶(propidium iodide,PI),轻轻混匀;在室温、避光条件下孵育5~15 min。流式细胞仪检测:通过FITC通道(FL1)检测Annexin V-FITC的绿色荧光;通过PI通道(FL3)检测PI的红色荧光。每个实验重复3次取平均值。用荧光素标记的Annexin V和PI对细胞进行双染色,可区分存活细胞、早期凋亡细胞、晚期凋亡细胞和坏死细胞。散点图可分为4个象限,左下象限表示存活细胞,右下象限代表早期凋亡细胞,右上象限代表晚期凋亡及坏死细胞。
1.7. 慢病毒转染
将N2a细胞接种于24孔板,置于饱和湿度、37 ℃、5%CO2的恒温培养箱中培养过夜,待细胞达到约50%融合时进行转染。取出24孔板,弃去原有培养基,每孔加入5 μg/mL聚凝胺和完全培养基的混合液0.5 mL,加入不同浓度梯度的过表达UBIAD1的慢病毒(LV5-小鼠UBIAD1)感染N2a细胞。将细胞放回培养箱孵育,8~12 h后观察细胞,感染48~96 h后,用免疫荧光显微镜检测绿色荧光蛋白(green fluorescent protein,GFP)报告基因的病毒表达情况,并确定最佳转染时间和病毒浓度。本实验共分6组:正常细胞(Con)+未经OGD处理(non-OGD)组、转染空载体细胞(EV)+non-OGD组、UBIAD1过表达细胞(OE)+non-OGD组、Con+经OGD/R处理(OGD/R)组、EV+OGD/R组、OE+OGD/R组。
1.8. 免疫荧光染色
在6孔板内小心放置盖玻片,接种N2a细胞至6孔板进行培养。细胞片在室温下经4%甲醛固定液固定20 min后自然干燥;用PBS(0.01 mol/L)洗涤细胞片3次,每次5 min;滴加正常山羊血清封闭液,在室温下封闭20 min后甩去多余液体;滴加GM130抗体(1꞉100)50 μL,在4 ℃下孵育过夜;用PBS(0.01 mol/L)洗涤细胞片3次,每次5 min;滴加荧光素标记的山羊抗兔IgG二抗50 μL,在室温下避光放置40 min;用PBS(0.01 mol/L)洗涤细胞片3次,每次5 min;用DAPI复染细胞核5 min;用PBS(0.01 mol/L)洗涤细胞片3次,每次5 min;在激光共聚焦扫描显微镜(LeicaTCS-SP5型)下观察、采集并保存图像。
1.9. NO含量的测定
为进一步研究UBIAD1的作用机制,用nNOS特异性抑制剂7-NI预处理N2a细胞(100 μmol/L,24 h)。实验共分8组:Con+non-OGD(A1)组、OE+non-OGD(A2)组、Con+non-OGD+7-NI(A3)组、OE+non-OGD组+7-NI(A4)组、Con+OGD/R组(B1)、OE+OGD/R(B2)组、Con+OGD/R+7-NI(B3)组、OE+OGD/R+7-NI(B4)组。
采用Griess试剂盒检测NO含量。按照说明书步骤进行操作在540 nm波长处测定各样本的吸光度值,每样本检测3复孔。根据检测结果制作标准工作曲线,计算NO含量(细胞样本NO含量/细胞样品蛋白质的浓度),单位为μmol/mg蛋白。
1.10. 统计学处理
采用SPSS 23.0进行统计学分析。数据用均数±标准差( ±s)表示。两组间比较用t检验,多组间均数比较用单因素方差分析(one-way ANOVA)。P<0.05表示差异有统计学意义。
2. 结 果
2.1. OGD/R对N2a细胞中UBIAD1表达的影响
与未行OGD处理(non-OGD)组相比,经OGD处理4 h后再灌注0、4、12及24 h的各组N2a细胞中UBIAD1 mRNA和蛋白质表达水平均明显下调(P<0.05或P<0.01,图1),且再灌注时间越长,UBIAD1表达水平下调越显著。选择12 h作为后续实验的再灌注时间。
图1.
OGD/R后N2a细胞UBIAD1的mRNA和蛋白质表达水平比较
Figure 1 Comparison of mRNA and protein expression levels of UBIAD1 in N2a cells after OGD/R
A: UBIAD1 protein expression levels determined with Western blotting; B: UBIAD1 mRNA expression levels determined with real-time PCR. *P<0.05, **P<0.01 vs the non-OGD group. OGD/R: Oxygen-glucose deprivation/reoxygenation; UBIAD1: UbiA prenyltransferase domain containing 1 protein.
