Skip to main content
Journal of Central South University Medical Sciences logoLink to Journal of Central South University Medical Sciences
. 2023 Jan 28;48(1):15–23. [Article in Chinese] doi: 10.11817/j.issn.1672-7347.2023.210773

MiR-9-5p对宫颈鳞癌细胞迁移和侵袭能力及上皮间质转化的影响

Effects of miR-9-5p on the migration, invasion and epithelial-mesenchymal transition process in cervical squamous cell carcinoma

KUANG Ting 1,2, LI Lesai 2, CHEN Yile 2, WANG Jinjin 1,
Editor: 傅 希文
PMCID: PMC10930553  PMID: 36935173

Abstract

Objective

Cervical squamous cell carcinoma is the most common cancer in female reproductive system. This study aims to explore the effect of microRNA-9-5p (miR-9-5p) on the migration, invasion, and epithelial-mesenchymal transition (EMT) process of cervical squamous cells.

Methods

Bioinformatics were used to predict the miRNAs that could bind to E-cadherin (E-cad). The Cancer Genome Atlas (TCGA) database was used to analyze and extract significantly differentially expressed miRNAs from part of cervical squamous cell carcinoma tissues and normal cervical tissues, and miR-9-5p was selected as the main research target. The translated regions (UTR) of wild-type E-cad (E-cad-WT 3'-UTR) or the 3'-UTR of mutant E-cad (E-Cad-MUT 3'-UTR) was transfected with miR-9-5p mimic normal control (NC), and miR-9-5p mimic was co-transfected human embryonic kidney cells (293T). The relationship between miR-9-5p and E-cad was detected by double luciferase assay. The expression of miR-9-5p in normal cervical epithelial cell lines (H8) and cervical squamous cell lines (C33A, siha, caski and Me180) were detected by quantitative real-time PCR. Then, the experiments were divided into groups as follows: a block control group, an overexpression control group (mimic-NC group), a miR-95p overexpression group (mimic group), an inhibitory expression control group (inhibitor-NC group), and a miR-9-5p inhibitory expression group (inhibitor group). The changes of migration ability were detected by scratch assay. Transwell invasion assay was used to analyze the changes of invasion ability, and the mRNA and protein changes of E-cad and vimentin were detected by quantitative real-time PCR and Western blotting.

Results

MiR-9-5p had a targeting binding relationship with E-cad. Compared with the normal cervical tissue H8 cell line, the miR-9-5p was highly expressed in cervical cancer cell lines (C33A, siha, caski and Me180) (all P<0.05). The luciferase activity of E-cad-MUT was increased compared with that of E-cad-WT in miR-9-5p mimic cells (P<0.05). Compared with the blank control group, the protein and mRNA expressions of E-cad were decreased in the miR-9-5p mimic group (both P<0.05), which were increased in the miR-9-5p inhibitor group (both P<0.05). Compared with H8 cell line, the miR-9-5p was highly expressed in the cervical squamous cell lines (all P<0.05). Compared with the mimic-NC group, the distance of wound healing,the number of caski and Me180 cells invaded below the membrane, and the mRNA and protein expressions of vimentin were all increased in the miR-9-5p mimic group (all P<0.05), while the mRNA and protein of E-cad were decreased (both P<0.05). Compared with the inhibitor-NC group, the distance of wound healing, the number of caski and Me180 cells invading the membrane, and the mRNA and protein expressions of vimentin were decreased in the miR-9-5p inhibitor group (all P<0.05), but the mRNA and protein expressions of E-cad were increased (both P<0.05).

Conclusion

The miR-9-5p is highly expressed in cervical squamous cell carcinoma, which can increase the migration and invasion ability, and promote the EMT process of cancer cells.

Keywords: cervical squamous cell carcinoma, microRNA-9-5p, E-cadherin, epithelial-mesenchymal transition


宫颈癌的发病率位居妇科肿瘤的榜首,早期宫颈癌规范治疗后多数患者能够实现长期存活;然而当宫颈癌发生远处转移后,其5年生存率仅为16.5%[1]。因此了解转移性宫颈癌细胞的转移机制并遏制其进程将有助于提高转移性宫颈癌患者的生存率。有研究[2]证明上皮间质转化(epithelial-mesen-chymal transition,EMT)是肿瘤细胞转移的第一步。E-钙黏蛋白(E-cadherin,E-cad)作为EMT中重要的标志分子[3],作者前期实验[4]已证明:相比于癌旁组织,E-cad在宫颈癌组织中呈低表达。微RNA(microRNA,miR)作为转录后调节因子主要是通过抑制或降解靶标蛋白的表达来发挥作用[5]。因此,本研究旨在探索一个通过直接靶向E-cad来抑制转移性宫颈鳞癌细胞EMT进程的miRs,以便为转移性宫颈鳞癌的治疗提供新的思路。

