Skip to main content
Journal of Central South University Medical Sciences logoLink to Journal of Central South University Medical Sciences
. 2023 Dec 28;48(12):1899–1913. [Article in Chinese] doi: 10.11817/j.issn.1672-7347.2023.230231

炎症与肿瘤微环境

Inflammation and tumor microenvironment

NIU Tao 1,2, ZHOU Fenghai 2,
Editor: 陈 丽文
PMCID: PMC10930746  PMID: 38448384

Abstract

There is a connection between inflammation and cancer. Inflammation is one of the hallmarks of cancer, affecting tumor progression, transition to a malignant phenotype, and the efficacy of tumor chemotherapy. The tumor microenvironment impacts the biological characteristics of tumors through various specific factors and signaling mechanisms. The interaction between inflammation and the tumor microenvironment involves inflammation affecting the tumor microenvironment by inducing immune suppression, while acute inflammation promotes tumor suppression by producing anti-tumor immune responses. This review elaborates on how inflammation affects the tumor microenvironment and thus affects the progression and treatment of tumors, starting from the components of the tumor microenvironment, inflammasomes, cytokines, non-coding RNAs, and other aspects. Inflammatory factors play an important role in regulating inflammatory responses and immune reactions, and they also affect the development of tumors through various pathways in the tumor microenvironment. In addition, non-coding RNAs play an important role in the tumor microenvironment, regulating tumors and inflammation. They are involved in regulating the occurrence, development of tumors, the process of inflammation, as well as regulating inflammation-induced cancer or tumor-related inflammation, and the interaction between the tumor microenvironment, inflammatory factors, and immune cells. Therefore, gaining a deeper understanding of the interaction between inflammation and the tumor microenvironment and its connection to the occurrence and development of cancer can provide a theoretical basis for combating tumors and finding new therapeutic strategies.

Keywords: tumor, inflammation, tumor microenvironment, cyclic RNA


炎症与肿瘤之间一直存在着某种联系,最早可以追溯到1828年,法国外科医生Jean Nicholas Marjolin发现烧伤瘢痕附近会出现鳞状细胞癌,将其简单描述为溃疡;1863年,德国医生Rudolf Virchow第1次指出了肿瘤与炎症之间存在着相互联系,并且他在肿瘤标本中发现了大量的炎症细胞,证明慢性炎症部位可以为肿瘤的发生、发展提供一个良好的起始环境。近年来,炎症和肿瘤的研究不断深入,Hanahan等[1]认为有一部分炎症对肿瘤的发生和进展起促进作用,并且炎症也被认为是肿瘤的特征之一;炎症被认为与肿瘤的发生、发展、恶变、侵袭和转移等各个环节有关。慢性炎症通过诱导免疫抑制为肿瘤的发生和转移提供了一个良好的环境[2]。同时,肿瘤引发的炎症反应通过阻滞抗肿瘤免疫、重塑肿瘤微环境(tumor microenvironment,TME)以及直接作用于癌细胞来促进肿瘤[3]。急性炎症可以通过促进树突状细胞的成熟和功能提升,以及激活效应T细胞来产生抗肿瘤免疫应答,从而促进形成抑制肿瘤的环境[4]。此外,急性炎症还可能在不同类型的肿瘤中促进肿瘤细胞凋亡[4]。进一步研究炎症与TME相互作用的过程,可能有助于改善肿瘤的治疗和诊断。本综述将深入探讨炎症与TME之间相互影响对肿瘤发展、恶化和转移的关键作用。通过解析这一复杂的交互作用,以期为肿瘤的预防和治疗提供新的思路和策略。

根据目前相关研究进展,炎症和致癌之间存在直接的因果联系。研究[5]认为15%~20%的肿瘤相关死亡与先前存在的炎症有关。一些慢性炎症性疾病,例如肝炎或者因接触石棉或吸烟等环境而引起的慢性感染或炎症会增加患肿瘤的风险[6]。此外,使用非甾体抗炎药物可以降低患各种肿瘤的风险,并降低病死率[7],这进一步强调了炎症在肿瘤转化中的作用。许多研究[8-10]表明,慢性感染与大部分肿瘤相关的死亡密切相关。总之,肿瘤的发生是一个复杂的过程,炎症通过多种方式/途径对肿瘤的发生和发展起促进作用[11]

1. TME与炎症

TME是指由多细胞组成的一个复杂而丰富的环境,它对于肿瘤的生长和发展起重要作用。TME中包括原发肿瘤细胞、多种组织细胞(如内皮细胞和成纤维细胞)、各类免疫细胞、脂肪细胞和细胞外液等,这些组成使得TME成为一个高度复杂的局部环境。TME是肿瘤生长和发展的重要组成部分,对肿瘤细胞的生长、转移和耐药性有着重要影响[12]。免疫细胞在TME中发挥重要作用,包括抑制或促进肿瘤生长,并且在宿主免疫监视和新生癌细胞消除中起关键作用[13];基质细胞则能够影响肿瘤细胞的增殖和迁移[14]。TME能够决定身体中异常生长或发育组织的功能,并在这些组织进一步演化为恶性肿瘤中发挥关键作用[15]

TME的变化对肿瘤的发生和发展有着重要的影响。TME内部的成分和组成在不同的生长阶段会发生变化,这些变化可导致免疫细胞的代谢重编程并进而改变其功能[16]。此外,TME也对免疫应答和肿瘤适应生长环境起一定作用。TME的变化可导致免疫细胞改变其功能,降低对肿瘤细胞的杀伤作用,从而促进肿瘤生长,这个过程可能导致肿瘤的免疫逃逸,使肿瘤对免疫治疗的耐受增强[17]。TME的重构对肿瘤发展具有重要的影响,能够通过调节免疫细胞的代谢和功能来塑造适合肿瘤生长的微环境,以促进肿瘤增殖和侵袭、转移、血管生成和免疫逃逸[18]。在过去几十年中,对TME的研究影响了我们对肿瘤演化的理解,治疗策略也逐渐从以肿瘤为中心的方法转变为对肿瘤生态系统的管理。

TME中的炎症反应会影响肿瘤的进展。首先,炎症可以导致TME中的细胞生成炎症介质,如细胞因子和趋化因子,这些介质可以影响肿瘤细胞的增殖和侵袭能力。相较于正常组织,肿瘤组织中的白细胞介素(interleukin,IL)-1β、IL-6和肿瘤坏死因子α(tumor necrosis factor α,TNF-α)等细胞因子明显增加[19]。其次,炎症还可以刺激TME中这些免疫细胞释放抗肿瘤因子、T细胞和自然杀伤细胞,可抑制肿瘤的发生和发展。此外,与之相反的是一部分肿瘤相关巨噬细胞则会促进肿瘤生长和免疫逃逸[20]。此外,炎症还可以改变TME中的细胞外基质(extracellular matrix,ECM),使其更有利于肿瘤细胞的生长和迁移[21]。炎症和TME的相互作用对肿瘤的发展和进展具有重要的临床意义。因此,炎症和TME的相互作用是肿瘤研究的重要领域之一,深入了解这种相互作用的机制和影响因素,对于开发肿瘤治疗策略具有重要意义。

1.1. 免疫细胞与炎症

免疫细胞不仅在炎症中发挥巨大作用,而且影响肿瘤的发生。在许多肿瘤中,免疫细胞是TME 中最丰富的非癌细胞,包括不同的先天免疫细胞;在TME中,最积极参与调节肿瘤进展的细胞有巨噬细胞、髓源性抑制细胞、中性粒细胞、单核细胞、树突状细胞和自然杀伤细胞。这些免疫细胞在肿瘤中有双重作用。一方面,通过抗原呈递、细胞因子支持和产生直接的抗肿瘤活性来支持适应性肿瘤特异性T细胞反应;另一方面,先天免疫系统细胞通过释放各种细胞因子,在免疫抑制和促进肿瘤生长中发挥重要作用。例如,树突状细胞是抗原呈递细胞,作为先天免疫系统和适应性免疫系统之间的信使,处理抗原并将其呈递给T细胞,诱导T细胞活化和效应分化[22]。T细胞是抗肿瘤的关键调节因子,T细胞的活化可以极大增加免疫疗法的治愈潜力,利用活化的T细胞杀伤不同的肿瘤细胞[23]。一旦树突状细胞出现功能障碍,就会无法诱导T细胞活化,因此,肿瘤中树突状细胞功能障碍与肿瘤进展相关。自然杀伤细胞在肿瘤免疫监视中的作用已得到充分确认,并且被认为参与了原发部位的肿瘤细胞和远处部位的肿瘤细胞清除[24]