2.2. 过表达UBIAD1减轻N2a细胞的OGD/R损伤
蛋白质印迹法( 图2A)和real-time PCR(图2B)结果显示:过表达UBIAD1的N2a细胞与正常或转染空载体的N2a细胞相比(OE+OGD/R组 vs Con+OGD/R组或EV+OGD/R组,OE+non-OGD组 vs Con+non-OGD组或EV+non-OGD组),UBIAD1 mRNA和蛋白质表达水平均明显上调(均P<0.01)。
图2.
过表达UBIAD1减轻N2a细胞OGD/R损伤
Figure 2 Overexpressed UBIAD1 ameliorated OGD/R injury in N2a cells
A: UBIAD1 protein expression levels determined with Western blotting after transfection with overexpressing plasmid; B: UBIAD1 mRNA expression levels determined with real-time PCR after transfection with overexpressing plasmid; C: Cell apoptosis determined with flow cytometry; D: Cell viability determined with MTT assay. 1: Con+non-OGD; 2: EV+non-OGD; 3: OE+non-OGD; 4: Con+OGD/R; 5: EV+OGD/R; 6: OE+OGD/R. **P<0.01 vs the OE+non-OGD group; ††P<0.01 vs the OE+OGD/R group; ‡‡P<0.01 vs the Con+non-OGD group; §§P<0.01 vs the EV+non-OGD group. OGD/R: Oxygen-glucose deprivation/reoxygenation; UBIAD1: UbiA prenyltransferase domain containing 1 protein.
流式细胞术结果(图2C)显示:行OGD/R处理的N2a细胞与未接受OGD处理的N2a细胞相比(OE+OGD/R组 vs OE+non-OGD组、Con+OGD/R组 vs Con+non-OGD组、EV+OGD/R组 vs EV+non-OGD组),细胞凋亡率均显著上升(均P<0.01);与Con+OGD/R组或EV+OGD/R组相比,OE+OGD/R组细胞凋亡率均显著降低(均P<0.01),而Con+OGD/R组与EV+OGD/R组之间细胞凋亡率差异无统计学意义 (P>0.05)。
MTT结果(图2D)显示:Con+OGD/R组与Con+non-OGD组相比,EV+OGD/R组与EV+non-OGD组相比,细胞活力均明显下降(均P<0.01);但OE+OGD/R组与OE+non-OGD组相比,细胞活力差异无统计学意义(P>0.05);与Con+OGD/R组或EV+OGD/R组相比,OE+OGD/R组细胞活力均明显增加(均P<0.01),而Con+OGD/R组与EV+OGD/R组之间细胞活力差异无统计学意义(P>0.05)。
2.3. 过表达UBIAD1减轻OGD/R后N2a细胞的高尔基体应激
激光共聚焦扫描显微镜下可见(图3A):未行OGD处理的各组(Con+non-OGD组、EV+non-OGD、OE+non-OGD组)N2a细胞的高尔基体结构紧密,呈环形或新月形环绕在细胞核周围,高尔基体形态未发生改变,结构完整;经OGD/R处理后,Con+OGD/R组和EV+OGD/R组N2a细胞的高尔基体结构松散甚至碎裂,不能维持正常的环形或新月形结构,呈扇形散开,分布于细胞核周围,而OE+OGD/R组N2a细胞虽然部分高尔基体结构出现松散,但基本能维持正常形态。
图3.
过表达UBIAD1减轻OGD/R后N2a细胞高尔基体应激
Figure 3 Over-expressed UBIAD1 ameliorated Golgi stress in N2a cells after OGD/R
A: Morphology of Golgi apparatus detected by GM130 staining under confocal laser scanning microscopy, scale bar=10 μm; B: SPCA1 protein expression levels determined by Western blotting; C: SPCA1 mRNA expression levels determined by real-time PCR. 1: Con +non-OGD; 2: EV+non-OGD; 3: OE+non-OGD; 4: Con+OGD/R; 5: EV+OGD/R; 6: OE+OGD/R. *P<0.05, **P<0.01 vs the OE+non-OGD group; †P<0.05 vs the OE+OGD/R group; ‡P<0.05, ‡‡P<0.01 vs the Con+non-OGD group; §P<0.05, §§P<0.01 vs the EV+non-OGD group.OGD/R: Oxygen-glucose deprivation/reoxygenation; UBIAD1: UbiA prenyltransferase domain containing 1 protein.
