Abstract
目的
多发性骨髓瘤(multiple myeloma,MM)是好发于中老年的浆细胞恶性肿瘤,发病机制尚不清楚。由于其多发、复发、耐药的特点,MM仍是一种无法治愈的疾病。氨基酸代谢异常是MM的重要特征之一。氨基酸重要的代谢途径是作为基本原料参与蛋白质合成。氨酰转移核糖核酸合成酶(aminoacyl transfer ribonucleic acid synthetase,ARS)基因是蛋白质合成过程中的关键调节基因。本研究旨在探究在MM中异常表达的氨基酸代谢关键因子ARS通过调控氨基酸代谢影响MM生长的分子机制。
方法
对应基因编号合并基因表达综合(Gene Expression Omnibus,GEO)数据库中基因表达谱GSE5900数据集及GSE2658数据集数据,对ARS家族基因表达数据进行标准化处理。采用GSEA_4.2.0软件分析健康供者(healthy donor,HD)与MM患者基因富集的差异。采用GraphPad Prism 7绘制基因热图并进行数据分析。采用Kaplan-Meier及Cox回归模型分别对ARS家族基因表达与MM患者预后情况进行单因素及多因素回归分析。收集7例MM初诊患者的骨髓样本,使用CD138抗体磁珠分选获得CD138+、CD138-细胞,采用real-time RT-PCR分析ARS在MM临床样本中的表达情况。以人B淋巴细胞GM12878细胞,人MM细胞系ARP1、NCI-H929、OCI-MY5、U266、RPMI 8266、OPM-2、JJN-3、KMS11、MM1.s细胞为研究对象,采用real-time RT-PCR及蛋白质印迹法分析ARS在MM细胞系中的表达情况。利用短发夹核糖核酸(short hairpin RNA,shRNA)慢病毒构建基因敲减质粒(VARS-sh组),将其与空载质粒(scramble组)分别转染HEK 293T细胞后进行病毒包装,分别感染ARP1、OCI-MY5细胞并建立稳定表达的细胞系,分别采用细胞计数法和流式细胞术检测敲减缬氨酰tRNA合成酶(valyl-tRNA synthetase,VARS)基因对MM细胞增殖和凋亡的影响。根据VARS表达将GEO数据分为高表达组和低表达组,通过生物信息学分析探索VARS影响的下游通路,采用飞行时间质谱(gas chromatography time-of-flight/mass spectrometry,GC-TOF/MS)及高效液相色谱(high performance liquid chromatography,HPLC)分别检测临床患者骨髓样本CD138 + 细胞及敲减VARS基因的ARP1、OCI-MY5细胞及上清液中缬氨酸含量。
结果
基因富集分析结果表明:与HD相比,tRNA加工相关的基因在MM中显著富集(P<0.0001)。进一步筛选tRNA加工通路相关子集发现胞质氨酰tRNA合成酶家族基因在MM中显著富集(P<0.0001)。基因表达热图结果表明GEO数据中ARS家族基因除丙氨酰tRNA合成酶(alanyl-tRNA synthetase,AARS)、精氨酰tRNA合成酶(arginyl-tRNA synthetase,RARS)、丝氨酰tRNA合成酶(seryl-tRNA synthetase,SARS)外,其余ARS家族基因均在MM中高表达(均P<0.01),且随着意义未明单克隆丙种球蛋白血症(monoclonal gammopathy of undetermined significance,MGUS)到MM的发展进程,基因表达水平逐渐增加。Kaplan-Meier生存情况单因素分析结果表明甲硫氨酰tRNA合成酶(methionyl-tRNA synthetase,MARS)、天冬酰胺基tRNA合成酶(asparaginyl-tRNA synthetase,NARS)、VARS高表达组与低表达组MM患者预后情况差异均具有统计学意义(均P<0.05)。Cox回归模型多因素分析结果表明:VARS的高表达与MM的总生存时间异常有关(HR=1.83,95% CI 1.10~3.06,P=0.021);NARS(HR=0.90,95% CI 0.34~2.38)及MARS(HR=1.59,95% CI 0.73~3.50)的高表达均对MM患者的总生存时间无影响(均P>0.05)。Real-time RT-PCR及蛋白质印迹法结果表明VARS、MARS和NARS在临床患者CD138+ MM细胞及MM细胞系中均高表达(均P<0.05)。细胞计数法及流式细胞术结果表明,敲减VARS的MM细胞增殖能力被显著抑制(P<0.01),细胞凋亡率明显升高(P<0.05)。生物信息学分析结果表明除包括细胞周期在内的通路受VARS调控外,缬氨酸、亮氨酸和异亮氨酸分解代谢通路被上调。非靶向代谢组学数据表明:与HD相比,MM患者的CD138+ MM细胞中缬氨酸含量降低(P<0.05)。HPLC结果表明:与scramble组相比,VARS-shRNA组的ARP1细胞与培养基上清液及OCI-MY5培养基上清液中缬氨酸含量均增加(均P<0.05)。
结论
VARS在MM中异常高表达,且与MM患者的不良预后相关。VARS可通过影响缬氨酸代谢调控促进MM细胞的生长。
Keywords: 多发性骨髓瘤, 氨酰转移核糖核酸合成酶, 缬氨酰转移核糖核酸合成酶, 缬氨酸
Abstract
Objective
Multiple myeloma (MM) is a plasma cell malignancy occurring in middle and old age. MM is still an incurable disease due to its frequent recurrence and drug resistance. However, its pathogenesis is still unclear. Abnormal amino acid metabolism is one of the important characteristics of MM, and the important metabolic pathway of amino acids participates in protein synthesis as basic raw materials. Aminoacyl transfer ribonucleic acid synthetase (ARS) gene is a key regulatory gene in protein synthesis. This study aims to explore the molecular mechanism for ARS, a key factor of amino acid metabolism, in regulating amino acid metabolism in MM and affecting MM growth.