肿瘤相关巨噬细胞(tumor-associated macrophage,TAM)是TME中的一类重要免疫细胞,其主要功能是清除病理性细胞和炎症介质,参与炎症调节和免疫应答,M1型巨噬细胞的转化过程主要受到炎症的调节[25]。当机体发生炎症反应时,巨噬细胞从M0型转化为M1型,这种转化过程主要由多种信号通路调控,包括核因子κB(nuclear factor kappa-B,NF-κB)信号转导通路和信号转导和转录活化因子(signal transducer and activator of transcription,STAT)3信号通路[26]。M2型巨噬细胞是一种具有免疫抑制和肿瘤促进特性的巨噬细胞亚型,它们能够通过生成多种抗炎因子,如IL-10和转化生长因子-β(transforming growth factor-β,TGF-β),来抑制免疫反应并促进肿瘤细胞的生长和扩散[27]。M1型巨噬细胞向M2型巨噬细胞的转化过程与炎症密切相关,炎症因子能够激活多种信号通路,如STAT6信号通路和Toll样受体(Toll-like receptors,TLR)信号通路,从而促进M1型巨噬细胞向M2型巨噬细胞的转化[28]

炎症可以通过影响免疫细胞的生物学行为进而影响肿瘤的发生和发展。炎症主要是通过改变免疫细胞的分泌来影响肿瘤细胞[29],例如,免疫细胞会释放多种细胞因子和炎症介质,如IL-1、TNF-α、IL-6等。这些分子的过度释放可以导致TME中炎症反应的发生和持续,进而影响肿瘤的生长和转移。因此,针对这些过度释放的细胞因子和炎症介质,探究其促进肿瘤生长的作用机制,有助于肿瘤治疗方案的探索;同时,可以尝试从控制炎症的角度去影响肿瘤的进展。进一步研究炎症与免疫细胞之间的相互作用机制以及它们对于TME的影响对于肿瘤的治疗有很大的潜在价值。

1.2. 基质细胞与炎症

TME中的基质细胞也对肿瘤的发展起重要作用。基质细胞是一类具有多种功能的细胞,包括内皮细胞、肿瘤相关成纤维细胞(cancer-associated fibroblasts,CAFs)及其他细胞,其主要作用是维持组织的结构完整性和功能平衡。在肿瘤中,基质细胞的数量和活性明显增加,与肿瘤细胞形成复杂的相互作用网络[30]。成纤维细胞是人体中最多的基质细胞,其作用是通过分泌细胞因子、生长因子和趋化因子,以及重塑ECM,从而促进肿瘤的生长和扩散[31]。CAFs是肿瘤基质中的活化成纤维细胞,被认为与肿瘤恶性和肿瘤进展有关[32]。已发现CAFs在非受限生长、血管生成、侵袭转移和治疗抵抗等方面起到促进作用[33]。CAFs作为TME中周围间质的一部分存在,并通过分泌生长因子、细胞因子和趋化因子以及重塑ECM来促进肿瘤生长。肿瘤细胞与CAFs之间存在相互作用,肿瘤细胞通过激活CAFs,并从它们分泌的生长因子和细胞因子中获益,从而产生促肿瘤效应。CAFs可以分泌多种因子,例如肝细胞生长因子(hepatocyte growth factor,HGF)、基质细胞衍生因子-1(stromal cell-derived factor 1,SDF-1)、IL-1β、血小板源性生长因子(platelet-derived growth factor,PDGF)、同源性磷酸酶-张力蛋白(phosphatase and tensin homolog,PTEN)和人重组音猬蛋白(sonic hedgehog,Shh)等[34]。基质细胞与炎症之间存在复杂的相互作用关系,二者相互影响并共同参与肿瘤的发生和发展过程。

CAFs在不同的组织和器官中有不同的亚群,可以介导不同的病理反应,有研究[35]发现在不同的肿瘤中存在功能各异的肿瘤相关CAFs群体。在TME中,CAFs的生物学行为和肿瘤的生长紧密相连,CAFs可以通过促进血管生成、形成纤维化基质、介导转移和调节免疫浸润等一系列生物学行为促进恶性肿瘤的生长和发展[36]。炎症的发生离不开作为免疫调节剂的CAFs,同时CAFs也可以帮助清除炎症反应。因此,TME中炎症、CAFs和肿瘤之间有着相互联系,进一步研究他们具体的相互作用机制,有助于了解三者对肿瘤的影响;此外,对于TME中CAFs的深入研究,有助于发挥CAFs在肿瘤治疗方面的作用,例如CAFs可以刺激炎症反应而促进抗肿瘤免疫。

1.3. ECM与炎症

ECM是由一系列蛋白质和多糖组成的复杂网络结构。ECM是一种多功能的支架结构,不仅为细胞提供结构和生化支持。而且通过与细胞表面的受体相互作用,参与细胞的生长、分化和迁移。ECM中物质合成与降解的失衡涉及涉及代谢、炎症等诸多因素[37]。然而,当ECM与炎症相互作用时,会对肿瘤的发生和进展产生重要影响。炎症是机体对损伤或感染的一种生理反应,ECM与炎症之间的相互作用是一个复杂的过程,它涉及多种细胞和分子的相互作用,包括ECM的降解、炎症细胞的迁移和炎症因子的释放等。ECM在肿瘤发展和进展中起着关键作用。其首要作用是通过调控肿瘤细胞的增殖和分化,从而影响肿瘤的发展进程。ECM的成分和结构可以调节肿瘤细胞的增殖和分化,从而影响肿瘤的生长和发展[38]。同时,ECM可以通过调节炎症细胞的迁移和活化来影响肿瘤的发展。研究[39]表明,ECM的成分和结构可以影响炎症细胞的迁移和活化能力,从而影响肿瘤的发生和进展。其次,炎症可以通过调节ECM的降解和重建来影响肿瘤的进展。ECM是TME中的非细胞成分,主要由胶原I组成,它会与肿瘤边界对齐,从而促进癌细胞的迁移[40]。ECM蛋白还被认为是转移巢的重要组成部分,可以维持肿瘤干细胞的特性并促进转移细胞的生长[41]。炎症可以通过激活多种蛋白酶和激酶,肿瘤ECM通过基质金属蛋白酶(matrix metalloproteinases,MMPs)等细胞外蛋白酶诱导肿瘤细胞转移[42],从而影响肿瘤的转移和扩散。

在TME中发生的炎症所引起的免疫反应,可以分泌一系列的细胞因子和趋化因子直接调节ECM的结构和功能,还可以通过直接合成ECM成分和分解ECM的酶来调控ECM[43]。同时,对于肿瘤细胞来说ECM相当于一种屏障,可以起到保护肿瘤的作用,并促进肿瘤的进展[44];因此,可以将ECM作为抗肿瘤治疗的一个突破口,进一步研究TME中炎症和肿瘤的相互作用对ECM的影响,探究其如何改变ECM的分子组成以及如何重塑ECM,对于找到新的肿瘤治疗靶点很有帮助。

2. 炎症因子与TME

2.1. 炎症因子

炎症因子在TME中参与炎症反应的同时也对肿瘤有着一定的影响。在发生炎症反应过程中,免疫细胞和基质细胞通过细胞间信号转导合成细胞因子,从而调节炎症反应;然而,在慢性炎症期间,一些细胞因子可能会导致癌变,例如,在慢性炎症组织中会生成大量的炎症细胞因子,一些肿瘤细胞能够对这些细胞因子做出反应,从而获得生长优势[45]。细胞因子对慢性炎症和肿瘤的发生发展有着至关重要的作用。在炎症状态下,细胞因子的水平会显著升高,从而引起组织细胞的增殖和分化,同时也会增加罹患肿瘤的风险[46]。此外,细胞因子还可以影响免疫系统的调节,使机体对肿瘤的免疫力下降,从而促进肿瘤的生长和扩散[47]。因此,要预防和治疗慢性炎症和肿瘤,就必须有效地控制细胞因子的水平。