1. 材料与方法

1.1. 材料

1.1.1. 细胞来源

宫颈上皮永生化细胞株H8来自中南大学湘雅中心实验室细胞库,宫颈鳞癌细胞株(C33A、siha、caski、Me180)和293T细胞株购于中国科学院上海生命科学研究院细胞资源中心。

1.1.2. 试剂与仪器

DMEM培养液、胎牛血清和胰蛋白酶购自美国Thermo Fisher Scientific公司;Transwell小室购自美国Corning公司;基质胶、SDS-PAGE凝胶配制试剂盒、RIPA蛋白裂解液、苯甲基磺酰氟、PMSF均购自上海碧云天生物技术公司;BCA蛋白浓度测定试剂盒及蛋白上样缓冲液、青霉素和链霉素溶液购自北京索莱宝科技有限公司;兔抗人E-cad多克隆抗体、兔抗人波形蛋白多克隆抗体、鼠抗人GAPDH多克隆抗体购自武汉三鹰生物技术有限公司;E-cad、波形蛋白和GAPDH引物由上海生工生物工程技术服务有限公司合成;荧光二抗购自北京中杉金桥生物技术有限公司;miR-9-5p模拟物(mimic)、抑制剂(inhibitor)及其对照物(mimic-NC或inhibitor-NC)均由上海吉玛制药技术有限公司合成;荧光素酶报告基因载体pmiR-RB-ReportTM真核质粒购自广州市锐博生物科技有限公司;real-time PCR检测仪购自美国Bio-Rad公司。

1.2. 方法

1.2.1. 数据获取与分析

使用生物信息学软件TargetScan预测并得到3个可结合E-cad(又称之为CDH1)3'-非编码区(3'- untranslated regions,3'-UTR)的miRs,查阅已有的文献,发现miR-9-5p与多种癌症的发生、发展相关[6],在癌症基因组图谱(The Cancer Genome Atlas,TCGA)数据库中(http://cancergenome.nih.gov/),筛选出部分宫颈癌组织与正常宫颈组织的miR-Seq数据,利用R软件分析并提取出差异表达的miRs,选择miR-9-5p作为后续研究。

1.2.2. 细胞培养与转染

人正常宫颈细胞株H8和宫颈鳞癌细胞株(C33A、siha、caski、Me180)均用DMEM培养基加体积分数为10%的胎牛血清、青霉素和链霉素于5% CO2、37 ℃培养箱中培养,每日更换新鲜细胞培养液,细胞生长铺满80%瓶壁时,采用胰酶消化传代;293T细胞株(人胚肾细胞,用于双荧光素酶实验)则用RPMI-1640培养基培养,余培养条件及方法同上。

为了检测miR-9-5p对细胞迁移、侵袭和EMT相关分子表达的影响,取对数生长期caski和Me180细胞株,分别转染NC mimic(mimic-NC组)、miR-9-5p mimic(mimic组)、NC inhibitor(inhibitor-NC组)、miR-9-5p inhibitor(inhibitor组),转染6 h后进行换液,继续培养48 h,各组细胞用于后续实验。

1.2.3. 双荧光素酶实验

将293T细胞接种到96孔板中,37 ℃培养24 h,接着扩增出含miR-9-5p结合位点的E-cad 3'-UTR序列及含miR-9-5p结合位点突变的E-cad 3'-UTR序列,并将其分别插入到荧光素酶报告基因载体(pmiR-RB-ReportTM)上,得到构建好的野生型E-cad-WT和突变型E-cad-MUT重组质粒。分别将E-cad-WT重组质粒或E-cad-MUT重组质粒与miR-9-5p mimic或mimic-NC共转染至293T细胞,并将其分为mimic-NC E-cad-WT组、mimic-NC E-cad-MUT组、mimic E-cad-WT组、mimic E-cad-MUT组,分别经相同条件培养后,使用双荧光发光仪(Dual-Glo®Luciferase Assay System,Promega公司)测定每孔细胞的海肾荧光素酶活性和萤火虫荧光素酶活性,计算细胞相对荧光素酶活性,实验重复3次。其中空白对照组为未感染质粒及mimic的293T细胞。