Methods
The corresponding gene number was combined with the gene expression profile GSE5900 dataset and GSE2658 dataset in Gene Expression Omnibus (GEO) database to standardize the gene expression data of ARS. GSEA_4.2.0 software was used to analyze the difference of gene enrichment between healthy donors (HD) and MM patients in GEO database. GraphPad Prism 7 was used to draw heat maps and perform data analysis. Kaplan-Meier and Cox regression model were used to analyze the expression of ARS gene and the prognosis of MM patients, respectively. Bone marrow samples from 7 newly diagnosed MM patients were collected, CD138+ and CD138- cells were obtained by using CD138 antibody magnetic beads, and the expression of ARS in MM clinical samples was analyzed by real-time RT-PCR. Human B lymphocyte GM12878 cells and human MM cell lines ARP1, NCI-H929, OCI-MY5, U266, RPMI 8266, OPM-2, JJN-3, KMS11, MM1.s cells were selected as the study objects. The expression of ARS in MM cell lines was analyzed by real-time RT-PCR and Western blotting. Short hairpin RNA (shRNA) lentiviruses were used to construct gene knock-out plasmids (VARS-sh group). No-load plasmids (scramble group) and gene knock-out plasmids (VARS-sh group) were transfected into HEK 293T cells with for virus packaging, respectively. Stable expression cell lines were established by infecting ARP1 and OCI-MY5 cells, and the effects of knockout valyl-tRNA synthetase (VARS) gene on proliferation and apoptosis of MM cells were detected by cell counting and flow cytometry, respectively. GEO data were divided into a high expression group and a low expression group according to the expression of VARS. Bioinformatics analysis was performed to explore the downstream pathways affected by VARS. Gas chromatography time-of-flight mass spectrometry (GC-TOF/MS) and high performance liquid chromatography (HPLC) were used to detect the valine content in CD138+ cells and ARP1, OCI-MY5 cells and supernatant of knockdown VARS gene in bone marrow samples from patients, respectively.
Results
Gene enrichment analysis showed that tRNA processing related genes were significantly enriched in MM compared with HD (P<0.0001). Further screening of tRNA processing-pathway related subsets revealed that cytoplasmic aminoacyl tRNA synthetase family genes were significantly enriched in MM (P<0.0001). The results of gene expression heat map showed that the ARS family genes except alanyl-tRNA synthetase (AARS), arginyl-tRNA synthetase (RARS), seryl-tRNA synthetase (SARS) in GEO data were highly expressed in MM (all P<0.01). With the development of monoclonal gammopathy of undetermined significance (MGUS) to MM, the gene expression level was increased gradually. Kaplan-Meier univariate analysis of survival results showed that there were significant differences in the prognosis of MM patients in methionyl-tRNA synthetase (MARS), asparaginyl-tRNA synthetase (NARS) and VARS between the high expression group and the low expression group (all P<0.05). Cox regression model multivariate analysis showed that the high expression of VARS was associated with abnormal overall survival time of MM (HR=1.83, 95% CI 1.10 to 3.06, P=0.021). The high expression of NARS (HR=0.90, 95% CI 0.34 to 2.38) and MARS (HR=1.59, 95% CI 0.73 to 3.50) had no effect on the overall survival time of MM patients (both P>0.05). Real-time RT-PCR and Western blotting showed that VARS, MARS and NARS were highly expressed in CD138+ MM cells and MM cell lines of clinical patients (all P<0.05). Cell counting and flow cytometry results showed that the proliferation of MM cells by knockout VARS was significantly inhibited (P<0.01), the proportion of apoptosis was significantly increased (P<0.05). Bioinformatics analysis showed that in addition to several pathways including the cell cycle regulated by VARS, the valine, leucine and isoleucine catabolic pathways were upregulated. Non-targeted metabolomics data showed reduced valine content in CD138+ tumor cells in MM patients compared to HD (P<0.05). HPLC results showed that compared with the scramble group, the intracellular and medium supernatant content of ARP1 cells and the medium supernatant of OCI-MY5 in the VARS-shRNA group was increased (all P<0.05).