炎症对肿瘤细胞并不总是产生正面的效应。实际上,炎症还可以发挥抗肿瘤的作用。炎症过程中的免疫细胞可以释放抗肿瘤因子,如自然杀伤细胞也能分泌细胞因子,其分泌的干扰素-γ和TNF-α被用来抑制肿瘤细胞增殖、肿瘤血管生成和多阶段癌变[48]。炎症对肿瘤细胞的影响机制复杂多样。炎症过程中生成的细胞因子和化学物质可以与肿瘤细胞表面的受体结合,激活多种信号通路,例如,TNF-α是一种重要的炎症介质,它能够激活肿瘤细胞表面的TNF受体,进而激活NF-κB通路和丝裂原活化蛋白激酶(mitogen-activated protein kinase,MAPK)通路,促进肿瘤细胞的增殖、生存和侵袭,从而推动肿瘤的发展[49]。炎症可以改变肿瘤细胞的表型,使其具有更强的侵袭性和转移能力;此外,炎症还可以通过改变肿瘤细胞的代谢途径,增加其对营养物质的需求,从而进一步促进肿瘤细胞的生长和扩散。

TGF-β是属于转化生长因子超家族的多功能细胞因子,在细胞增殖、生存和分化等生理活动中发挥重要作用[50]。该家族包含TGF-β亚型TGF-β1、-β2和-β3,以及生长抑制因子等。同时TGF-β是一种免疫抑制细胞因子,在炎症过程中释放,抑制炎症的进展。TME中的TGF-β可以帮助肿瘤细胞生长、侵袭和扩散[51]。肿瘤相关TGF-β可以来源于不同的细胞——癌细胞本身、基质细胞、浸润肿瘤的炎症细胞[52]。TGF-β通过与其含有胞质丝氨酸/苏氨酸激酶结构域的II型受体(transforming growth factor beta receptor type II,TGFBRII)结合而发挥作用[53]TGFBRII的基因突变常出现在具有微卫星不稳定性的恶性肿瘤中,导致其无法与TGF-β结合发挥作用,因此使TGF-β无法发挥对癌细胞的抑制作用[54]。TGF-β在肿瘤中发挥重要的作用,不仅能够抑制免疫反应,而且能够调节肿瘤细胞的上皮细胞向间质细胞转化(epithelial-mesenchymal transition,EMT)过程。在肿瘤细胞中,EMT过程的启动增加了细胞的移动性和侵袭能力,这提供了肿瘤侵袭、扩散和转移的基础。因此,TGF-β的调节可能对肿瘤的发展起着重要的促进作用。TGF-β信号轴已被证实为肝细胞癌中EMT过程的强诱导因子[55]。Cohen等[56]的研究表明:活化的人类T细胞分泌的TNF-α、IL-6和TGF-β等炎症因子能够在乳腺癌中诱导EMT。TGF-β在局部侵袭中也起重要作用。临床数据[57]显示它也有助于促进肿瘤的远端转移。Dalal等[58]观察到绝大多数乳腺浸润性导管癌的转移灶中均存在TGF-β水平的升高。研究[57]表明,TGF-β参与了2个对远端转移发展至关重要的过程,即肿瘤细胞的启动和肿瘤新转移灶的定植。TGF-β诱导癌细胞中生成的血管生成素样4可以破坏血管内皮细胞连接,增加毛细血管通透性,促进肿瘤细胞穿过血管内皮。因此,血管生成素样4在原发性乳腺肿瘤的生长和转移中发挥了重要作用,它促进了肺毛细血管细胞间连接的破坏,增加其通透性,并允许癌细胞在肺内播散[59]

C反应蛋白(C-reaction protein,CRP)是肝细胞在对促炎细胞因子的反应中合成的生物标志物,肝是血液中CRP的主要来源。Pierce等[60]证明慢性炎症可能会增加乳腺癌复发的风险。Sparano等[61]建议将到全身CRP和血清淀粉样蛋白A(serum amyloid A protein,SAA)作为慢性炎症的标志物,这些标志物与乳腺癌生存率之间存在负相关。CRP和SAA都是非特异性急性期蛋白质,它们是响应各种细胞因子(如IL-1、IL-6和TNF-α)而分泌的[62]。在炎症或感染发生时,CRP的含量会显著增加,增幅达到1 000倍。这种增加会导致CRP参与经典补体途径的激活[63]。CRP以同型五聚体的形式出现,称为天然CRP(natural C-reactive protein,nCRP),能够在炎症部位解离形成单体CRP (monomeric C-reactive protein,mCRP)。2种CRP亚型都有生物学功能。nCRP具有抗炎特性,并且在经典途径激活补体后会诱导细胞吞噬作用和促进细胞凋亡。与之相反,mCRP是趋化性诱导剂,它不但在炎症部位募集白细胞,还可以增强IL-8的表达和增加单核细胞趋化蛋白1的数量,并诱导一氧化氮的生成[64]。SAA参与炎症细胞的募集。在一项包含734名乳腺癌患者的研究[60]中,将治疗后炎症标志物与乳腺癌生存相关联,结果显示CRP和SAA升高与无病生存率降低有关。

2.2. 炎症小体

炎症小体作为一种多聚体蛋白质复合物,它在参与炎症反应同时也对肿瘤的发展有一定的影响。炎症小体涉及肿瘤发展的各个环节,具有促癌和抑癌功能。炎症小体在恶性肿瘤的进展中起调节作用;炎症小体在TME中具有双重作用,其中炎症小体促进或抑制肿瘤进展取决于不同肿瘤中的不同炎症小体[65]。炎症小体参与恶性肿瘤的发生、侵袭、转移、免疫逃逸。值得注意的是,炎症小体可以在TME的不同细胞亚群中被激活,包括肿瘤细胞、肿瘤相关巨噬细胞、肿瘤相关成纤维细胞和骨髓来源的抑制细胞[66]。此外,炎症小体可以在不同的条件下被激活,从而导致不同的下游变化。另外可能会启动完全不同甚至相反的机制来调节炎症小体的激活。乳酸通过增加活性氧(reactive oxygen species,ROS)水平激活巨噬细胞中的核苷酸结合寡聚结构域样受体蛋白3(nucleotide-binding oligomerization domain-like receptor protein 3,NLRP3)炎症小体。同时,乳酸还促进肿瘤细胞释放TGF-β,以去SMAD依赖性方式在巨噬细胞中诱导自噬,从而导致ROS清除和炎症减弱[67]

生物信息学等新的研究方法可能有助于全面了解炎症小体的表达和功能,并在炎症小体和临床数据之间建立联系。一项有关于泛癌分析[68]表明,根据肿瘤的类型不同,肿瘤组织中NLRP3的表达水平可以升高或降低。该分析还揭示了NLRP3表达与黑色素瘤和肝细胞癌的生存、黑色素瘤的预后以及免疫治疗反应之间的关系,其中NLRP3表达升高提示更好的生存、改善的预后和更高的免疫治疗反应率。另一项研究[69]建立了炎症小体相关基因的风险评分,以预测肾透明细胞癌的临床病理特征、预后和免疫反应模式。但是,目前仍然需要更多类似的研究来了解炎症小体在肿瘤中的作用。

2.3. 前列腺素在TME中的促癌作用

前列腺素对肿瘤的发生和发展也有一定的影响。前列腺素是一种活性物质,由不饱和脂肪酸组成,通过环氧化酶(cyclooxygenase,COX)从花生四烯酸中合成。前列腺素在炎症反应中普遍存在,并且其合成量在炎症区域明显增加。因此,前列腺素在炎症和疼痛处理中具有重要作用,其在肿瘤、心血管疾病和神经科学等领域的作用也被广泛研究[70]。为了更好地理解它们在各种生理和病理过程中的作用,需要继续深入研究前列腺素的功能和调控机制。COX通常存在着2种亚型,即COX-1和COX-2,其中COX-2在肿瘤的发生、发展中起重要作用。研究[71]发现在前列腺癌患者中COX-2表达较高,由于COX-2与前列腺特异抗原剂量相关,因此COX-2有望成为前列腺癌患者诊断和预后的生物标志物。COX-2可以诱导结肠癌细胞生成血管生成因子,可能有助于新血管的生成,刺激肿瘤的生长[72]。COX-2的刺激作用并不局限于结肠癌,在肺癌、前列腺癌和乳腺癌中也观察到COX-2表达的上调[73]。前列腺素也与ROS和活性氮(reactive nitrogen species,RNS)有一定的联系,过氧亚硝酸盐是一种一氧化氮和超氧化物之间的高度反应产物,是一种短寿命的氧化剂,也是细胞凋亡的有效诱导剂,其可以刺激COX-2的产生。动物模型和流行病学观察[73]表明,使用非甾体抗炎药治疗可以降低发生胃肠道肿瘤的风险,尤其是在结直肠癌的治疗中尤为明显。COX-2特异性抑制剂比传统的非甾体抗炎药表现出更明显的抑制结肠癌的能力;但COX-2表达与结直肠癌之间的机制尚不清楚[74]。目前有研究[75]认为,COX-2在前列腺素E2的分泌中起重要作用,前列腺素E2与前列腺素E2受体结合发挥作用。前列腺素E2受体2亚型(E-series of prostaglandin receptors type 2,EP2)被认为是一种肿瘤启动子——已敲减EP2的小鼠在诱导癌变后发生肺、皮肤和乳房肿瘤的风险显著降低。EP2主要通过激活血管内皮生长因子来诱导相关的血管生成从而促进癌变。然而,它也调节内皮细胞的运动和生存,这也抑制血管生成[76]。前列腺素受体4是另一种与肿瘤发生相关的受体。前列腺素E2诱导的前列腺素受体4的激活会导致致瘤性免疫反应的发展。