蛋白质印迹法(图3B)和real-time PCR(图3C)结果显示:过表达UBIAD1的N2a细胞与正常或转染空载体的N2a细胞相比(OE+OGD/R组 vs Con+OGD/R组或EV+OGD/R组,OE+non-OGD组 vs Con+non-OGD组或EV+non-OGD组),高尔基体上SPCA1 mRNA及蛋白质表达水平均明显上调(均P<0.05);正常或转染空载体的N2a细胞相比(Con+non-OGD组 vs EV+non-OGD组、Con+OGD/R组 vs EV+OGD/R组),SPCA1 mRNA及蛋白质表达水平差异均无统计学意义(均P>0.05);行OGD/R处理的N2a细胞与未接受OGD处理的N2a细胞相比(OE+OGD/R组 vs OE+non-OGD组、Con+OGD/R组 vs Con+non-OGD组、EV+OGD/R组 vs EV+non-OGD组),SPCA1 mRNA及蛋白质表达水平均明显下调(P<0.05或P<0.01)。
2.4. UBIAD1通过nNOS/NO途径减轻OGD/R后N2a细胞的损伤
蛋白质印迹法和real-time PCR结果(图4)显示:行OGD/R处理的N2a细胞与未接受OGD处理的N2a细胞相比(B1组 vs A1组、B2组 vs A2组、B3组 vs A3组、B4组 vs A4组),eNOS的mRNA和蛋白质表达均明显上调(均P<0.05或P<0.01);过表达UBIAD1的N2a细胞与正常N2a细胞相比(A2组 vs A1组、A4组 vs A3组、B2组 vs B1组、B4组 vs B3组),eNOS的mRNA和蛋白质表达均明显下调(均P<0.05或P<0.01)。对正常或过表达UBIAD1的N2a细胞而言,接受OGD/R处理较未接受OGD处理的各组(B1组 vs A1组、B2组 vs A2组),nNOS的mRNA和蛋白质表达均明显上调(均P<0.05或P<0.01);A2组与A1组、A4组与A3组、B2组与B1组相比,nNOS的mRNA和蛋白质表达均明显下调(均P<0.05或P<0.01),但B3组与B4组间nNOS表达差异均无统计学意义(均P>0.05);各亚组间iNOS表达水平差异无统计学意义(均P>0.05)。加抑制剂与未加抑制剂的各组相比(A3组 vs A1组、A4组 vs A2组、B3组 vs B1组、B4组 vs B2组),nNOS的mRNA和蛋白质表达水平均明显下调(均P<0.05或P<0.01),eNOS、iNOS的mRNA和蛋白质表达在上述组间的差异均无统计学意义(均 P>0.05)。
图4.
过表达UBIAD1下调OGD/R后N2a细胞中nNOS的表达
Figure 4 Over-expressed UBIAD1 down-regulated the mRNA and protein expression nNOS in N2a cells after OGD/R
A-D: Histogram showing the mRNA and protein expression of eNOS (A), nNOS (B), iNOS (C), and SPCA1 (D); E: Electrophoregram showing the protein expression of eNOS, nNOS, iNOS, and SPCA1. A1: Con+non-OGD; A2: OE+non-OGD; A3: Con+non-OGD+7-NI; A4: OE+non-OGD+7-NI; B1: Con+OGD/R; B2: OE+OGD/R; B3: Con+OGD/R+7-NI; B4: OE+OGD/R+7-NI. *P<0.05, **P<0.01 vs the Group A1; †P<0.05, ††P<0.01 vs the Group A2; ‡P<0.05, ‡‡P<0.01 vs the Group A3; §P<0.05, §§P<0.01 vs the Group A4; ¶P<0.05, ¶¶P<0.01 vs the Group B1; ǁP<0.05, ǁǁP<0.01 vs the Group B3; #P<0.05, ##P<0.01 vs the Group B2.OGD/R: Oxygen-glucose deprivation/reoxygenation; UBIAD1: UbiA prenyltransferase domain containing 1 protein; eNOS: Endothelial nitric oxide synthase; nNOS: Neuronal nitric oxide synthase; iNOS: Inducible nitric oxide synthase; 7-NI: 7-nitroindazole.