Conclusion
MM patients with abnormal high expression of VARS have a poor prognosis. VARS promotes the malignant growth of MM cells by affecting the regulation of valine metabolism.
Keywords: multiple myeloma, aminoacyl transfer ribonucleic acid synthetase, valyl transfer ribonucleic acid synthetase, valine
多发性骨髓瘤(multiple myeloma,MM)是好发于中老年的浆细胞恶性肿瘤,常伴有多发性溶骨性损害、高钙血症、贫血、肾损害等[1]。尽管MM患者的生存时间因蛋白酶体抑制剂硼替佐米(bortezomib,BTZ)等新药及新方案的治疗明显延长,但由于其多发、复发、耐药的特点发,MM仍是一种无法治愈的疾病,且发病机制尚不清楚。探究MM病因,寻找新的治疗靶点,对提高MM疗效至关重要。
细胞能量代谢异常是肿瘤十四大特征之一,肿瘤细胞的代谢重编程可调节大量致癌物质的代谢,满足肿瘤增殖的营养需求,促使肿瘤细胞恶性增殖[2]。近年来,对代谢失衡在MM发生和发展中的作用及机制的研究日渐增加。本课题组前期通过对健康人和MM患者外周血及骨髓上清液进行代谢组学分析发现:MM患者丝氨酸、甘氨酸代谢发生显著改变,谷胱甘肽代谢失衡阻断甘氨酸的利用进而抑制MM进展[3];丝氨酸合成途径关键限速酶磷酸甘油酸脱氢酶(phosphoglycerate dehydrogenase,PHGDH)可通过增加还原型谷胱甘肽的合成进而促进MM细胞增殖和对BTZ的耐药[4];骨髓微环境中过量丝氨酸会损害MM患者的巨核细胞和血小板生成,而抑制丝氨酸利用或用促血小板生成素治疗可增强巨核细胞和血小板生成并抑制MM的进展[5]。可见,氨基酸代谢异常在MM的发生和发展中发挥重要作用。
氨基酸作为基本原料参与蛋白质合成是其最重要的代谢途径。氨酰转移核糖核酸合成酶(aminoacyl transfer ribonucleic acid synthetase,ARS)是蛋白质合成过程中的关键调节基因之一,其作用是将氨基酸结合到对应的转移核糖核酸(transfer ribonucleic acid,tRNA)上,形成氨酰tRNA后进入核糖体进行蛋白质合成[6]。ARS家族基因参与多种生理和病理过程,包括血管生成、神经系统发育、免疫系统疾病和肿瘤的发生和发展等[7]。但目前针对ARS在MM中的研究较少,本研究旨在通过分析ARS在MM中的表达情况,下调ARS表达对MM细胞增殖、凋亡的影响和相关机制,为MM患者寻找新的治疗靶点。
1. 材料与方法
1.1. 材料
人B淋巴细胞 GM12878细胞,人MM细胞系ARP1、NCI-H929、OCI-MY5、U266、RPMI 8266、OPM-2、JJN-3、KMS11、MM1.s细胞,人胚肾细胞系HEK 293T细胞,质粒pLKO.1 puro均由中南大学肿瘤研究所周文教授赠予。7例MM初诊患者的骨髓标本均取自中南大学湘雅医院,16例健康供者(healthy donor,HD)的骨髓标本取自中南大学湘雅二医院,30例MM患者的骨髓标本取自中南大学湘雅医院与中南大学湘雅三医院,并获得所有患者的书面知情同意。RPMI 1640、DMEM、胎牛血清、磷酸盐缓冲液均购自美国Gibco公司;青霉素-链霉素混合液、十二烷基硫酸钠(sodium dodecylsulfate,SDS)、过硫酸铵、封闭液、丙烯酰胺均购自北京鼎国昌盛生物技术有限责任公司;BCA蛋白质浓度测定试剂盒购自南京诺唯赞生物科技股份有限公司;FITC Annexin V细胞凋亡检测试剂盒购自美国Becton,Dickinson Biosciences公司;CD138抗体磁珠购自美国Miltenyi Biotec公司;RIPA裂解液购自江苏康为世纪生物科技股份有限公司;蛋白酶抑制剂混合物、红细胞裂解液均购自上海碧云天生物技术有限公司;氨基酸标准品、三羟甲基氨基甲烷(trihydroxymethyl aminomethane,Tris)缓冲盐溶液(Tris buffered saline,TBS)、淋巴细胞分离液均购自美国Sigma公司;1 mol/L Tris-HCl(pH=6.8)、1.5 mol/L Tris-HCl(pH=8.8)、吐温-20均购自北京索莱宝科技有限公司;甲硫氨酰tRNA合成酶(methionyl-tRNA synthetase,MARS)、天冬酰胺基tRNA合成酶(asparaginyl-tRNA synthetase,NARS)、缬氨酰tRNA合成酶(valyl-tRNA synthetase,VARS)干扰序列和MARS、NARS、VARS、GAPDH引物均购自北京擎科生物科技股份有限公司;Eastep®超级总RNA提取试剂盒购自上海Promega公司;反转录酶第一链cDNA合成试剂盒、PowerUpTM SYBRTM Green 预混液、PierceTM ECL Western印迹底物均购自美国赛默飞世尔科技公司;β-actin抗体购自美国Cell Signaling Technology公司;VARS抗体购自武汉三鹰生物技术有限公司;甘油醛-3-磷酸脱氢酶(glyceraldehyde-3-phosphate dehydrogenase,GAPDH)抗体购自美国Proteintech公司;Age Ⅰ和EcoR Ⅰ限制性核酸内切酶均购自美国New England Biolabs公司;T4 DNA连接酶购自北京全式金生物技术股份有限公司。细胞培养箱、PCR仪为美国赛默飞世尔科技公司产品;RNA含量检测仪器为瑞士罗氏公司产品;电泳仪为上海伯乐公司产品;流式细胞仪为美国Becton,Dickinson Biosciences公司产品。
1.2. 方法
1.2.1. 数据收集和生物信息分析
基于基因表达综合(Gene Expression Omnibus,GEO)数据库(http://www.ncbi.nlm.nih.gov/geo)中基因表达谱GSE5900数据集中22例HD、44例意义未明单克隆丙种球蛋白血症(monoclonal gammopathy of undetermined significance,MGUS)患者、12例冒烟型多发性骨髓瘤(smoldering multiple myeloma,SMM)患者,以及GSE2658数据集中559例MM患者的基因表达情况[8],对应基因编号将2个数据集合并后,对ARS家族基因表达数据进行标准化处理,采用GraphPad Prism 7绘制热图、数据分析,Kaplan-Meier分析基因表达与疾病进展预后的相关性。采用基因富集分析(gene set enrichment analysis,GSEA)_4.2.0软件进行基因集富集分析。tRNA加工相关基因集(REACTOME_TRNA_PROCESSING.v7.5.1)、胞质氨酰tRNA合成酶家族基因集(REACTOME_CYTOSOLIC_TRNA_AMINOACYLATION.v7.5.1)、京都基因和基因组百科全书(Kyoto Encyclopedia of Genes and Genomes,KEGG)数据集(c2.cp.kegg.v2023.1.Hs.symbols),缬氨酸、亮氨酸和异亮氨酸分解基因集(KEGG_VALINE_LEUCINE_AND_ISOLEUCINE_ DEGRADATION.v7.5.1)在GSEA数据库(https://www.gsea-msigdb.org/gsea/index.jsp)中下载,数据集使用GEO数据中HD与MM基因表达数据。将GEO数据按照VARS的表达水平以四分位法分组,取分组的上下2个区间作为VARS高表达与低表达组数据集进行VARS下游通路GSEA分析。
1.2.2. 细胞培养
人胚肾细胞系HEK 293T细胞使用含10%FBS和1×青霉素-链霉素的DMEM培养基,人B细胞系GM12878细胞,人MM细胞系ARP1、NCI-H929、OCI-MY5、U266、RPMI 8266、OPM-2、JJN-3、KMS11、MM1.s细胞均使用含10%胎牛血清和1×青霉素-链霉素的RPMI 1640培养基,所有细胞均在37 ℃,5% CO2条件下培养。
1.2.3. Real-time RT-PCR
收集7例MM初诊患者的骨髓样本,用淋巴细胞分离液分离MM患者骨髓样本中单个核细胞,红细胞裂解液裂解红细胞,使用CD138抗体磁珠分选获得CD138+、CD138-细胞,并以CD138-细胞作为对照。按照Eastep®超级总RNA提取试剂盒说明书提取细胞总RNA;总RNA按照反转录酶第一链cDNA合成试剂盒说明书进行反转录合成cDNA,反应程序为:25 ℃ 5 min,42 ℃ 60 min,70 ℃ 5 min。反应结束后用无酶水稀释5倍,-20 ℃储存备用;使用PowerUpTM SYBRTM Green预混液进行PCR扩增,引物序列见表1,反应程序为:95 ℃ 2 min,随后进行40个循环,每个循环为95℃ 15 s,60 ℃ 15 s,72 ℃ 1 min,最后72 ℃ 5 min。以GAPDH为内参,采用2-ΔΔCt计算mRNA表达水平[9]。
表1.