2.4. 炎症引起的氧化应激

炎症、氧化应激和肿瘤的发生之间存在密切的联系。氧化应激有调节炎症的能力,而炎症则通过氧化应激引发细胞氧化损伤[77]。炎症诱导癌变的机制之一涉及ROS和RNS的生成。活化的中性粒细胞和巨噬细胞等多种炎症细胞可以通过激活多种氧化酶来生成ROS和RNS,如还原型烟酰胺腺嘌呤二核苷酸磷酸氧化酶、黄嘌呤氧化酶、诱导型一氧化氮合酶(inducible nitric oxide synthase,iNOS)及髓过氧化物酶等。细菌和寄生虫侵入人体后会激活人体免疫系统,引起炎症反应,生成ROS和RNS等氧化剂,产生这些氧化剂是为了杀死细菌和寄生虫,但这些氧化剂会对核酸、蛋白质和脂质造成损害[78],通常DNA损伤的诱导可导致突变和进一步的肿瘤转化。在上述过程中合成的氧化剂可以诱导基因的突变,8-oxo-dG是氧化DNA损伤的一个非常重要的生物标志物。它既存在于完整的DNA中,也存在于修复过程中形成的游离产物中[78],可以导致肿瘤中的G:C到A:T颠换[79],引起DNA的损伤。同样,RNS也会诱导基因的突变。在炎症过程中,许多炎症细胞,尤其是巨噬细胞和中性粒细胞,在细菌产物的存在下诱导iNOS表达。氧亚硝酸盐是一氧化氮与超氧自由基反应的产物[80],与一氧化氮相比,它更不稳定,因此对DNA造成的损害更大。过氧亚硝酸盐导致8-oxodG的产生、核酸碱基的转变和转位的发生,从而引起基因的突变[81]。一氧化氮也与胃癌的发生有关,幽门螺杆菌感染是胃癌发生的主要因素之一。幽门螺杆菌激活胃上皮内的炎症因子,后者进一步激活相关通路导致一氧化氮合酶的表达增加[82]

3. 炎症相关非编码RNATME

3.1. 环状RNATME

近年来,非编码RNA获得了广泛关注。环 状 RNA(circular RNA,circRNAs)在炎症性疾病中具有潜在研究价值。CircRNAs在炎症的起始和发展过程中起重要作用,能够调节炎症相关基因的表达,从而影响炎症反应的发生和持续[83]。CircRNAs是通过内含子互补序列驱动、RNA结合蛋白(RNA binding protein,RBP)驱动或内含子套索介导的由剪接因子促进的反向剪接而生成。不像线性RNA遵循标准的剪接过程而形成,由于circRNAs具有共价的闭环结构和外切酶的限制性降解,因此它比线性的RNA更稳定[84]。CircRNAs的生理和病理功能通过微RNA(microRNAs,miRNA)分子海绵作用、与环状RNA结合蛋白(circular RNA-binding protein,cRBPs)的相互作用、蛋白质翻译或转录调控来实现[85]。研究[86]显示有41个京都基因和基因组百科全书信号通路数据库(Kyoto Encyclopedia of Genes and Genomes signaling pathway database,KEGG)通路在49种人类肿瘤中致癌。其中,MAPK途径与多达40种肿瘤类型相关。蛋白激酶B(protein kinase B,AKT)、哺乳动物雷帕霉素靶蛋白(mammalian target of rapamycin,mTOR)、凋亡和NF-κB信号通路也参与至少34种肿瘤的发生[87]。此外,circRNAs可以干扰和调节上述信号通路及其网络,这是circle RNA在疾病进展中的主要生物学功能之一[88]。引起肿瘤发生的相关炎症性疾病的circRNAs总结见表1

表1.

引起癌症发生的相关炎症性疾病的环状RNAs

Table 1 Circular RNAs associated with inflammatory diseases leading to cancer

环状RNAs 炎症性疾病 炎症反应 作用机制 导致的癌症
CircZC3H4 尘肺病 肺巨噬细胞活化 通过miR-212海绵增加ZC3H4的表达 肺癌
CircHECTD1 尘肺病 巨噬细胞活化和成纤维细胞增殖

通过ZC3H12A结合调控M1/M2型巨噬

细胞

肺癌
Circ-0003528 支气管炎 巨噬细胞极化 通过miR-224-5p、miR-324-5p和miR-488-5p的海绵处理,增加CTLA4的表达 肺癌
CircATRNL1

卵巢子宫内膜

异位症

促进Ishikawa细胞增殖、迁移和侵袭 通过miR-141-3p和miR-200a-3p的竞争性结合,增加YAP1的表达 卵巢癌
Circ-0088194 类风湿性关节炎 促进类风湿性关节炎成纤维细胞样滑膜细胞的侵袭和迁移 通过miR-766-3p的海绵作用增加MMP2的表达 骨肉瘤
CircFBXW4 肝纤维化 抑制肝星状细胞的激活、增殖,诱导凋亡 通过miR-18b-3p的海绵作用增加FBXW7的表达 肝癌
Circ-103765 克罗恩病 促进人类肠道上皮细胞的增殖和凋亡 通过miR-30家族吸附增加DLL4的表达 结直肠癌

CircZC3H4:环状RNA-ZC3H4;CircHECTD1:环状RNA-HECTD1;Circ-0003528:环状RNA-0003528;CircATRNL1:环状RNA-ATRNL1;Circ-0088194:环状RNA-0088194;CircFBXW4:环状RNA-FBXW4;Circ-103765:环状RNA-103765;ZC3H4:具有CCCH型锌指结构蛋白4;ZC3H12A:具有CCCH锌指结构域的蛋白质12A;CTLA4:细胞毒T淋巴细胞相关抗原4;YAP1:Yes相关蛋白1;MMP2:基质金属蛋白酶2;FBXW7:F框/WD-40域蛋白7;DLL4:Delta样配体4蛋白。

据报道[89],部分circRNAs具有miRNAs结合位点,使其像miRNA海绵一样竞争性结合miRNA,抑制miRNA与其靶基因的结合可以间接调控基因表达。此外,编码新多肽的可翻译circRNAs也参与调节疾病相关的信号通路。竞争性内源性RNA通过海绵miRNAs参与下游通路的激活或抑制是circRNAs和磷脂酰肌醇3激酶-蛋白激酶B(phosphoinositide 3-kinase protein kinase B,PI3K-AKT)信号通路相互作用的主要机制[90]。基于蛋白质基因组综合分析的95个前瞻性收集的子宫内膜癌(83个子宫内膜样癌和12个浆液性肿瘤)的特征揭示了circRNAs通过Wnt/β-连环蛋白通路(canonical Wnt/β-catenin pathway)在调节EMT中的潜在作用[91]。同样,circRNAs和进化保守的Hippo通路之间的相互作用机制也是目前肿瘤发生过程中的研究热点。