蛋白质印迹法和real-time PCR结果(图4)显示:行OGD/R处理的N2a细胞与未接受OGD处理的N2a细胞相比(B1组vsA1组、B2组vsA2组、B3组vsA3组、B4组vsA4组),SPCA1的mRNA和蛋白质表达均明显下调(均P<0.01);过表达UBIAD1的N2a细胞与正常N2a细胞相比(A2组vsA1组、A4组vsA3组、B2组vsB1组、B4组vsB3组),SPCA1的mRNA和蛋白质表达均明显上调(P<0.05或P<0.01);加抑制剂与未加抑制剂的各组相比(A3组vsA1组、A4组vsA2组、B3组vsB1组、B4组vsB2组),SPCA1的mRNA和蛋白质表达水平差异均无统计学意义(均P>0.05)。
流式细胞仪结果(图5A,5B)显示:未接受OGD处理的各组(A1组、A2组、A3组、A4组)间,细胞凋亡率差异均无统计学意义(均P>0.05);行OGD/R处理的N2a细胞与未接受OGD处理的N2a细胞相比(B1组 vs A1组、B2组 vs A2组、B3组 vs A3组、B4组 vs A4组),细胞凋亡率均明显升高(均P<0.01);行OGD/R处理的N2a细胞,加抑制剂与未加抑制剂的相比(B3组 vs B1组、B4组 vs B2组),过表达UBIAD1与正常的相比(B2组 vs B1组),细胞凋亡率均显著下降(均P<0.01);B4组与B3组之间细胞凋亡率的差异无统计学意义(P>0.05)。
图5.
UBIAD1通过抑制nNOS/NO表达减轻OGD/R后N2a细胞的损伤
Figure 5 UBIAD1 reduced OGD/R induced N2a cell injury through down-regulation of the nNOS/NO pathway
A and B: Cell apoptosis determined by flow cytometry assay; C: NO release of N2a cells. A1: Con+non-OGD; A2: OE+non-OGD; A3: Con+non-OGD+7-NI; A4: OE+non-OGD+7-NI; B1: Con+OGD/R; B2: OE+OGD/R; B3: Con+OGD/R+7-NI; B4: OE+OGD/R+7-NI. *P<0.05, **P<0.01 vs the Group A1; †P<0.05, ††P<0.01 vs the Group A2; ‡P<0.05, ‡‡P<0.01 vs the Group A3; §P<0.05, §§P<0.01 vs the Group A4; ¶P<0.05, ¶¶P<0.01 vs the Group B1; ǁP<0.05, ǁǁP<0.01 vs the Group B3; #<0.05, ##P<0.01 vs the Group B2. OGD/R: Oxygen-glucose deprivation/reoxygenation; UBIAD1: UbiA prenyltransferase domain containing 1 protein; nNOS: Neuronal nitric oxide synthase; 7-NI: 7-nitroindazole.
行OGD/R处理的N2a细胞与未接受OGD处理的N2a细胞相比(B1组 vs A1组、B2组 vs A2组、B3组 vs A3组、B4组 vs A4组),NO含量均升高(均P<0.01);过表达UBIAD1与正常的N2a细胞相比(A2组 vs A1组、B2组 vs B1组),NO含量均减少(均P<0.01);加抑制剂与未加抑制剂的N2a细胞相比(A3组与A1组、A4组与A2组、B3组与B1组、B4组与B2组),NO含量均减少(均P<0.01);B4组的NO含量较B3组升高(P<0.01),A3组与A4组间差异无统计学意义(P>0.05,图5C)。
3. 讨 论