Real-time RT-PCR引物序列
Table 1 Sequences of primers for real-time RT-PCR
| 引物名称 | 引物序列 |
|---|---|
| VARS | 正向:5'-TGTGACTCGCTGGTTTGTCA-3' |
| 反向:5'-TTTGGTTTCTTCTCCCCTGGA-3' | |
| MARS | 正向:5'-TGACCACAGCTTGAGTCGTC-3' |
| 反向:5'-CCCCACAAAACAATGTCGGC-3' | |
| NARS | 正向:5'-CCAGCCCTGGGAGATGTTTT-3' |
| 反向:5'-AAGGACACTCAGCTTCCACG-3' | |
| GAPDH | 正向:5'-TCATGACCACAGTCCATGCC-3' |
| 反向:5'-AAGTGGTCGTTGAGGGCAAT-3' |
VARS:缬氨酰tRNA合成酶;MARS:甲硫氨酰tRNA合成酶;NARS:天冬酰胺基tRNA合成酶;GAPDH:甘油醛-3-磷酸脱氢酶;tRNA:转移核糖核酸。
1.2.4. 蛋白质印迹法
用RIPA裂解液冰上孵育裂解细胞30 min,每 10 min涡旋振荡1次,每次振荡10 s。采用BCA蛋白质浓度测定试剂盒测定蛋白质浓度。取相同质量蛋白质进行SDS-PAGE分离蛋白质,恒压80 V电泳 2 h,恒流200 mA转膜2 h,用含5%脱脂奶粉的TBS在室温下封闭1 h,加入一抗VARS(1꞉1 000)、β-actin(1꞉2 000)、GAPDH(1:5 000),于4 ℃孵育过夜,用TBST洗膜3次,每次10 min,加入对应二抗(1꞉5 000),在室温下孵育1 h,用TBST洗膜,采用PierceTM ECL Western印迹底物显影[9]。
1.2.5. 基因敲减细胞系的构建
使用RNA干扰设计网站(https://rnaidesigner.thermofisher.com/rnaiexpress/sort.do)设计MARS、NARS、VARS干扰序列,具体序列见表2。引物与退火缓冲液混匀后95 ℃ 5 min,自然冷却至室温,将 Age Ⅰ和EcoR Ⅰ酶切的慢病毒干扰载体pLKO.1 puro与退火的MARS、NARS、VARS干扰序列连接,转化涂板并测序鉴定,将构建成功的敲减MARS质粒 (MARS-sh组)、敲减NARS质粒(NARS-sh组)、敲减VARS质粒(VARS-sh组)和空载质粒(scramble组)分别转染HEK 293T细胞进行病毒包装,48 h后收获病毒,分别感染ARP1、OCI-MY5细胞,48 h后使用1 mg/mL嘌呤霉素进行筛选,获得稳定表达的细胞系。
表2.
基因干扰序列
Table 2 Sequences of primers for gene interfering
| 引物名称 | 序列 |
|---|---|
| VARS-shRNA | 正向:5'-CCGGGCCTGACTGTTTCCTGGAAGTCTCGAGACTTCCAGGAAACAGTCAGGCTTTTT-3' |
| 反向:5'-AATTAAAAAGCCTGACTGTTTCCTGGAAGTCTCGAGACTTCCAGGAAACAGTCAGGC-3' | |
| MARS-shRNA | 正向:5'-CCGGGCTATGGCTGTTACTGCTTGGCTCGAGCCAAGCAGTAACAGCCATAGCTTTTT-3' |
| 反向:5'-AATTAAAAAGCTATGGCTGTTACTGCTTGGCTCGAGCCAAGCAGTAACAGCCATAGC-3' | |
| NARS-shRNA | 正向:5'-CCGGGCATAGTGCATGAGCTCAACCCTCGAGGGTTGAGCTCATGCACTATGCTTTTT-3' |
| 反向:5'-AATTAAAAAGCATAGTGCATGAGCTCAACCCTCGAGGGTTGAGCTCATGCACTATGC-3' |
加粗序列为与相应基因编码序列区形成互补的序列。VARS:缬氨酰tRNA合成酶;MARS:甲硫氨酰tRNA合成酶;NARS:天冬酰胺基tRNA合成酶;shRNA:短发夹核糖核酸;tRNA:转移核糖核酸。
1.2.6. 细胞增殖实验
将生长状态良好的ARP1、OCI-MY5细胞分别按7.5×104个/孔、1×105个/孔的密度接种于12孔板中,补充培养基至1 mL,每2 d换液,连续5 d每24 h取适量细胞用台盼蓝染色后计数。
1.2.7. 流式细胞术检测细胞凋亡
按照FITC Annexin V细胞凋亡检测试剂盒说明书处理细胞,加入2 μL Annexin V-别藻蓝蛋白(allophycocyanin,APC),4 μL 7-氨基放线菌素D (7-aminoactinomycin D,7-AAD),于室温避光孵育 15 min,使用流式细胞仪检测细胞凋亡情况。
1.2.8. 缬氨酸含量检测
采用飞行时间质谱(gas chromatography time-of-flight/mass spectrometry,GC-TOF/MS)配备Agilent 7 890B气相色谱仪进行代谢组学研究[3],分选16例HD、30例MM患者的骨髓样本中的CD138+细胞,并进行氨基酸样本提取。破碎CD138+细胞,离心干燥,用甲氧胺(20 mg/mL的吡啶溶液)于30 ℃溶解样本2 h溶解,然后加入50 μL N-甲基-N-(三甲基硅烷)三氟 乙酰胺[N-methyl-N-(trimethylsilyl)trifluoroacetamide,MSTFA]+1%三甲基氯硅烷(chlorotrimethylsilane,TMCS)制备样品,上机检测。
采用高效液相色谱(high performance liquid chromatography,HPLC)检测成功转染VARS敲减质粒(VARS-sh组)和空载质粒(scramble组)的ARP1、OCI-MY5细胞与培养基上清液的缬氨酸含量。1)样品处理:收集细胞培养基上清液,按照0.02 g/mL的量加入5-磺基水杨酸沉淀蛋白质,冰浴10 min后以 8 000 r/min离心10 min,取上清液用0.22 μm滤膜过滤;收集1×107个ARP1或OCI-MY5细胞,加入 80 μL 10 mmol/L的HCl,混匀后-80 ℃反复冻融2次,加入20 μL 5% 5-磺基水杨酸沉淀蛋白质,以13 000 r/min离心5 min,取上清液稀释后用0.22 μm滤膜过滤。2)流动相:流动相A用50 mmol/L醋酸钠(加入冰醋酸将pH值调至6.8),流动相B为色谱级甲醇。3)色谱柱的洗脱程序:20%流动相B 0.02 min,25%流动相B 6 min,37%流动相B 16 min,59%流动相B 25 min,78%流动相B 29 min,78%流动相B 32 min,25%流动相B 35 min,25%流动相B 40 min,流速为1 mL/min。4)上样检测:处理后的样品与邻苯二甲醛 (o-phthalaldehyde,OPA)衍生剂混合,体积比为1꞉10,避光静置3 min后上机检测。
1.3. 统计学处理
采用 SPSS 19.0 和GraphPad Prism 9软件对数据进行分析。数据均以均数±标准差( ±s)的形式表示,若2组数据服从正态分布且方差齐,采用t检验分析,若2组数据不服从正态分布或方差不齐,采用非参数秩和检验。采用FlowJo软件分析细胞凋亡的百分比[9]。采用Kaplan-Meier进行单因素生存分析,采用Cox回归模型进行多因素生存分析。P<0.05为差异有统计学意义。
2. 结 果
2.1. ARS 家族基因在MM中高表达