CircRNAs可以形成circRNAs-蛋白质复合物调节信号通路来影响炎症和肿瘤的联系。在不同的肿瘤表型中,RNA结合蛋白(RNA binding protein,RBP)的失调导致慢性炎症或自身免疫[92]。在这些RBP中,最具潜力的是人类抗原R蛋白(human antigen R protein,HuR)。HuR是一种已建立的转录后基因调控因子,在许多人类肿瘤中过表达。HuR驱动促炎表型的激活,并与许多慢性疾病有关,如心肌肥厚、胰腺炎、风湿性关节炎、哮喘和恶病质[93]。HuR在肝脏炎症、酒精性肝病、非酒精性脂肪性肝病、病毒性肝炎、肝纤维化和肝癌等疾病的进展中起重要的调控作用[94]。炎症和肿瘤中circRNAs和HuR之间的交互串扰导致了信号通路的改变。HuR是最热门的与circRNAs相互作用的cRBP。已有研究[95]证实蛋白激酶cAMP依赖性II型调节亚基α(protein kinase cAMP-dependent type II regulatory subunit alpha,PRKAR2A)衍生的circRNAs相互作用,通过相应的信号通路在体内外促进结肠炎向结直肠癌转化。

CircRNAs可以调节TME中的信号通路以影响炎症与肿瘤的相互作用。NF-κB信号通路参与招募炎症细胞和介导炎性趋化因子的释放,从而形成促进肿瘤进展的环境。失控的NF-κB信号通路转导有助于各种炎症性疾病的发生[96],并且对肿瘤发生也至关重要。NF-κB信号通路介导多种炎症性疾病的发病机制,如类风湿性关节炎、炎症性肠病和动脉粥样硬化等[97]。NF-κB信号通路激活导致促炎细胞因子释放到TME中,维持这些炎症性疾病发生的有利环境,并随后触发肿瘤相关的信号通路。而mmu_circ_0001109通过激活STAT和NF-κB信号通路加重结肠炎,并可能在炎症或结肠炎癌转化期间起促进作用[95]。抑制NF-κB信号通路会导致肿瘤细胞发育停滞,因此继续对circRNAs与NF-κB信号通路的研究可能增加一种新的肿瘤治疗策略。

此外,circRNAs已被证实通过激活肿瘤逃逸机制和改变T细胞介导的免疫应答来引起免疫抑制。如hsa_circ_0046523的高表达能诱导细胞凋亡和CD8+ T细胞的衰竭,从而抑制其功能并刺激TGF-β和IL-10等免疫抑制性细胞因子的释放[98]。此外,在肝癌中circARSP91通过诱导自然杀伤细胞介导的细胞毒性来调节免疫应答[99]。因此,circRNAs可以影响免疫细胞在TME中的作用,并改变肿瘤进展的动态。此外,在不同的肿瘤活检标本中检测到circRNAs表达谱的改变与临床病理参数有关,这意味着circRNAs可用于调节不同类型肿瘤的免疫反应。CircRNAs如何调控炎症过程与肿瘤进展之间交互网络的机制仍有待全面阐明,但是,利用炎症和肿瘤之间的联系可能成为治疗不同类型肿瘤的有效途径,进一步研究circRNAs在促进由炎症刺激驱动的各种类型肿瘤的抗肿瘤免疫应答方面的潜力,可能提供一种新的治疗方法。因此,circRNAs有潜力成为肿瘤抗原或被用于促进有利的免疫反应以激活免疫细胞来对抗肿瘤。然而,circRNAs是否可以用于抗癌治疗引起的炎症还需要进行更多的研究。

3.2. 长链非编码RNATME

长链非编码RNA(long non-coding RNA,lncRNAs)是一种特殊类型的RNA分子,其长度超过200个核苷酸,与转录调控、染色质重塑和信号转导等生物学过程密切相关。研究[100]表明lncRNA在调节肿瘤的发生和发展中发挥重要作用。这一发现为进一步了解肿瘤的发病机制以及开发新的治疗策略提供了新的思路和潜在目标。表观遗传诱导的MYC相互作用lncRNA 1(epigenetically induced MYC interacting lncRNA 1,EPIC1)基因首次被确定为腔面B型乳腺癌的致癌基因[101],并且EPIC1被发现在前列腺癌和肺癌中高表达[102-103]。近年来的研究[104]显示,lncRNAs在肿瘤的发生和发展中起至关重要的调控作用。它们可以通过与TME中DNA、RNA和蛋白质相互作用,调节基因的表达和信号通路的活性[104],因此,lncRNAs会对肿瘤细胞的增殖、侵袭、扩散和耐药性产生影响。

一些lncRNAs在TME中为炎症和肿瘤之间的联系架起了桥梁。H19是lncRNAs的一员,在一些肿瘤中,H19的表达水平显著升高,并参与肿瘤细胞的侵袭[105];此外,H19可以靶向调控前列腺癌细胞中的TGF-β1[106],这表明H19在炎症调控中起着举足轻重的作用。H19不但参与肿瘤的增殖和分化过程,还参与EMT及间质细胞向上皮细胞转化的过程[107],这表明它在肿瘤的发生和发展过程中发挥重要作用。分化拮抗非蛋白编码RNA(differentiation antagonizing non-protein coding RNA,lncRNA DANCR)在多数肿瘤中过度表达[108];Zhang等[109]研究发现,lncRNA DANCR是炎症及其介导的EMT和肿瘤干细胞特性的主调节因子,不仅能在晚期三阴型乳腺癌中维持这些表型,而且能在正常乳腺上皮细胞或早期乳腺癌细胞中充分诱导这些表型。长链非编码RNA锌指核转录因子反义链1(zinc finger nuclear transcription factor antisense RNA1,ZFAS1)是一种胃癌、肝细胞癌、结直肠癌、胶质瘤、骨肉瘤、卵巢癌、急性髓性白血病、非小细胞肺癌、食管鳞状细胞癌、乳腺癌等多种肿瘤中均有异常表达的lncRNA[110-111],并且ZFAS1表达上调与结直肠癌、胃癌、卵巢癌和非小细胞肺癌的淋巴结转移呈正相关[112];ZFAS1可以调节miR-588,通过miR-588/ROCK1轴来调控机体的炎症反应[113],而miR-588已被报道参与肺癌[114]、人乳腺癌[115]、结直肠癌[116]等肿瘤的发病过程。因此,ZFAS1可以调节炎症反应,并且在多种肿瘤中异常表达,进一步探究其作用机制有助于发现lncRNA在肿瘤发生和发展的作用。

在TME中,lncRNA的作用主要在转录前、转录中和转录后阶段实现。LncRNA可以通过调节肿瘤相关基因的表达来影响肿瘤细胞的增殖、侵袭和转移等生物学行为。同时,一些lncRNAs可以通过调节炎症反应来影响肿瘤的发生和发展,部分炎症相关的 lncRNA也被发现在肿瘤组织中异常表达,并且与肿瘤的免疫逃逸和耐药性有关。由于lncRNA在TME中对肿瘤的发生和增殖有重要影响,一些基于lncRNAs的药物已进入临床试验阶段,并显示出良好的肿瘤治疗效果,如美国药品食品管理局批准进行临床试验的mtlncRNA[117]。MtlncRNA是一种新近发现的在线粒体中编码的lncRNA,与在细胞核中生成的lncRNA一样,mtlncRNA也通过调节线粒体膜的通透性参与多种生物学过程,可以诱发细胞周期紊乱,最终导致细胞凋亡[118]。因此,与传统药物靶点相比,利用靶向lncRNA的基因治疗是一个新兴的概念,LncRNAs在肿瘤治疗方面有着巨大的潜力,继续深入研究和开发lncRNA相关的药物,可以为肿瘤治疗提供新的策略。

3.3. MiRNATME

MiRNA是一类非编码RNA分子,由约22个核苷酸组成。它们在调控基因表达和细胞功能方面发挥重要作用。虽然miRNA的生物合成受到转录因子、RNA聚合酶Ⅱ和RNA降解途径等诸多因素严格调控,但在肿瘤细胞中,可能因生物合成途径中蛋白质发生改变,而导致miRNA的调控失衡[119]。除了癌细胞内部的变化对miRNA产生影响外,TME也能够直接影响miRNA的水平,这些改变可能是由于在缺氧的影响下导致的生物合成缺陷[120]或miRNA转录变化[121]的结果。尽管生物合成缺陷会导致miRNA水平下降,但许多致癌miRNA在肿瘤中显著增加[122]。致癌miRNA在肿瘤中表达增加的机制是多样且复杂的。研究[123]发现,外泌体中包含的miRNA可以调节肿瘤免疫和微环境,可能促进肿瘤侵袭、转移和血管生成。