缺血性脑卒中具有高发病率和高致残率的特点,IRI是目前治疗的重点和难点。虽然关于缺血再灌注的研究已有很多,但目前尚无有效的治疗缺血性脑卒中的方法。因此探讨IRI的机制,进而寻找有效的治疗方案具有十分重要的临床意义。
已有研究证实UBIAD1功能障碍可导致心血管疾病[7]、帕金森病[6]、施奈德结晶状角膜营养不良[14]及泌尿系肿瘤[15]。但目前鲜有关于UBIAD1与IRI关系的研究,鉴于UBIAD1通过参与多种物质的合成和调节发挥重要功能,笔者推测UBIAD1在脑IRI中亦可能有神经保护作用。本研究采用体外实验探究UBIAD1在N2a细胞OGD/R损伤中的作用及其机制,结果显示OGD/R可使UBIAD1表达下调,而过表达UBIAD1的N2a细胞经过OGD/R处理后凋亡减少,细胞活力增加,证实UBIAD1可能在OGD/R损伤中对N2a细胞发挥保护作用。
IRI的机制复杂,细胞凋亡及氧化应激在其中发挥重要作用。高尔基体通过自身结构及功能的改变,参与细胞凋亡、鞘脂类代谢、信号转导、抗氧化等过程。SPCA1定位在高尔基体上,其功能主要是维持高尔基体内Ca2+稳态,参与蛋白质从高尔基体转运到细胞质的过程[16]。一方面,SPCA1的活性受氧化应激的调控;另一方面,SPCA1能减轻高尔基体应激,对维持高尔基体功能及形态的完整性起重要作用。体内及体外实验[17-18]均证实SPCA1具有神经保护作用。本研究发现:经OGD/R处理后,N2a细胞的高尔基体形态出现改变,甚至碎裂,N2a细胞SPCA1的表达明显下调。这与既往研究[11, 19-20]结果一致。SPCA1表达下调可能是因为OGD/R处理使高尔基体碎裂,破坏了SPCA1结构或功能的完整性。进一步研究发现:在OGD/R处理后,过表达UBIAD1的N2a细胞高尔基体碎裂明显减少,同时SPCA1的表达上调。这提示UBIAD1对高尔基体有保护作用。UBIAD1可通过维持高尔基体形态完整性及上调SPCA1表达来减轻OGD/R处理后发生的高尔基体应激,从而发挥对N2a细胞的保护作用。
氧化应激在IRI的病理生理过程中扮演重要角色,会进一步触发炎症反应、能量衰竭等。活性氧(reactive oxygen species,ROS)和活性氮(reactive nitrogen species,RNS)在氧化应激损伤中起重要作用,清除ROS/RNS可以减轻氧化应激及IRI。
NO是中枢神经系统重要的神经递质,NO的生成主要受NOS的调控。内源性NO生物利用度降低与动脉粥样硬化、脑卒中、肿瘤等多种疾病有关[21]。低浓度的NO可能促进肿瘤细胞生长;高浓度的NO有细胞毒性,可损害线粒体呼吸链,导致细胞凋亡[22];NO浓度过低或过高均有危害,参与疾病的发生和发展[23]。本研究结果显示:N2a细胞经过OGD/R处理后,NO释放量明显增加,过表达UBIAD1可减少NO的释放,并使细胞凋亡率明显下降。这提示经过OGD/R处理后过高的NO浓度对N2a细胞生长不利,而过表达UBIAD1可能通过减少NO释放对N2a细胞的OGD/R损伤发挥保护作用。
eNOS是一种钙依赖型的合酶,功能受Ca2+浓度的调节,在心血管系统中起重要的调节作用。在正常情况下,eNOS的合成产物是NO,但在缺少四氢生物蝶呤(tetrahydrobiopterin,BH4)或L-精氨酸时,eNOS不能合成NO,而是生成超氧阴离子,这个过程称之为eNOS解偶联,是氧化应激后BH4或者L-精氨酸的氧化所致[24];超氧阴离子氧化NO生成具有极高活性的过氧硝酸盐,过氧硝酸盐又可氧化BH4生成BH3-,降低BH4的水平,进一步导致eNOS解偶联,形成一个恶性循环。eNOS解偶联与高脂血症、高血压、糖尿病等疾病相关。本研究发现OGD/R后N2a细胞中eNOS表达上调,与之前文献[23]的结果一致,可能是OGD/R诱导的氧化应激使细胞内钙超载,Ca2+浓度增加,进而上调eNOS的表达。进一步研究发现:过表达UBIAD1的N2a细胞OGD/R后eNOS表达下调,N2a细胞凋亡率明显下降。其可能原因有二:1)UBIAD1过表达可上调SPCA1的表达,SPCA1作为高尔基体内的钙锰离子泵,可调节Ca2+稳态,从而使OGD/R后N2a细胞内Ca2+浓度降低,eNOS活化减少;2)UBIAD1具有抗氧化作用,其生成的CoQ10可重偶联eNOS[25],过表达UBIAD1后,氧化应激后解偶联的eNOS减少,而重偶联后的eNOS与底物可能形成酶-底物复合物,因此被检测到的量少。