利用GSEA_4.2.0软件分析GEO数据库中HD与MM患者基因富集的差异,结果发现:与HD相比,tRNA加工相关的基因在MM中显著富集(P<0.0001,图1A);进一步筛选tRNA加工通路相关子集发现胞质氨酰tRNA合成酶家族基因在MM中显著富集(P<0.0001,图1B)。基因表达热图结果表明:GEO数据中ARS家族基因除丙氨酰tRNA合成酶(alanyl-tRNA synthetase,AARS)、精氨酰tRNA合成酶(arginyl-tRNA synthetase,RARS)、丝氨酰tRNA合成酶(seryl-tRNA synthetase,SARS)外,MARS、NARS、VARS、半胱氨酸tRNA合成酶(cysteinyl-tRNA synthetase,CARS)、天冬氨酰tRNA合成酶(aspartyl-tRNA synthetase,DARS)、甘氨酰tRNA合成酶(glycyl-tRNA synthetase,GARS)、组氨酰tRNA合成酶(histidyl-tRNA synthetase,HARS)、异亮氨酰tRNA合成酶(isoleucyl-tRNA synthetase,IARS)、赖氨酰tRNA合成酶(lysyl-tRNA synthetase,KARS)、亮氨酰tRNA合成酶(leucyl-tRNA synthetase,LARS)、谷酰胺基tRNA合成酶(glutaminyl-tRNA synthetase,QARS)、苏氨酰tRNA合成酶(threonyl-tRNA synthetase,TARS)、色氨酰tRNA合成酶(tryptophanyl-tRNA synthetase,WARS)、酪氨酰tRNA合成酶(tyrosyl-tRNA synthetase,YARS)、谷氨酰tRNA合成酶(glutamyl-tRNA synthetase,EARS)均在MM中高表达(均P<0.01),且随着MGUS到MM的发展进程,基因表达水平逐渐增加(图1C、1D),提示ARS家族基因在MM发生和发展中发挥重要的作用。
图1.
ARS在MM中高表达
Figure 1 Highly expressed ARS in MM
A: tRNA processing-related genes was positively enriched in MM by GSEA. B: Cytosolic tRNA aminoacylation-related genes was positively enriched in MM by GSEA. C and D: Heat map analysis (C) and expression analysis of different disease processes of a single gene (D) revealed high expression of ARS in MM by analyzing GEO data. HD: Healthy donor (n=22); MM: Multiple myeloma (n=559); MGUS: Monoclonal gammopathy of undetermined significance (n=44); SMM: Smoldering multiple myeloma (n=12); MARS: Methionyl-tRNA synthetase; NARS: Asparaginyl-tRNA synthetase; VARS: Valyl-tRNA synthetase; AARS: Alanyl-tRNA synthetase; CARS: Cysteinyl-tRNA synthetase; DARS: Aspartyl-tRNA synthetase; GARS: Glycyl-tRNA synthetase; HARS: Histaminoyl-tRNA synthetase; IARS: Isoleucyl-tRNA synthetase; KARS: Lysyl-tRNA synthetase; LARS: Leucyl-tRNA synthetase; QARS: Glutaminyl-tRNA synthetase; RARS: Arginyl-tRNA synthetase; SARS: Seryl-tRNA synthetase; TARS: Threonyl-tRNA synthetase; WARS: Trypanoyl-tRNA synthetase; YARS: Tyrosyl-tRNA synthetase; EARS: Glutamyl-tRNA synthetase; ARS: Aminoacyl-tRNA synthetase; GSEA: Gene set enrichment analysis; tRNA: Transfer ribonucleic acid. *P<0.05, **P<0.01, ***P<0.001.
2.2. ARS家族基因表达与MM患者预后的关系
Kaplan-Meier生存分析结果表明:MARS、NARS、VARS高表达组与低表达组生存情况差异均具有统计学意义(均P<0.05),而CARS、DARS、GARS、HARS、IARS、KARS、LARS、QARS、TATS、WARS、YARS、EARS的高表达组与低表达组生存情况差异均无统计学意义(均P>0.05,图2)。MARS、NARS高表达组及MARS、NARS、VARS低表达组患者未统计出中位生存期,VARS高表达组中位生存期为57.85个月,提示VARS高表达与MM的不良预后相关性更密切(图2)。
图2.
ARS的表达与MM患者预后的关系
Figure 2 Relationship between the expression of ARS and the prognosis of MM patients MARS: Methionyl-tRNA synthetase; NARS: Asparaginyl-tRNA synthetase; VARS: Valyl-tRNA synthetase; CARS: Cysteinyl-tRNA synthetase; DARS: Aspartyl-tRNA synthetase; GARS: Glycyl-tRNA synthetase; HARS: Histaminoyl-tRNA synthetase; IARS: Isoleucyl-tRNA synthetase; KARS: Lysyl-tRNA synthetase; LARS: Leucyl-tRNA synthetase; QARS: Glutaminyl-tRNA synthetase;TARS: Threonyl-tRNA synthetase; WARS: Trypanoyl-tRNA synthetase; YARS: Tyrosyl-tRNA synthetase; EARS: Glutamyl-tRNA synthetase; ARS: Aminoacyl-tRNA synthetase; tRNA: Transfer ribonucleic acid.
考虑基因之间表达的混杂影响,本研究将MARS、NARS、VARS基因的表达情况纳入多因素分析,取GEO数据中MARS、NARS、VARS表达值四分位的上下2个区间的交集进行多因素Cox回归分析,结果表明:调整MARS、NARS基因表达的影响后,VARS的高表达与MM的总生存时间异常有关(HR=1.83,95% CI 1.10~3.06,P=0.021);调整MARS、VARS基因表达的影响后,NARS的高表达对MM患者的总生存时间无影响(HR=0.90,95% CI 0.34~2.38,P=0.827);调整NARS、VARS基因表达的影响后,MARS的高表达对MM患者的总生存时间无影响(HR=1.59,95% CI 0.73~3.50,P=0.274;图3)。
图3.
Cox回归分析VARS表达对MM生存的影响
Figure 3 Effect of VARS expression on MM survival analyzed by Cox regression
VARS: Valyl-tRNA synthetase; NARS: Asparaginyl-tRNA synthetase; MARS: Methionyl-tRNA synthetase; HR: Hazard ratio; CI: Confidence interval; MM: Multiple myeloma.