一些miRNAs可以调节炎症和肿瘤的联系。MiR-146a是miRNAs的一员,其在炎症反应中高表达;通过调控多种靶基因的表达,有助于调节炎症细胞因子的分泌[124]。MiR-146a的功能主要通过抑制炎症信号通路的激活来发挥作用。MiR-146a的异常表达与各种肿瘤的发生和进展有关,MiR-146a的表达在乳腺癌、激素难治性前列腺癌和胰腺癌中下调[125-127]。此外,在肿瘤中炎症反应的激活可以促使肿瘤细胞的侵袭能力增强,从而导致肿瘤的转移和扩散。Zhang等[128]的研究结果发现,miR-146a的表达在肿瘤进展的早期阶段经常受到抑制,而过表达miR-146a可以显著降低肿瘤细胞的侵袭和转移能力,减少肿瘤的转移风险。

MiRNA也通过参与调控TAM来影响肿瘤的进程。TAM的2种表型中,M1型巨噬细胞主要参与炎症反应和抗肿瘤免疫,而M2型巨噬细胞通常表现出抗炎和促肿瘤效应。MiRNA影响TAM的极化。在结直肠癌中,包含miR-145的癌细胞释放的细胞外囊泡可以使巨噬细胞极化为M2型,从而促进肿瘤进展[129]。在关于EMT介导的TAM活化的类似研究[130]中,EMT转录因子Snai1在肿瘤中起重要作用,它能够激活miR-21,从而导致肿瘤细胞释放含有miR-21的外泌体。这些外泌体被CD14+人单核细胞吸收,抑制M1型标志物的表达,促进M2型标志物的表达[131],最终加速肿瘤恶化。此外,结肠癌细胞中含有人类突变型p53的癌细胞可以将巨噬细胞重新编程为肿瘤支持和抗炎状态。富含miR-1246的外泌体可由结肠癌细胞释放,其中的人类突变型p53是其主要成分之一,并被巨噬细胞吸收[132],这些巨噬细胞以miR-1246依赖的方式展示出促癌功能。

MiRNA在不同炎症反应的免疫细胞中的表达各不相同,并且可以通过靶向炎症中关键信号转导分子的表达,以多种方式调节机体的炎症反应。同时,如上文所述,miRNA也通过调节癌基因和抑癌基因的表达来影响肿瘤的生长、转移和耐药性;miRNA因在炎症和肿瘤中具有重要作用,而将成为治疗肿瘤的潜在靶点。目前针对miRNA抗肿瘤的治疗策略包括miRNA模拟物和miRNA拮抗剂,而且miRNA有着独特的优势,其作用具有高度的特异性和选择性,可以减少对非靶标基因的影响;并且miRNA模拟物和miRNA拮抗剂可以通过纳米颗粒等载体实现靶向输送,从而提高治疗效果和减少不良反应。此外,miRNA在肿瘤中具有很高的特异度和敏感度,是一种可靠的生物标志物,可以用于监测肿瘤的发生和预后。综上所述,miRNA在肿瘤治疗和预后预测方面有着巨大的潜力,继续对miRNA进行深入研究,有望在未来发现新的miRNA生物标志物和新的肿瘤治疗策略。

4. 结 语

TME是肿瘤生长和进展的重要组成部分,是一个高度复杂的局部环境。肿瘤细胞具有极强的适应能力,可以迅速适应环境变化[133],因此,需要深入研究肿瘤与炎症在TME中相互作用的具体机制,进一步发现它们之间的联系。

肿瘤的发生机制和临床治疗一直是一个经久不衰的话题。研究发现控制炎症可以一定程度地改变肿瘤的发展动态,可用于设计针对不同肿瘤的新治疗方案,同时提高传统抗癌方法的疗效。研究[134]发现用于治疗流感病毒的药物奥司他韦在体外和体内诱导肝癌细胞死亡的差异效应,并建议使用非肿瘤药物作为肝癌治疗的替代方法。因此,可以将传统的肿瘤治疗和抗炎治疗结合起来,使其在肿瘤治疗中发挥协同效应。此外,新兴的靶向微环境治疗也获得了广泛的认可,通过深入了解TME的特点,并且针对性地干预TME,可以为肿瘤治疗带来新的突破。目前新兴的胰腺导管腺癌的治疗中已经开始使用针对TME的策略[135]。总之,根据不同肿瘤在TME中的不同特点,多种微环境基质细胞的协同使用和不断发现新的生物标志物可能是未来的研究方向。

基金资助

甘肃省重点研发项目(21YF5FA016)。

This work was supported by the Key Research and Development Project in Gansu Province, China (21YF5FA016).