nNOS也是一种钙依赖型的合酶,定位在不同的亚细胞器,可发挥不同的功能,参与多种疾病的病理过程[26]。nNOS在中枢神经系统、周围神经系统、上皮细胞、胰岛细胞、肾上腺等均有表达,与血压的中枢调控、神经元的死亡及脑血管疾病有关。在生理状态下,nNOS精确调控有神经保护作用的NO的生成、释放及失活,但在氧化应激等病理状态(如缺血性脑卒中、帕金森病、阿尔茨海默病等)下,细胞内钙超载能大量激活nNOS,生成过多的NO并导致细胞毒性[27],进一步导致神经元死亡。7-NI是nNOS的选择性抑制剂,选择性强,应用广泛[28]。本研究证实7-NI可显著抑制nNOS的表达,对eNOS及iNOS的表达无影响。nNOS基因敲除及接受7-NI治疗的大鼠与正常大鼠相比,梗死面积明显减少,脑梗死后病灶周围的神经细胞再生明显增多[29]。动物试验[30]也发现抑制nNOS可改善脑缺血损伤,证明在脑梗死中nNOS具有神经毒性,抑制nNOS的活性可通过调节体内NO的含量减轻脑梗死后的缺血性损伤并促进神经再生。
本研究结果发现:在OGD/R处理后,N2a细胞nNOS表达明显上调且细胞凋亡率升高,7-NI可降低OGD/R处理的N2a细胞的凋亡率,但对正常N2a细胞的凋亡率无明显影响。这提示nNOS在OGD/R中对N2a细胞发挥神经毒性作用,而7-NI对N2a细胞无明显毒性作用,且在OGD/R中发挥保护作用,与之前的动物实验[29-30]结果一致。
UBIAD1过表达后,N2a细胞nNOS的表达下调,SPCA1的表达上调,提示UBIAD1、SPCA1和nNOS之间存在一定联系。7-NI抑制nNOS表达后,N2a细胞SPCA1表达无明显变化,UBIAD1过表达后SPCA1表达上调,而nNOS表达下降,说明SPCA1表达不受nNOS的调控,SPCA1可能是nNOS的上游蛋白质。与未进行OGD处理的N2a细胞相比,OGD/R组N2a细胞的nNOS表达上调,UBIAD1过表达后nNOS表达下降,这可能是因为氧化应激后Ca2+超载可大量激活nNOS,而UBIAD1过表达可上调SPCA1表达水平,SPCA1可以调节钙超载并维持Ca2+浓度的稳定,从而减少nNOS的活化。N2a细胞的凋亡率随着nNOS表达的上调而升高,UBIAD1过表达或7-NI抑制nNOS表达后,N2a细胞凋亡率明显下降,说明OGD/R后N2a细胞的凋亡率与nNOS的表达水平呈正相关。
综上,UBIAD1可减轻OGD/R损伤后N2a细胞高尔基体应激及凋亡;UBIAD1可能通过上调SPCA1抑制nNOS/NO途径,发挥神经保护作用(图6)。
图6.
UBIAD1减轻OGD/R损伤的作用及其可能机制
Figure 6 Role of UBIAD1 in reducing OGD/R damage and the underlying mechanism UBIDA1: UbiA prenyltransferase domain containing 1 protein; SPCA1: Secretory pathway Ca2+-ATPase isoform 1; CoQ10: Coenzyme Q10; OGD/R: Oxygen-glucose deprivation/reoxygenation; nNOS: Neuronal NOS; eNOS: Endothelial NOS.
Http://xbyxb.csu.edu.cn
《中南大学学报(医学版)》编辑部
基金资助
国家自然科学基金(8197052473)。
This work was supported by the National Natural Science Foundation (8197052473), China.