2.3. VARS在CD138+ MM细胞中高表达
Real-time RT-PCR结果表明:VARS的mRNA在MM患者的CD138+肿瘤细胞的表达水平显著高于CD138-肿瘤细胞(P<0.01,图4A);VARS的mRNA在MM细胞系(ARP1、NCI-H929、U266、RPMI 8266、OPM-2、JJN-3细胞)的表达水平均显著高于正常人B淋巴细胞系GM12878细胞(均P<0.05,图4B)。蛋白质印迹结果表明:VARS蛋白质在MM细胞系(ARP1、NCI-H929、OCI-MY5、KMS11、MM1.s细胞)中的表达水平均高于正常人B淋巴细胞系GM12878细胞(均P<0.05,图4C)。
图4.
VARS在MM临床样本及MM细胞系中高表达
Figure 4 Highly expressed VARS in MM clinical samples and MM cell lines
A: VARS mRNA expression levels in CD138+ and CD138- cells of MM patients were detected by real-time RT-PCR. B: VARS mRNA expression levels in GM12878 and MM cell line were detected by real-time RT-PCR. C: Protein relative expression of VARS in GM12878 and MM cell line was detected by Western blotting. VARS: Valyl-tRNA synthetase; MM: Multiple myeloma.*P<0.05, **P<0.01, ***P<0.001.
2.4. 敲减VARS抑制MM细胞的增殖
Real-time RT-PCR及蛋白质印迹法结果表明:在ARP1和OCI-MY5细胞中,VARS-shRNA组VARS的mRNA及蛋白质表达水平均显著低于scramble组(P<0.001,图5A、5B)。提示VARS基因敲减效率较高,均在80%以上。细胞计数结果表明:在ARP1及 OCI-MY5细胞中,与scramble组相比,VARS-shRNA组的细胞数目显著减少(P<0.01,图5C)。凋亡检测结果表明:在ARP1细胞中,scramble组和VARS-shRNA组的细胞凋亡率分别为8.55%和21.82%;在OCI-MY5细胞中,scramble组和VARS-shRNA组的细胞凋亡率分别为7.81%和为20.28%,在此2种细胞中VARS-shRNA组的细胞凋亡率均明显高于scramble组(均P<0.05,图5D)。
图5.
VARS敲减的MM细胞增殖情况
Figure 5 Proliferation of VARS knockdown MM cells
A: Knockdown efficiency was detected by real-time RT-PCR in ARP1 and OCI-MY5 cells; B: Knockdown efficiency was detected by Western blotting in ARP1 and OCI-MY5 cells; C: Cell proliferation was detected by cell counting; D: Apoptosis of ARP1 and OCI-MY5 cells was detected by flow cytometry.VARS: Valyl-tRNA synthetase; MARS: Methionyl-tRNA synthetase; NARS: Asparaginyl-tRNA synthetase; MM: Multiple myeloma; 7-AAD: 7-Aminoactinomycin D; APC: Allophycocyanin.*P<0.05, **P<0.01, ***P<0.001.
2.5. VARS的异常高表达影响缬氨酸的利用
将GEO数据按照VARS的表达水平分为VARS高表达与低表达组,利用GSEA中c2.cp.kegg.v2023.1.Hs.symbols基因集分析VARS影响的通路,结果发现:除了包括细胞周期在内的通路受VARS调控外,缬氨酸、亮氨酸和异亮氨酸分解代谢通路是被上调较高的通路(图6A、6B)。通过分析课题组前期检测的非靶向代谢组学数据,结果表明:与HD相比,MM患者的CD138+肿瘤细胞中缬氨酸含量降低(P<0.05,图6C);通过HPLC验证VARS基因敲减的MM细胞内与培养基上清液中缬氨酸含量,结果表明:与scramble组相比,VARS-shRNA组的ARP1细胞内与培养基上清液及VARS-shRNA组的OCI-MY5培养基上清液中缬氨酸含量均增加(均P<0.05,图6D)。提示VARS异常高表达通过影响缬氨酸利用参与MM进展。
图6.
生物信息学分析联合高效液相色谱法分析VARS对缬氨酸利用的影响
Figure 6 Effects of VARS on valine utilization were analyzed by biogenic analysis combined with HPLC
A: Pathway regulated VARS by KEGG. B: GSEA was used to analyze the valine, leucine, isoleucine degradation pathway in VASR high and low expression groups. C: Untargeted metabolomics showed that the levels of valine decreased in MM CD138+ cells compared with HD. HD, n=16; MM, n=30. D: HPLC was used to detect the content of valine in ARP1 and OCI-MY5 cells. HD: Healthy donor; MM: Multiple myeloma; VARS: Valyl-tRNA synthetase; KEGG: Kyoto Encyclopedia of Genes and Genomes; GSEA: Gene set enrichment analysis; HPLC: High performance liquid chromatography. *P<0.05, **P<0.01.
3. 讨 论