1.2.4. 划痕实验测定细胞迁移能力

将caski细胞株转染后,相同条件下进行细胞培养,并将实验分为mimic-NC组、mimic组、inhibitor-NC组、inhibitor组,然后将各组细胞重悬后按2×106/mL的密度接种于6孔板,每孔加入1 mL细胞悬液,至细胞融合率达80%左右时,使用200 μL枪头尖端在单层细胞的中间刮出一条划痕。PBS洗涤3次后,根据不同条件用仅含2%血清的培养基培养各组细胞,24 h后用显微镜(×40)随机选择上述4组细胞中的3个视野,计算划痕面积迁移率,其公式如下:迁移率=(原始划痕距离-24 h后划痕距离)/原始划痕距离×100%。在Me180细胞株中重复上述实验。

1.2.5. Transwell实验检测细胞的侵袭能力

使用24孔板Transwell小室进行细胞侵袭实验,将转染后的4组caski细胞分别用胰酶消化,再用无血清DMEM培养基终止消化且制备成密度为1×104/L的细胞悬液,取100 μL悬液接种于Transwell上室,按不同条件培养各组细胞;下室加入500 μL含20%血清的生长培养基,在37 ℃下孵育24 h后,用PBS清洗上室3次,固定并染色后在显微镜下观察、计数。在Me180细胞株中重复上述实验。

1.2.6. 蛋白质印迹法检测不同处理组细胞中E-cad的表达水平

将转染后的上述4组caski细胞按4×106/mL的密度种于6孔板,每孔1 mL,根据不同处理条件培养各组细胞24 h后,收集各组细胞总蛋白,加入蛋白上样缓冲液变性,配制SDS-PAGE凝胶,每孔蛋白上样量约为15 μg,开始电泳,待溴酚蓝到达胶的底端处附近即可停止电泳,转膜并封闭。随后进行一抗(E-cad与波形蛋白稀释的体积比:1꞉1 000GAPDH稀释的体积比:1꞉10 000)和二抗(体积比为1꞉10 000)的孵育。最后检测蛋白,并与对照组(mimic-NC组、inhibitor-NC组)相比,计算实验组(mimic组、inhibitor组)中E-cad和波形蛋白的蛋白质相对表达量。在Me180细胞株中重复上述实验。

1.2.7. Real-time PCR检测不同细胞系中miR-9-5p的 表达量

将转染后的上述4组caski细胞按1×106/mL的密度种于6孔板,每孔1 mL,根据不同处理条件培养各组细胞24 h后,用TRIzol试剂提取各组细胞总RNA,紫外分光光度计检测浓度及纯度。应用反转录试剂盒将RNA反转录为cDNA,再将各组cDNA样品放在PCR仪上进行转录,每样本设3个复孔,反应条件如下:95 ℃ 30 s,95 ℃ 10 s,58 ℃ 5 s,扩增40个循环。以U6为内参,使用2-ΔΔCt的方法计算基因相对表达水平,ΔCt为miR-9-5p的Ct值减去U6的Ct值,ΔΔCt为实验组(mimic组、inhibitor组)细胞ΔCt减去对照组(mimic-NC组、inhibitor-NC组)细胞的ΔCt。引物序列信息见表1。在Me180细胞株中重复上述实验。

表1.

引物序列信息

Tabel 1 Sequence of primer

引物名称 引物序列
MiR-9-5p正向 5'-GTGCAGGGTCCGAGGT-3'
MiR-9-5p反向 5'-GCGCTCTTTGGTTATAGC-3'
U6正向 5'-CTCGCTTCGGCAGCACA-3'
U6反向 5'-AACGCTTCACGAATTTGCGT-3'

1.3. 统计学处理

所有实验均重复3次,计量资料以均数±标准差( x¯ ±s)表示。两组间比较采用t检验,多组间均数比较采用方差分析、χ2检验,用Graphpad prism 5.0软件作图。P<0.05为差异有统计学意义。

2. 结 果

2.1. 生物信息学分析和预测 E-cad 靶基因miRNAs

利用靶基因预测软件TargetScan预测miR-9-5pE-cad的靶基因,表明miR-9-5p的结合点存在于E-cad的3'-UTR区域(图1)。

图1.