利益冲突声明

作者声称无任何利益冲突。

作者贡献

牛涛 论文构思,文献查阅,论文撰写与修改;周逢海 选题指导,论文审校。所有作者阅读并同意最终的文本。

Footnotes

http://dx.chinadoi.cn/10.11817/j.issn.1672-7347.2023.230231

原文网址

http://xbyxb.csu.edu.cn/xbwk/fileup/PDF/2023121899.pdf

参考文献

  • 1. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation[J]. Cell, 2011, 144(5): 646-674. 10.1016/j.cell.2011.02.013. [DOI] [PubMed] [Google Scholar]
  • 2. Briukhovetska D, Dörr J, Endres S, et al. Interleukins in cancer: from biology to therapy[J]. Nat Rev Cancer, 2021, 21(8): 481-499. 10.1038/s41568-021-00363-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3. Greten FR, Grivennikov SI. Inflammation and cancer: triggers, mechanisms, and consequences[J]. Immunity, 2019, 51(1): 27-41. 10.1016/j.immuni.2019.06.025. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4. Piotrowski I, Kulcenty K, Suchorska W. Interplay between inflammation and cancer[J]. Rep Pract Oncol Radiother, 2020, 25(3): 422-427. 10.1016/j.rpor.2020.04.004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5. Onuma K, Kanda Y, Ikeda SS, et al. Fermented brown rice and rice bran with Aspergillus oryzae (FBRA) prevents inflammation-related carcinogenesis in mice, through inhibition of inflammatory cell infiltration[J]. Nutrients, 2015, 7(12): 10237-10250. 10.3390/nu7125531. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6. Würtz ET, Hansen J, Røe OD, et al. Asbestos exposure and haematological malignancies: a Danish cohort study[J]. Eur J Epidemiol, 2020, 35(10): 949-960. 10.1007/s10654-020-00609-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7. Vidal AC, Howard LE, Moreira DM, et al. Aspirin, NSAIDs, and risk of prostate cancer: results from the REDUCE study[J]. Clin Cancer Res, 2015, 21(4): 756-762. 10.1158/1078-0432.ccr-14-2235. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8. Alvarez-Diaz S, Preaudet A, Samson AL, et al. Necroptosis is dispensable for the development of inflammation-associated or sporadic colon cancer in mice[J]. Cell Death Differ, 2021, 28(5): 1466-1476. 10.1038/s41418-020-00673-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9. Muthupalani S, Ge Z, Joy J, et al. Muc5ac null mice are predisposed to spontaneous gastric antro-pyloric hyperplasia and adenomas coupled with attenuated H.pylori-induced corpus mucous metaplasia[J]. Lab Invest, 2019, 99(12): 1887-1905. 10.1038/s41374-019-0293-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10. 万妍, 刘芳, 郭闪, 等. 非肝硬化乙型肝炎病毒相关肝细胞癌的转录组测序及其对患者生存的影响[J]. 首都医科大学学报, 2023, 44(5): 811-820. 10.3969/j.issn.1006-7795.2023.05.016. [DOI] [Google Scholar]; WAN Yan, LIU Fang, GUO Shan, et al. Transcriptome sequencing and survival analysis of noncirrhotic hepatitis B viral (HBV)-related hepatocellular carcinoma[J]. Journal of Capital Medical University, 2023, 44(5): 811-820. 10.3969/j.issn.1006-7795.2023.05.016. [DOI] [Google Scholar]
  • 11. Lin CC, Chiang JH, Li CI, et al. Independent and joint effect of type 2 diabetes and gastric and hepatobiliary diseases on risk of pancreatic cancer risk: 10-year follow-up of population-based cohort[J]. Br J Cancer, 2014, 111(11): 2180-2186. 10.1038/bjc.2014.525. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12. Shi QT, Han S, Liu X, et al. Integrated single-cell and transcriptome sequencing analyses determines a chromatin regulator-based signature for evaluating prognosis in lung adenocarcinoma[J]. Front Oncol, 2022, 12: 1031728. 10.3389/fonc.2022.1031728. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13. Finn OJ. A believer’s overview of cancer immunosurveillance and immunotherapy[J]. J Immunol, 2018, 200(2): 385-391. 10.4049/jimmunol.1701302. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14. Choi J, Choi W, Joo Y, et al. FGF2-primed 3D spheroids producing IL-8 promote therapeutic angiogenesis in murine hindlimb ischemia[J]. NPJ Regen Med, 2021, 6(1): 48. 10.1038/s41536-021-00159-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15. Mroue R, Bissell MJ. Three-dimensional cultures of mouse mammary epithelial cells[J]. Methods Mol Biol, 2013, 945: 221-250. 10.1007/978-1-62703-125-7_14. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16. Ning RL, Pei YL, Li P, et al. Carbon ion radiotherapy evokes a metabolic reprogramming and individualized response in prostate cancer[J]. Front Public Health, 2021, 9: 777160. 10.3389/fpubh.2021.777160. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17. Jones WD, Michener CM, Biscotti C, et al. RNA immune signatures from pan-cancer analysis are prognostic for high-grade serous ovarian cancer and other female cancers[J]. Cancers, 2020, 12(3): 620. 10.3390/cancers12030620. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18. Jiang XJ, Wang J, Deng XY, et al. Role of the tumor microenvironment in PD-L1/PD-1-mediated tumor immune escape[J]. Mol Cancer, 2019, 18(1): 10. 10.1186/s12943-018-0928-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19. Qeadan F, Bansal P, Hanson JA, et al. The MK2 pathway is linked to G-CSF, cytokine production and metastasis in gastric cancer: a novel intercorrelation analysis approach[J]. J Transl Med, 2020, 18(1): 137. 10.1186/s12967-020-02294-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20. Triner D, Shah YM. Hypoxia-inducible factors: a central link between inflammation and cancer[J]. J Clin Invest, 2016, 126(10): 3689-3698. 10.1172/JCI84430. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21. Vadovics M, Ho J, Igaz N, et al. Candida albicans enhances the progression of oral squamous cell carcinoma in vitro and in vivo [J]. mBio, 2021, 13(1): e0314421. 10.1128/mBio.03144-21. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22. Banchereau J, Briere F, Caux C, et al. Immunobiology of dendritic cells[J]. Annu Rev Immunol, 2000, 18: 767-811. 10.1146/annurev.immunol.18.1.767. [DOI] [PubMed] [Google Scholar]
  • 23. Waldman AD, Fritz JM, Lenardo MJ. A guide to cancer immunotherapy: from T cell basic science to clinical practice[J]. Nat Rev Immunol, 2020, 20(11): 651-668. 10.1038/s41577-020-0306-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24. Waldhauer I, Steinle A. NK cells and cancer immunosurveillance[J]. Oncogene, 2008, 27(45): 5932-5943. 10.1038/onc.2008.267. [DOI] [PubMed] [Google Scholar]
  • 25. Zou GY, Zhang XT, Wang L, et al. Herb-sourced emodin inhibits angiogenesis of breast cancer by targeting VEGFA transcription[J]. Theranostics, 2020, 10(15): 6839-6853. 10.7150/thno.43622. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26. Narasimhan A, Shahda S, Kays JK, et al. Identification of potential serum protein biomarkers and pathways for pancreatic cancer Cachexia using an aptamer-based discovery platform[J]. Cancers, 2020, 12(12): 3787. 10.3390/cancers12123787. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27. Shima T, Shimoda M, Shigenobu T, et al. Infiltration of tumor-associated macrophages is involved in tumor programmed death-ligand 1 expression in early lung adenocarcinoma[J]. Cancer Sci, 2020, 111(2): 727-738. 10.1111/cas.14272. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28. Yi HY, Zhang Y, Yang XF, et al. Hepatitis B core antigen impairs the polarization while promoting the production of inflammatory cytokines of M2 macrophages via the TLR2 pathway[J]. Front Immunol, 2020, 11: 535. 10.3389/fimmu.2020.00535. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29. Xu WH, Tao JL, Zhu WK, et al. Comprehensive multi-omics identification of interferon-γ response characteristics reveals that RBCK1 regulates the immunosuppressive microenvironment of renal cell carcinoma[J]. Front Immunol, 2021, 12: 734646. 10.3389/fimmu.2021.734646. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30. Spary LK, Salimu J, Webber JP, et al. Tumor stroma-derived factors skew monocyte to dendritic cell differentiation toward a suppressive CD14+ PD-L1+ phenotype in prostate cancer[J/OL]. Oncoimmunology, 2014, 3(9): e955331[2023-05-08]. 10.4161/21624011.2014.955331. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31. Joshi RS, Kanugula SS, Sudhir S, et al. The role of cancer-associated fibroblasts in tumor progression[J]. Cancers, 2021, 13(6): 1399. 10.3390/cancers13061399. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32. Ramos-Vega V, Venegas Rojas B, Donoso Torres W. Immunohistochemical analysis of cancer-associated fibroblasts and podoplanin in head and neck cancer[J/OL]. Med Oral Patol Oral Cir Bucal, 2020, 25(2): e268-e276[2023-05-08]. 10.4317/medoral.23335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33. Raudenská M, Svobodová M, Gumulec J, et al. The importance of cancer-associated fibroblasts in the pathogenesis of head and neck cancers[J]. Klin Onkol, 2020, 33(1): 39-48. 10.14735/amko202039. [DOI] [PubMed] [Google Scholar]
  • 34. Togo S, Polanska UM, Horimoto Y, et al. Carcinoma-associated fibroblasts are a promising therapeutic target[J]. Cancers, 2013, 5(1): 149-169. 10.3390/cancers5010149. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35. Öhlund D, Handly-Santana A, Biffi G, et al. Distinct populations of inflammatory fibroblasts and myofibroblasts in pancreatic cancer[J]. J Exp Med, 2017, 214(3): 579-596. 10.1084/jem.20162024. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36. Davidson S, Coles M, Thomas T, et al. Fibroblasts as immune regulators in infection, inflammation and cancer[J]. Nat Rev Immunol, 2021, 21(11): 704-717. 10.1038/s41577-021-00540-z. [DOI] [PubMed] [Google Scholar]
  • 37. Glyn-Jones S, Palmer AJR, Agricola R, et al. Osteoarthritis[J]. Lancet, 2015, 386(9991): 376-387. 10.1016/S0140-6736(14)60802-3. [DOI] [PubMed] [Google Scholar]