ARS催化氨基酸高保真连接到相应的tRNA上,这个过程分为2个步骤:第1个反应步骤将氨基酸激活为氨基酰腺苷酸,消耗1个腺苷三磷酸(adenosine triphosphate,ATP)分子;第2个反应步骤将激活的氨基酸传递到tRNA的受体端,进行蛋白质合成。ARS存在于细胞线粒体和胞质中,本研究关注胞质ARS。胞质和线粒体ARS在多种疾病中均有报道,由于ARS发生的错误表达[10]、基因突变[11]和变异[12]、异常的分子相互作用[13-14]均可能与疾病的发生和发展有关。此外,ARS的高表达通常与多种肿瘤患者的不良预后相关,其表达谱可以作为预测肿瘤症预后工具:前列腺癌中高表达的AARS、GARS、NARS、TARS、HARS和WARS与雄激素之间存在联系[15];而肺癌组织MARS表达增加与不良预后相关[16];MARS高表达与低或无MARS表达的乳腺癌患者相比总生存期更短[17];TARS与血管内皮生长因子(vascular endothelial growth factor,VEGF)和MUC1(一种富含苏氨酸的蛋白质)的共表达与晚期上皮性卵巢癌[18]和胰腺癌患者的低生存率[19]密切相关。目前,有关ARS在MM中的研究较少,仅有的少数研究报道提示ARS在MM中发挥重要的作用。Kurata等[20]研究表明:EARS促进MM疾病进展且与不良预后相关,EARS下调导致MM细胞凋亡。该研究开发的抑制剂NCP26通过竞争性结合ATP从而发挥抑制PARS的作用,在这项研究中VARS的表达水平和相对危险度都呈较高水平也都呈较高水平,是值得关注的另一个研究点。本研究中EARS与MM的预后分析无明显相关,可能与基因集以及生存分析的分组情况有关;Wei等[21]发现氨酰tRNA合成酶复合物相互作用多功能蛋白1(aminoacyl tRNA synthetase complex interacting multifunctional protein 1,AIMP1)在MM患者中表达增加,且与不良预后密切相关,高表达的AIMP1通过激活丝裂原活化蛋白激酶(mitogen-activated protein kinase,MAPK)信号通路促进MM细胞在体外和体内的增殖,且AIMP1与酸性核磷蛋白32家族成员 A(acidic nuclear phosphoprotein 32 family member A,ANP32A)相互作用,调节组蛋白H3乙酰化。该研究表明AIMP1是MM中组蛋白H3乙酰化的一种新的调节因子,它与ANP32A相互作用,通过激活MAPK信号通路加速MM恶性肿瘤的发生和发展。Thandapani等[22]发现:T细胞急性淋巴细胞白血病(T cell acute lymphoblastic leukaemia,T-ALL)患者VARS表达水平上调,NOTCH1通过增加缬氨酸水平来促进癌症生长,通过饮食限制缬氨酸摄取可以抑制线粒体复合物1相关亚基mRNA的翻译,缓解T-ALL小鼠相关症状,并延长其存活时间。T-ALL与MM都是血液系统恶性肿瘤,该研究对MM的治疗具有一定参考价值。
VARS催化缬氨酸高保真连接到相应的tRNA上参与蛋白质的合成,VARS染色体定位于6p21.33,除了参与蛋白质合成外,VARS在许多病理状态下发挥重要作用。研究[23]表明VARS双等位基因突变与进行性神经发育性癫痫性脑病相关;在斑马鱼胚胎中,编辑缺陷VARS[VARS(ED)]的短暂过表达激活DNA断裂响应的染色体组蛋白质H2A组蛋白家族成员X(H2A histone family member X,H2AX)和p53响应的下游蛋白质,如周期蛋白依赖激酶抑制剂p21,它促进了DNA损伤点的细胞周期停滞,以及在DNA修复中起关键作用的生长抑制及DNA损伤诱导基因 Gadd45和p53R2,这些蛋白质对VARS(ED)表达的反应在p53缺失的斑马鱼中消失[24],提示VARS可能与疾病的发生有关。本研究发现ARS在MM中异常高表达,进一步分析发现VARS与MM不良预后密切相关,提示VARS可能发挥促进MM发生和发展的作用。
氨基酸代谢重编程在MM中发挥重要作用。Steiner等[25]通过靶向代谢组学检测25例HD和15例MGUS患者、32例新发MM患者以及19例MM复发耐药患者外周血中188种内源性代谢含量,发现MGUS及MM患者的代谢谱与HD组存在显著差异。MM患者外周血中的精氨酸、苯丙氨酸和酪氨酸含量增加,赖氨酸、谷氨酰胺、亮氨酸、异亮氨酸和缬氨酸浓度降低;Du等[26]通过对77例MM患者和健康人的血清进行代谢组学分析,发现MM活跃期患者的外周血与健康人外周血存在23种差异代谢产物,并主要富集于中的精氨酸、苯丙氨酸、脯氨酸、酪氨酸和甘油磷脂代谢途径,其中12种代谢产物可以较好地用于区分疾病活跃组与治疗反应组的患者。缬氨酸是一种必需氨基酸,肿瘤必须从生长环境中获取缬氨酸,目前对于缬氨酸的研究主要集中在支链氨基酸分解酶(branched chain aminotransferase 1,BCAT1)上,在许多癌症中它的表达发生改变,且BCAT1与不良预后密切相关[27]。本研究通过构建VARS敲减的MM细胞系,发现敲减VARS后MM细胞增殖受到抑制;进一步检测发现敲减VARS的MM细胞早期凋亡细胞比例明显增加。因此,VARS可能是治疗MM的潜在靶点,可通过靶向下调VARS抑制MM细胞增殖,促进MM细胞凋亡。VARS作为利用缬氨酸合成蛋白质过程中的关键酶,可能通过调控缬氨酸代谢影响MM发生和发展,此外生物信息学分析结果显示VARS调控缬氨酸、亮氨酸和异亮氨酸分解通路,因此本研究通过非靶向代谢组学技术检测缬氨酸含量,发现MM患者缬氨酸含量相对于正常人减少,敲减VARS的ARP1细胞和培养上清液中缬氨酸含量均增加,虽然在OCI-MY5细胞中敲减VARS后胞内缬氨酸含量只表现为增加的趋势(这可能与细胞类型及重复的样本量不足有关),统计学分析无意义,但其培养上清液中可检测到缬氨酸增加;而缬氨酸的含量与VARS表达水平呈负相关。这些结果均提示VARS表达异常可能导致缬氨酸代谢紊乱,进而影响MM细胞的生长。
综上所述,本研究发现VARS在MM中表达升高与不良预后相关,敲减VARS后MM细胞的增殖受到抑制,早期凋亡细胞增加,MM细胞对缬氨酸利用减少。本研究认为,在MM中,VARS高表达,MM细胞利用缬氨酸合成蛋白质增加,因此CD138+ MM细胞中缬氨酸含量降低;敲减VARS后,MM细胞利用缬氨酸合成蛋白质减少,MM细胞及培养基上清液中缬氨酸含量升高,蛋白质合成减少无法满足MM细胞的生长,因此MM细胞增殖减少而凋亡增加。本研究初步探讨了VARS在MM中的作用,揭示VARS可能是MM的潜在治疗靶点。而VARS在MM中的作用机制、与缬氨酸的作用关系仍有待进一步研究。
所有作者阅读并同意最终的文本。
基金资助
国家自然科学基金(8227011827);湖南省自然科学基金(2021JJ30896);中南大学中央高校基本科研业务费专项资金(1053320215438)。
This work was supported by the National Natural Science Foundation (8227011827), the Natural Science Foundation of Hunan Province (2021JJ30896), and the Fundamental Research Funds for the Ctntral Universities of Central South University (1053320215438), China.