图1

生物信息学软件预测 E-cad 上游miRNAs

Figure 1 TargetScan predicts the upstream miRNAs of E-cad

2.2. MiR-9-5p在宫颈鳞癌组织中呈高表达

为了验证miR-9-5p在正常宫颈组织及癌组织中的表达差异,作者在TCGA数据库进行了差异分析(表2),发现与正常宫颈组织相比,宫颈鳞癌组织中的miR-9-5p表达增加,且差异有统计学意义(均P<0.05;图2)。

表2.

宫颈鳞癌与正常宫颈组织中部分差异miRs表达分析表

Tabel 2 Different expression of miRs between cervical squamous cell carcinoma tissues and normal cervical tissues

差异表达的miR logFC 表达水平 P FDR
has-miR-9-5p -0.898 273 917 2.021 371 159 0.027 670 000 0.108 518 856
hsa-miR-128 -3.239 334 249 0.489 499 653 0.000 964 893 0.007 420 484
hsa-miR-13 -3.558 776 619 -0.659 212 886 0.001 054 285 0.007 956 703
hsa-miR-47 3.290 865 791 0.305 012 647 0.018 471 543 0.082 865 395
hsa-miR-15-1 -1.181 328 380 0.408 500 922 0.018 810 317 0.083 803 206
hsa-miR-43 -1.576 290 452 0.424 037 198 0.019 485 180 0.085 575 973
has-miR-24 -1.156 192 680 4.925 446 623 0.019 495 552 0.085 575 973
hsa-miR-67 -1.761 674 569 0.161 436 751 0.019 605 641 0.085 575 973
hsa-miR-8 -1.778 439 739 -0.656 748 646 0.020 218 131 0.087 072 750
hsa-miR-37 -1.387 476 024 1.902 936 820 0.020 853 481 0.089 214 228
hsa-miR-315b 4.813 253 507 2.111 994 917 0.026 909 695 0.106 648 237
hsa-let-7e -1.435 662 601 5.562 374 628 0.020 044 945 0.086 906 271

logFC:基因表达量比值;FDR:错误发生率。

图2.

图2

MiR-9-5p在宫颈鳞癌组织中呈高表达

Figure 2 High expression of miR-9-5p in cervical cancer tissues

A: Heat map of the 19 up-regulated and down-regulated miRNAs; B: Different expression of miR-9-5p between the cervical cancer tissues and the normal cervical tissues in the TCGA database. **P<0.01 vs the normal cervical tissues. TCGA: The Cancer Genome Atlas.

2.3. MiR-9-5p直接靶向 E-cad

通过TargetScan预测发现:miR-9-5p可能直接靶向E-cad,二者有相互结合位点(图3A);双荧光素酶报告实验结果显示:在E-cad-WT 3'-UTR实验中,与mimic-NC组相比,miR-9-5p mimic组萤光素酶活性明显降低(P<0.05);在E-cad-MUT 3'-UTR实验中,与mimic-NC组相比,miR-9-5p mimic组萤光素酶活性差异无统计学意义(P>0.05,图3B);与空白对照组相比,miR-9-5p inhibitor组细胞的E-cad蛋白质和mRNA表达均增加(均P<0.05),而miR-9-5p mimic组细胞的E-cad蛋白质和mRNA表达均减少(均P<0.05,图3C,3D)。

图3.

图3

MiR-9-5p直接靶向E-cad

Figure 3 MiR-9-5p directly targets E-cad

A: Schematic diagram of the binding site of miR-9-5p and E-cad mRNA. B: Histogram of targeted regulative effect of miR-9-5p on E-cad by dual luciferase reporter assay. *P<0.05 vs the E-cad-WT. C: MiR-9-5p regulates the protein expression of E-cad. *P<0.05 vs the blank control group. D: MiR-9-5p regulates the mRNA expression of E-cad. *P<0.05 vs the blank control group.

2.4. 不同细胞系中miR-9-5p表达量比较

正常宫颈上皮细胞系H8、4种宫颈鳞癌细胞系(C33A、siha、caski、Me180)miR-9-5p表达量如图4,分别为1.096±0.09、1.028±0.05、1.576±0.06、1.546±0.04;与H8细胞比较,宫颈鳞癌细胞中miR-9-5p的表达量增加,其中caski和Me180细胞中的增加差异均有统计学意义(均P<0.05)。

图4.