利益冲突声明
作者声称无任何利益冲突。
作者贡献
郑海平 实验操作,数据分析,论文写作;涂然然 论文修改;陈春丽 实验指导,论文修改;胡治平 项目立项,实验指导及论文撰写。所有作者阅读并同意最终的文本。
原文网址
http://xbyxb.csu.edu.cn/xbwk/fileup/PDF/2022101332.pdf
参考文献
- 1. Magoufis G, Safouris A, Raphaeli G, et al. Acute reperfusion therapies for acute ischemic stroke patients with unknown time of symptom onset or in extended time windows: an individualized approach[J]. Ther Adv Neurol Disord, 2021, 14: 17562864211021182. 10.1177/17562864211021182. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 2. Mizuma A, Yenari MA. Anti-inflammatory targets for the treatment of reperfusion injury in stroke[J]. Front Neurol, 2017, 8: 467. 10.3389/fneur.2017.00467. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 3. Arslanbaeva, L, Tosi G, Ravazzolo M, et al. UBIAD1 and CoQ10 protect melanoma cells from lipid peroxidation-mediated cell death[J]. Redox Biol, 2022, 51: 102272. 10.1016/j.redox.2022.102272. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 4. Nakagawa, K, Hirota Y, Sawada N, et al. Identification of UBIAD1 as a novel human menaquinone-4 biosynthetic enzyme[J]. Nature, 2010, 468(7320): 117-121. nature0946410.1038/nature09464. [DOI] [PubMed] [Google Scholar]
- 5. Du C, Li Y, Dai L, et al. A mutation in the UBIAD1 gene in a Han Chinese family with Schnyder corneal dystrophy[J]. Mol Vis, 2011, 17: 2685-2692. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3209473. https://doi.org/290. [PMC free article] [PubMed] [Google Scholar]
- 6. Vos M, Esposito G, Edirisinghe JN, et al. Vitamin K2 is a mitochondrial electron carrier that rescues pink1 deficiency[J]. Science, 2012, 336(6086): 1306-1310. 10.1126/science.1218632. [DOI] [PubMed] [Google Scholar]
- 7. Mugoni V, Postel R, Catanzaro V, et al. Ubiad1 is an antioxidant enzyme that regulates eNOS activity by CoQ10 synthesis[J]. Cell, 2013, 152(3): 504-518. 10.1016/j.cell.2013.01.013. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 8. Huang Y, Hu Z. UBIAD1 protects against oxygen-glucose deprivation/reperfusion-induced multiple subcellular organelles injury through PI3K/AKT pathway in N2A cells[J]. J Cell Physiol, 2018, 233(9): 7480-7496. 10.1002/jcp.26602. [DOI] [PubMed] [Google Scholar]
- 9. Liu J, Huang Y, He J, et al. Olfactory mucosa mesenchymal mtem cells ameliorate cerebral ischemic/reperfusion injury through modulation of UBIAD1 expression[J]. Front Cell Neurosci, 2020, 14: 580206. 10.3389/fncel.2020.580206. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 10. Jiang Z, Hu Z, Zeng L, et al. The role of the Golgi apparatus in oxidative stress: is this organelle less significant than mitochondria?[J]. Free Radic Biol Med, 2011, 50(8): 907-917. 10.1016/j.freeradbiomed.2011.01.011. [DOI] [PubMed] [Google Scholar]
- 11. He J, Liu J, Huang Y, et al. Olfactory mucosa mesenchymal stem cells alleviate cerebral ischemia/reperfusion injury via golgi apparatus secretory pathway Ca2+ -ATPase isoform1[J]. Front Cell Dev Biol, 2020, 8: 586541. 10.3389/fcell.2020.586541. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 12. Li T, You H, Zhang J, et al. Study of GOLPH3: a potential stress-inducible protein from golgi apparatus[J]. Mol Neurobiol, 2014, 49(3): 1449-1459. 10.1007/s12035-013-8624-2. [DOI] [PubMed] [Google Scholar]
- 13. Reiling JH, Olive AJ, Sanyal S, et al. A CREB3-ARF4 signalling pathway mediates the response to Golgi stress and susceptibility to pathogens[J]. Nat Cell Biol, 2013, 15(12): 1473-1485. 10.1038/ncb2865. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 14. Jo Y, Hamilton JS, Hwang S, et al. Schnyder corneal dystrophy-associated UBIAD1 inhibits ER-associated degradation of HMG CoA reductase in mice[J/OL]. eLife, 2019, 8: e44396. [2022-03-20]. 10.7554/eLife.44396. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 15. Yan L, Li Q, Sun K, et al. MiR-4644 is upregulated in plasma exosomes of bladder cancer patients and promotes bladder cancer progression by targeting UBIAD1[J]. Am J Transl Res, 2020, 12(10): 6277-6289. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7653622. [PMC free article] [PubMed] [Google Scholar]