利益冲突声明
作者声称无任何利益冲突。
作者贡献
史瑞 实验设计和实施,论文撰写;杜婉晴、胡健、于涵 实验实施与统计分析;贺艳娟、周文、郭姣姣、冯湘玲 实验设计与指导,论文修改。
原文网址
http://xbyxb.csu.edu.cn/xbwk/fileup/PDF/202306795.pdf
参考文献
- 1. Cowan AJ, Allen C, Barac A, et al. Global burden of multiple myeloma: a systematic analysis for the global burden of disease study 2016[J]. JAMA Oncol, 2018, 4(9): 1221-1227. 10.1001/jamaoncol.2018.2128. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 2. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation[J]. Cell, 2011, 144(5): 646-674. 10.1016/j.cell.2011.02.013. [DOI] [PubMed] [Google Scholar]
- 3. Xia J, Zhang J, Wu X, et al. Blocking glycine utilization inhibits multiple myeloma progression by disrupting glutathione balance[J]. Nat Commun, 2022, 13(1): 4007. 10.1038/s41467-022-31248-w. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 4. Wu X, Xia J, Zhang J, et al. Phosphoglycerate dehydrogenase promotes proliferation and bortezomib resistance through increasing reduced glutathione synthesis in multiple myeloma[J]. Br J Haematol, 2020, 190(1): 52-66. 10.1111/bjh.16503. [DOI] [PubMed] [Google Scholar]
- 5. Kuang C, Xia M, An G, et al. Excessive serine from the bone marrow microenvironment impairs megakaryopoiesis and thrombopoiesis in Multiple Myeloma[J]. Nat Commun, 2023, 14(1): 2093. 10.1038/s41467-023-37699-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 6. Rubio Gomez MA, Ibba M. Aminoacyl-tRNA synthetases[J]. RNA, 2020, 26(8): 910-936. 10.1261/rna.071720.119. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 7. Kwon NH, Fox PL, Kim S. Aminoacyl-tRNA synthetases as therapeutic targets[J]. Nat Rev Drug Discov, 2019, 18(8): 629-650. 10.1038/s41573-019-0026-3. [DOI] [PubMed] [Google Scholar]
- 8. Zhan F, Huang Y, Colla S, et al. The molecular classification of multiple myeloma[J]. Blood, 2006, 108(6): 2020-2028. 10.1182/blood-2005-11-013458. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 9. Feng X, Guo J, An G, et al. Genetic aberrations and interaction of NEK2 and TP53 accelerate aggressiveness of multiple myeloma[J]. Adv Sci, 2022, 9(9): e2104491[2022-07-08]. 10.1002/advs.202104491. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 10. Lee CW, Chang KP, Chen YY, et al. Overexpressed tryptophanyl-tRNA synthetase, an angiostatic protein, enhances oral cancer cell invasiveness[J]. Oncotarget, 2015, 6(26): 21979-21992. 10.18632/oncotarget.4273. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 11. Xu Z, Lo WS, Beck DB, et al. Bi-allelic mutations in phe-tRNA synthetase associated with a multi-system pulmonary disease support non-translational function[J]. Am J Hum Genet, 2018, 103(1): 100-114. 10.1016/j.ajhg.2018.06.006. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 12. Storkebaum E. Peripheral neuropathy via mutant tRNA synthetases: inhibition of protein translation provides a possible explanation[J]. Bioessays, 2016, 38(9): 818-829. 10.1002/bies.201600052. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 13. Cavagna L, Nuño L, Scirè CA, et al. Serum jo-1 autoantibody and isolated arthritis in the antisynthetase syndrome: review of the literature and report of the experience of AENEAS collaborative group[J]. Clinic Rev Allerg Immunol, 2017, 52(1): 71-80. 10.1007/s12016-016-8528-9. [DOI] [PubMed] [Google Scholar]
- 14. Mo Z, Zhao X, Liu H, et al. Aberrant GlyRS-HDAC6 interaction linked to axonal transport deficits in Charcot-Marie-Tooth neuropathy[J]. Nat Commun, 2018, 9(1): 1007. 10.1038/s41467-018-03461-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 15. Vellaichamy A, Sreekumar A, Strahler JR, et al. Proteomic interrogation of androgen action in prostate cancer cells reveals roles of aminoacyl tRNA synthetases[J/OL]. PLoS One, 2009, 4(9): e7075[2022-07-08]. 10.1371/journal.pone.0007075. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 16. Kim EY, Jung JY, Kim A, et al. Methionyl-tRNA synthetase overexpression is associated with poor clinical outcomes in non-small cell lung cancer[J]. BMC Cancer, 2017, 17(1): 467. 10.1186/s12885-017-3452-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 17. Jin Q, Liu G, Wang B, et al. High methionyl-tRNA synthetase expression predicts poor prognosis in patients with breast cancer[J]. J Clin Pathol, 2020, 73(12): 803-812. 10.1136/jclinpath-2019-206175. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 18. Wellman TL, Eckenstein M, Wong C, et al. Threonyl-tRNA synthetase overexpression correlates with angiogenic markers and progression of human ovarian cancer[J]. BMC Cancer, 2014, 14: 620. 10.1186/1471-2407-14-620. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 19. Jeong SJ, Kim JH, Lim BJ, et al. Inhibition of MUC1 biosynthesis via threonyl-tRNA synthetase suppresses pancreatic cancer cell migration[J/OL]. Exp Mol Med, 2018, 50(1): e424[2022-07-08]. 10.1038/emm.2017.231. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 20. Kurata K, James-Bott A, Tye MA, et al. Prolyl-tRNA synthetase as a novel therapeutic target in multiple myeloma[J]. Blood Cancer J, 2023, 13(11): 12. 10.1038/s41408-023-00787-w. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 21. Wei R, Zhu Y, Zhang Y, et al. AIMP1 promotes multiple myeloma malignancy through interacting with ANP32A to mediate histone H3 acetylation[J]. Cancer Commun (Lond), 2022, 42(11): 1185-1206. 10.1002/cac2.12356 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 22. Thandapani P, Kloetgen A, Witkowski MT, et al. Valine tRNA levels and availability regulate complex I assembly in leukaemia[J]. Nature, 2022, 601(7893): 428-433. 10.1038/s41586-021-04244-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 23. Friedman J, Smith DE, Issa MY, et al. Biallelic mutations in valyl-tRNA synthetase gene VARS are associated with a progressive neurodevelopmental epileptic encephalopathy[J]. Nat Commun, 2019, 10: 707. 10.1038/s41467-018-07067-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 24. Song Y, Shi Y, Carland TM, et al. p53-Dependent DNA damage response sensitive to editing-defective tRNA synthetase in zebrafish[J]. Proc Natl Acad Sci USA, 2016, 113(30): 8460-8465. 10.1073/pnas.1608139113. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 25. Steiner N, Müller U, Hajek R, et al. The metabolomic plasma profile of myeloma patients is considerably different from healthy subjects and reveals potential new therapeutic targets[J/OL]. PLoS One, 2018, 13(8): e0202045[2022-07-08]. 10.1371/journal.pone.0202045. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 26. Du H, Wang L, Liu B, et al. Analysis of the metabolic characteristics of serum samples in patients with multiple myeloma[J]. Front Pharmacol, 2018, 9: 884. 10.3389/fphar.2018.00884. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 27. Xu Y, Yu WM, Yang TT, et al. Overexpression of BCAT1 is a prognostic marker in gastric cancer[J]. Hum Pathol, 2018, 75: 41-46. 10.1016/j.humpath.2018.02.003. [DOI] [PubMed] [Google Scholar]