图4

不同细胞系中miR-9-5p表达量

Figure 4 Different expressions of miR-9-5p in cancer and normal cell lines *P<0.05 vs the H8 cells.

2.5. MiR-9-5p影响宫颈癌细胞迁移能力

划痕迁移实验结果示:在caski和Me180两种细胞株中,与mimic-NC组相比,miR-9-5p mimic组细胞的迁移率增高,迁移能力更强(均P<0.05);与inhibitor-NC组相比,miR-9-5p inhibitor组细胞的迁移率降低,迁移能力减弱(均P<0.05,图5)。

图5.

图5

调控miR-9-5p表达对宫颈鳞癌细胞迁移能力的影响

Figure 5 Effect of the expression of miR-9-5p on the ability of migration in cervical squamous cell carcinoma cells

A: Cell migration of caski cell line by wound healing assay; B: Cell migration of Me180 cell line by wound healing assay. *P<0.05 vs the mimic-NC group; †P<0.05 vs the inhibitor-NC group.

2.6. MiR-9-5p影响宫颈癌细胞侵袭能力

Transwell小室侵袭实验结果示:与mimic-NC组相比,miR-9-5p mimic组穿过小孔的caski和Me180细胞数均增多(均P<0.05);与inhibitor-NC组相比,miR-9-5p inhibitor组穿过小孔caski和Me180细胞数均减少(均P<0.05,图6)。

图6.

图6

调控miR-9-5p表达对宫颈鳞癌细胞侵袭能力的影响

Figure 6 Effect of the expression of miR-9-5p on the ability of invasion in cervical squamous cell carcinoma cells

A: Cell invision of caski cell line by Transwell assay; B: Cell invision of Me180 cell line by Transwell assay. *P<0.05 vs the mimic-NC group; †P<0.05 vs the inhibitor-NC group.

2.7. miR-9-5p影响细胞EMT进程

蛋白质印迹法结果显示:与 mimic-NC组相比,miR-9-5p mimic组caski和Me180细胞的E-cad表达下降、波形蛋白表达增加(均P<0.05);而与inhibitor-NC组相比,miR-9-5p inhibitor组细胞的E-cad表达却增加、波形蛋白表达却下降,且差异均有统计学意义(均P<0.05,图7)。

图7.

图7

调控miR-9-5p表达对宫颈鳞癌细胞EMT相关标志分子蛋白表达水平的影响

Figure 7 Effect of the expression of miR-9-5p on the expression of EMT-related marker molecules in the cervical squamous carcinoma cells

A: Expressions of E-cad and vimentin protein in caski cell line by Western blotting; B: Expressions of E-cad and vimentin protein in Me180 cell line by Western blotting. *P<0.05 vs the mimic-NC group; †P<0.01 vs the inhibitor-NC group.

3. 讨 论

EMT的进程促进癌细胞发生侵袭,侵袭性多细胞群的集体迁移最终可导致肿瘤的转移[7]。E-cad属于I型经典钙黏蛋白,E-cad在细胞连接中扮演非常重要的角色,它的下调会促进肿瘤EMT和肿瘤细胞的侵袭和转移[8]。波形蛋白广泛存在于正常间充质细胞中,并保持细胞完整性[9]。波形蛋白、E-cad是维持细胞形状和稳定细胞骨架相互作用的间充质标志物,因此波形蛋白上升和E-cad下调被认为是EMT表型的关键标志之一[8, 10-11]。来自人体组织样本的研究[12]证实:从宫颈上皮内瘤变发展成宫颈癌,E-cad的表达下降。通过检测宫颈癌原发病灶组织中的 E-cad的表达水平发现,远处转移者E-cad的表达水平较无转移者显著降低[13]