- 16. Micaroni M, Perinetti G, Berrie CP, et al. The SPCA1 Ca2+ pump and intracellular membrane trafficking[J]. Traffic, 2010, 11(10): 1315-1333. 10.1111/j.1600-0854.2010.01096.x. [DOI] [PubMed] [Google Scholar]
- 17. BaelenVan, Dode K, Vanoevelen J, et al. The Ca2+/Mn2+ pumps in the Golgi apparatus[J]. Biochim Biophys Acta, 2004, 1742(1/3): 103-112. 10.1016/j.bbamcr.2004.08.018. [DOI] [PubMed] [Google Scholar]
- 18. He W, Hu Z. The role of the Golgi-resident SPCA Ca2+/Mn2+ pump in ionic homeostasis and neural function[J]. Neurochem Res, 2012, 37(3): 455-468. 10.1007/s11064-011-0644-6. [DOI] [PubMed] [Google Scholar]
- 19. Hicks SW, Machamer CE. Golgi structure in stress sensing and apoptosis[J]. Biochim Biophys Acta, 2005, 1744(3): 406-414. 10.1016/j.bbamcr.2005.03.002. [DOI] [PubMed] [Google Scholar]
- 20. Hu Z, Fan J, Zeng L, et al. Transient cerebral ischemia leads to TGF-beta2 expression in Golgi apparatus organelles[J]. Curr Neurovasc Res, 2008, 5(3): 178-184. 10.2174/156720208785425693. [DOI] [PubMed] [Google Scholar]
- 21. Ritchie RH, Drummond GR, Sobey CG, et al. The opposing roles of NO and oxidative stress in cardiovascular disease[J]. Pharmacol Res, 2017, 116: 57-69. 10.1016/j.phrs.2016.12.017. [DOI] [PubMed] [Google Scholar]
- 22. Seabra AB, de Lima R, Calderon M. Nitric oxide releasing nanomaterials for cancer treatment: current status and perspectives[J]. Curr Top Med Chem, 2015, 15(4): 298-308. 10.2174/1568026615666150108122918. [DOI] [PubMed] [Google Scholar]
- 23. Rochette L, Lorin J, Zeller M, et al. Nitric oxide synthase inhibition and oxidative stress in cardiovascular diseases: possible therapeutic targets?[J]. Pharmacol Ther, 2013, 140(3): 239-257. 10.1016/j.pharmthera.2013.07.004. [DOI] [PubMed] [Google Scholar]
- 24. Wierońska JM, Cieślik P, Kalinowski L. Nitric oxide-dependent pathways as critical factors in the consequences and recovery after brain ischemic hypoxia[J]. Biomolecules, 2021, 11(8): 1097. 10.3390/biom11081097. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 25. Chew GT, Watts GF. Coenzyme Q10 and diabetic endotheliopathy: oxidative stress and the 'recoupling hypothesis'[J]. QJM, 2004, 97(8): 537-548. 10.1093/qjmed/hch089. [DOI] [PubMed] [Google Scholar]
- 26. Ally A, Powell I, Ally MM, et al. Role of neuronal nitric oxide synthase on cardiovascular functions in physiological and pathophysiological states[J]. Nitric Oxide, 2020, 102: 52-73. 10.1016/j.niox.2020.06.004. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 27. Zhou QG, Zhu XH, Nemes AD, et al. Neuronal nitric oxide synthase and affective disorders[J]. IBRO Rep, 2018, 5: 116-132. 10.1016/j.ibror.2018.11.004. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 28. 张朝再, 董雷, 牟凤辉, 等. 神经型一氧化氮合酶抑制剂的研究进展[J]. 药学学报, 2014, 49(6): 781-788. https://pubmed.ncbi.nlm.nih.gov/25212021. [PubMed] [Google Scholar]; ZHANG Chaozai, DONG Lei, MU Fenghui, et al. Progress in the studies on neuronal nitric oxide synthase inhibitors[J]. Acta Pharmaceutica Sinica, 2014, 49(6): 781-788. https://pubmed.ncbi.nlm.nih.gov/25212021. [PubMed] [Google Scholar]
- 29. Sun Y, Jin K, Childs JT, et al. Neuronal nitric oxide synthase and ischemia-induced neurogenesis[J]. J Cereb Blood Flow Metab, 2005, 25(4): 485-492. 10.1038/sj.jcbfm.9600049. [DOI] [PubMed] [Google Scholar]
- 30. Luo CX, Zhu XJ, Zhou QG, et al. Reduced neuronal nitric oxide synthase is involved in ischemia-induced hippocampal neurogenesis by up-regulating inducible nitric oxide synthase expression[J]. J Neurochem, 2007, 103(5): 1872-1882. 10.1111/j.1471-4159.2007.04915.x. [DOI] [PubMed] [Google Scholar]