本实验结果提示miR-9-5p靶向E-cad基因抑制EMT,且E-cad是新验证的miR-9-5p靶基因。大量的实验在摸索调节E-cad转录或表达的机制[14],其中miRNA作为一种小的非编码RNA分子,能调节靶基因转录后水平的表达,因此在肿瘤的发生和发展中起着重要作用,并受到广泛关注[15]。通过Targetscan检索,发现miR-217miR-9-5pmiR-338-3p可能与E-cad基因有结合位点。其中miR-9-5p因为其功能的双面性引起了关注,它既是促癌基因又是抑癌基因。这种现象不仅发生在不同器官的肿瘤中,有时在同一器官不同组织来源的肿瘤中也存在[16-20],尤其是最近Babion等[6]报道了miR-9-5p在宫颈鳞癌和宫颈腺癌的组织中表达水平相反。本研究选择宫颈鳞癌细胞株检测miR-9-5p表达和功能,发现miR-9-5p在宫颈鳞癌细胞中呈高表达,在caski(肠转移细胞系)和Me180(网膜转移细胞系)这两种鳞癌细胞中高表达更为显著。同时,通过双荧光素酶报告实验证实了 E-cad是miR-9-5p的直接靶点,并且发现:相比于miR-9-5p抑制剂,miR-9-5p拟似剂能使宫颈鳞癌细胞E-cad的表达减少而波形蛋白表达增加,即促进EMT进程。此前,在结肠癌、胃癌、前列腺癌等研究[21-24]中,发现miR-9-5p能通过靶向FOXP2MYH9StarD13等靶基因调节EMT。所以证实E-cad是miR-9-5p的一个新的靶基因,将丰富对miR-9-5p的认识。

综上,本研究发现在转移性宫颈鳞癌细胞中miR-9-5p呈高表达,且能靶向抑制E-cad表达、加快癌细胞EMT进程。阐述miR-9-5p在调控宫颈鳞癌细胞侵袭转移中的作用机制,可为转移性难治性宫颈鳞癌的诊断与治疗靶点提供新的思路。

基金资助

湖南省卫生健康委员会科研计划项目(20201608)。

This work was supported by the Scientific Research Plan Project of Health Commission of Hunan Province, China (20201608).

利益冲突声明

作者声称无任何利益冲突。

作者贡献

匡婷 研究构思,实验操作,数据采集和统计分析,论文撰写;李乐赛、陈亦乐 研究构思,实验操作;王劲进 论文修改。所有作者阅读并同意最终的文本。

原文网址

http://xbyxb.csu.edu.cn/xbwk/fileup/PDF/20230115.pdf

参考文献

  • 1. Li H, Wu X, Cheng X. Advances in diagnosis and treatment of metastatic cervical cancer[J/OL]. J Gynecol Oncol, 2016, 27(4): e43 [2021-06-28]. 10.3802/jgo.2016.27.e43. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2. Kalluri R, Weinberg RA. The basics of epithelial-mesenchymal transition[J]. J Clin Invest, 2009, 119(6): 1420-1428. 10.1172/JCI39104. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3. Birchmeier W, Behrens J. Cadherin expression in carcinomas: role in the formation of cell junctions and the prevention of invasiveness[J]. Biochim Biophys Acta, 1994, 1198(1): 11-26. 10.1016/0304-419x(94)90003-5. [DOI] [PubMed] [Google Scholar]
  • 4. 李乐赛, 李梅花, 陈亦乐. HPV16 E6对宫颈癌E-cadherin表达水平和基因甲基化的影响[J]. 湖南师范大学学报(医学版), 2016, 13(4): 1-4. [Google Scholar]; LI lesai, LI Meihua, CHEN Yile. Effects of HPV16 E6 on E-cadherin expression and gene methylation in cervical cancer [J]. Journal of Hunan Normal University. Medical Edition, 2016, 13(4): 1-4. [Google Scholar]
  • 5. Dong P, Xiong Y, Yu J, et al. Control of PD-L1 expression by miR-140/142/340/383 and oncogenic activation of the OCT4-miR-18a pathway in cervical cancer[J]. Oncogene, 2018, 37(39): 5257-5268. 10.1038/s41388-019-0677-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6. Babion I, Jaspers A, van Splunter AP, et al. MiR-9-5p exerts a dual role in cervical cancer and targets transcription factor TWIST1[J]. Cells, 2019, 9(1): 1. 10.3390/cells9010065. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7. Derynck R, Weinberg RA. EMT and cancer: More than meets the eye[J]. Dev Cell, 2019, 49(3): 313-316. 10.1016/j.devcel.2019.04.026. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8. van Roy F, Berx G. The cell-cell adhesion molecule E-cadherin[J]. Cell Mol Life Sci, 2008, 65(23): 3756-3788. 10.1007/s00018-008-8281-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9. Kidd ME, Shumaker DK, Ridge KM. The role of vimentin intermediate filaments in the progression of lung cancer[J]. Am J Respir Cell Mol Biol, 2014, 50(1): 1-6. 10.1165/rcmb.2013-0314TR. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10. Schneider MR, Kolligs FT. E-cadherin's role in development, tissue homeostasis and disease: Insights from mouse models: Tissue-specific inactivation of the adhesion protein E-cadherin in mice reveals its functions in health and disease[J]. Bioessays, 2015, 37(3): 294-304. 10.1002/bies.201400141. [DOI] [PubMed] [Google Scholar]
  • 11. Jin W, Gu C, Zhou L, et al. Theabrownin inhibits the cytoskeletondependent cell cycle, migration and invasion of human osteosarcoma cells through NF kappa B pathwayrelated mechanisms[J]. Oncol Rep, 2020, 44(6): 2621-2633. 10.3892/or.2020.7801. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12. Jiang J, Li X, Yin X, et al. Association of low expression of E-cadherin and beta-catenin with the progression of early stage human squamous cervical cancer[J]. Oncol Lett, 2019, 17(6): 5729-5739. 10.3892/ol.2019.10266. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13. Lv X, Hou M, Duan X. Correlation analysis between the parameters of contrast-enhanced ultrasonography in evaluating cervical cancer metastasis and expression of E-cadherin[J]. Oncol Lett, 2017, 14(4): 4641-4646. 10.3892/ol.2017.6785. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14. Qureshi R, Arora H, Rizvi MA. EMT in cervical cancer: its role in tumour progression and response to therapy[J]. Cancer Lett, 2015, 356(2 Pt B): 321-331. 10.1016/j.canlet.2014.09.021. [DOI] [PubMed] [Google Scholar]
  • 15. Wang JY, Chen LJ. The role of miRNAs in the invasion and metastasis of cervical cancer[J]. Biosci Rep, 2019, 39(3): 12-17. 10.1042/BSR20181377. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16. Ma L, Young J, Prabhala H, et al. MiR-9, a myc/mycn-activated microRNA, regulates E-cadherin and cancer metastasis[J]. Nat Cell Biol, 2010, 12(3): 247-256. 10.1038/ncb2024. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17. Zu Y, Zhu Z, Lin M, et al. MiR-9 promotes apoptosis via suppressing SMC1A expression in GBM cell lines[J]. Curr Chem Genom Transl Med, 2017, 11(2): 31-40. 10.2174/2213988501711010031. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18. He L, Zhang L, Wang M, et al. miR-9 functions as a tumor inhibitor of cell proliferation in epithelial ovarian cancer through targeting the SDF-1/CXCR4 pathway[J]. Exp Ther Med, 2017, 13(4): 1203-1208. 10.3892/etm.2017.4118. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19. Xu T, Liu X, Han L, et al. Up-regulation of miR-9 expression as a poor prognostic biomarker in patients with non-small cell lung cancer[J]. Clin Transl Oncol, 2014, 16(5): 469-475. 10.1007/s12094-013-1106-1. [DOI] [PubMed] [Google Scholar]
  • 20. Seashols-Williams SJ, Budd W, Clark GC, et al. MiR-9 acts as an oncomir in prostate cancer through multiple pathways that drive tumour progression and metastasis[J/OL]. PLoS One, 2016, 11(7): e0159601 [2021-05-01]. 10.1371/journal.pone.0159601. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21. Zhang H, Li Y, Tan Y, et al. MiR-9-5p inhibits glioblastoma cells proliferation through directly targeting FOXP2 (forkhead box P2)[J]. Front Oncol, 2019, 9(2): 1176. 10.3389/fonc.2019.01176. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22. Wang WX, Yu HL, Liu X. MiR-9-5p suppresses cell metastasis and epithelial-mesenchymal transition through targeting FOXP2 and predicts prognosis of colorectal carcinoma[J]. Eur Rev Med Pharmacol Sci, 2019, 23(15): 6467-6477. 10.26355/eurrev_201908_18530. [DOI] [PubMed] [Google Scholar]
  • 23. Liu T, Liu Y, Wei C, et al. LncRNA HULC promotes the progression of gastric cancer by regulating miR-9-5p/MYH9 axis[J]. Biomed Pharmacother, 2020, 121(2): 109607. 10.1016/j.biopha.2019.109607. [DOI] [PubMed] [Google Scholar]
  • 24. Chen L, Hu W, Li G, et al. Inhibition of miR-9-5p suppresses prostate cancer progress by targeting StarD13[J]. Cell Mol Biol Lett, 2019, 24(1): 20. 10.1186/s11658-019-0145-1. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Central South University Medical Sciences are provided here courtesy of Central South University

RESOURCES