  • 38. Hu F, Zeng W, Liu X. A gene signature of survival prediction for kidney renal cell carcinoma by multi-omic data analysis[J]. Int J Mol Sci, 2019, 20(22): E5720. 10.3390/ijms20225720 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 39. Li HY, Liu F, Wang XY, et al. Identification of hub lncRNAs along with lncRNA-miRNA-mRNA network for effective diagnosis and prognosis of papillary thyroid cancer[J]. Front Pharmacol, 2021, 12: 748867. 10.3389/fphar.2021.748867. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 40. Ray A, Slama ZM, Morford RK, et al. Enhanced directional migration of cancer stem cells in 3D aligned collagen matrices[J]. Biophys J, 2017, 112(5): 1023-1036. 10.1016/j.bpj.2017.01.007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41. Malanchi I, Santamaria-Martínez A, Susanto E, et al. Interactions between cancer stem cells and their niche govern metastatic colonization[J]. Nature, 2011, 481(7379): 85-89. 10.1038/nature10694. [DOI] [PubMed] [Google Scholar]
  • 42. Wang L, Li H, Shi L, et al. In situ peptide self-assembly on ionic nanochannel for dynamic monitoring of MMPs in extracellular matrix[J]. Biosens Bioelectron, 2022, 195: 113671. 10.1016/j.bios.2021.113671. [DOI] [PubMed] [Google Scholar]
  • 43. Chen XM, Liu YY, Tao BY, et al. NT5E upregulation in head and neck squamous cell carcinoma: a novel biomarker on cancer-associated fibroblasts for predicting immunosuppressive tumor microenvironment[J]. Front Immunol, 2022, 13: 975847. 10.3389/fimmu.2022.975847. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 44. Yuan ZN, Li YP, Zhang SF, et al. Extracellular matrix remodeling in tumor progression and immune escape: from mechanisms to treatments[J]. Mol Cancer, 2023, 22(1): 48. 10.1186/s12943-023-01744-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 45. Vanni C, Ognibene M, Finetti F, et al. Dbl oncogene expression in MCF-10 A epithelial cells disrupts mammary acinar architecture, induces EMT and angiogenic factor secretion[J]. Cell Cycle, 2015, 14(9): 1426-1437. 10.1080/15384101.2015.1021516. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 46. Kim H, Banerjee N, Barnes RC, et al. Mango polyphenolics reduce inflammation in intestinal colitis-involvement of the miR-126/PI3K/AKT/mTOR axis in vitro and in vivo [J]. Mol Carcinog, 2017, 56(1): 197-207. 10.1002/mc.22484. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 47. Yu SY, Wang SW, Hwang TL, et al. Components from the leaves and twigs of mangrove Lumnitzera racemosa with anti-angiogenic and anti-inflammatory effects[J]. Mar Drugs, 2018, 16(11): 404. 10.3390/md16110404. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 48. Zhuang WW, Sun HW, Zhang SS, et al. An immunogenomic signature for molecular classification in hepatocellular carcinoma[J]. Mol Ther Nucleic Acids, 2021, 25: 105-115. 10.1016/j.omtn.2021.06.024. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 49. Kang X, Chen Y, Xin XH, et al. Human amniotic epithelial cells and their derived exosomes protect against cisplatin-induced acute kidney injury without compromising its antitumor activity in mice[J]. Front Cell Dev Biol, 2021, 9: 752053. 10.3389/fcell.2021.752053. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 50. Marquevielle J, Robert C, Lagrabette O, et al. Structure of two G-quadruplexes in equilibrium in the KRAS promoter[J]. Nucleic Acids Res, 2020, 48(16): 9336-9345. 10.1093/nar/gkaa387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 51. Santibañez JF, Quintanilla M, Bernabeu C. TGF-β/TGF-β receptor system and its role in physiological and pathological conditions[J]. Clin Sci, 2011, 121(6): 233-251. 10.1042/CS20110086. [DOI] [PubMed] [Google Scholar]
  • 52. Yang L, Huang JH, Ren XB, et al. Abrogation of TGF beta signaling in mammary carcinomas recruits Gr-1+CD11b+ myeloid cells that promote metastasis[J]. Cancer Cell, 2008, 13(1): 23-35. 10.1016/j.ccr.2007.12.004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 53. Massagué J. TGFbeta in cancer[J]. Cell, 2008, 134(2): 215-230. 10.1016/j.cell.2008.07.001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 54. Chou YT, Hsieh CH, Chiou SH, et al. CITED2 functions as a molecular switch of cytokine-induced proliferation and quiescence[J]. Cell Death Differ, 2012, 19(12): 2015-2028. 10.1038/cdd.2012.91. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 55. Steinway SN, Zañudo JGT, Ding W, et al. Network modeling of TGFβ signaling in hepatocellular carcinoma epithelial-to-mesenchymal transition reveals joint sonic hedgehog and Wnt pathway activation[J]. Cancer Res, 2014, 74(21): 5963-5977. 10.1158/0008-5472.CAN-14-0225. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 56. Cohen EN, Gao H, Anfossi S, et al. Inflammation mediated metastasis: immune induced epithelial-to-mesenchymal transition in inflammatory breast cancer cells[J/OL]. PLoS One, 2015, 10(7): e0132710[2023-05-08]. 10.1371/journal.pone.0132710. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 57. Ganapathy V, Ge RR, Grazioli A, et al. Targeting the transforming growth factor-beta pathway inhibits human basal-like breast cancer metastasis[J]. Mol Cancer, 2010, 9: 122. 10.1186/1476-4598-9-122. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 58. Dalal BI, Keown PA, Greenberg AH. Immunocytochemical localization of secreted transforming growth factor-beta 1 to the advancing edges of primary tumors and to lymph node metastases of human mammary carcinoma[J]. Am J Pathol, 1993, 143(2): 381-389. [PMC free article] [PubMed] [Google Scholar]
  • 59. Shi XS, Li RD, Dong XY, et al. IRGS: an immune-related gene classifier for lung adenocarcinoma prognosis[J]. J Transl Med, 2020, 18(1): 55. 10.1186/s12967-020-02233-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 60. Pierce BL, Ballard-Barbash R, Bernstein L, et al. Elevated biomarkers of inflammation are associated with reduced survival among breast cancer patients[J]. J Clin Oncol, 2009, 27(21): 3437-3444. 10.1200/JCO.2008.18.9068. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 61. Sparano JA, O’Neill A, Graham N, et al. Inflammatory cytokines and distant recurrence in HER2-negative early breast cancer[J]. NPJ Breast Cancer, 2022, 8(1): 16. 10.1038/s41523-021-00376-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 62. Chen QY, Tang QN, Tang LQ, et al. Pretreatment serum amyloid A and C-reactive protein comparing with epstein-barr virus DNA as prognostic indicators in patients with nasopharyngeal carcinoma: a prospective study[J]. Cancer Res Treat, 2018, 50(3): 701-711. 10.4143/crt.2017.180. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 63. Otero R, Solier-López A, Sánchez-López V, et al. Biomarkers of venous thromboembolism recurrence after discontinuation of low molecular weight heparin treatment for cancer-associated thrombosis (HISPALIS-study)[J]. Cancers, 2022, 14(11): 2771. 10.3390/cancers14112771. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 64. Sproston NR, Ashworth JJ. Role of C-reactive protein at sites of inflammation and infection[J]. Front Immunol, 2018, 9: 754. 10.3389/fimmu.2018.00754. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 65. Li XM, Lv XH, Li ZW, et al. Long noncoding RNA ASLNC07322 functions in VEGF-C expression regulated by Smad4 during colon cancer metastasis[J]. Mol Ther Nucleic Acids, 2019, 18: 851-862. 10.1016/j.omtn.2019.10.012. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 66. Das S, Shapiro B, Vucic EA, et al. Tumor cell-derived IL1β promotes desmoplasia and immune suppression in pancreatic cancer[J]. Cancer Res, 2020, 80(5): 1088-1101. 10.1158/0008-5472.CAN-19-2080. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 67. Tu CE, Hu Y, Zhou PR, et al. Lactate and TGF-β antagonistically regulate inflammasome activation in the tumor microenvironment[J]. J Cell Physiol, 2021, 236(6): 4528-4537. 10.1002/jcp.30169. [DOI] [PubMed] [Google Scholar]
  • 68. Ju MY, Bi J, Wei Q, et al. Pan-cancer analysis of NLRP3 inflammasome with potential implications in prognosis and immunotherapy in human cancer[J]. Brief Bioinform, 2021, 22(4): bbaa345. 10.1093/bib/bbaa345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 69. Zheng TY, Wang XD, Yue PP, et al. Prognostic inflammasome-related signature construction in kidney renal clear cell carcinoma based on a pan-cancer landscape[J]. Evid Based Complement Alternat Med, 2020, 2020: 3259795. 10.1155/2020/3259795. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 70. Dikalov SI, Dikalova AE, Kirilyuk IA. Coupling of phagocytic NADPH oxidase activity and mitochondrial superoxide production[J]. Front Cardiovasc Med, 2022, 9: 942736. 10.3389/fcvm.2022.942736. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 71. Pereira VS, da Costa Aguiar Alves B, Waisberg J, et al. Detection of COX-2 in liquid biopsy of patients with prostate cancer[J]. J Clin Pathol, 2023, 76(3): 189-193. 10.1136/jclinpath-2021-207755. [DOI] [PubMed] [Google Scholar]
  • 72. Tsujimoto S, Kishina M, Koda M, et al. Nimesulide, a cyclooxygenase-2 selective inhibitor, suppresses obesity-related non-alcoholic fatty liver disease and hepatic insulin resistance through the regulation of peroxisome proliferator-activated receptor Γ[J]. Int J Mol Med, 2016, 38(3): 721-728. 10.3892/ijmm.2016.2674. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 73. Shehzad A, Lee J, Lee YS. Autocrine prostaglandin E₂ signaling promotes promonocytic leukemia cell survival via COX-2 expression and MAPK pathway[J]. BMB Rep, 2015, 48(2): 109-114. 10.5483/bmbrep.2015.48.2.081. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 74. Goodwin DC, Landino LM, Marnett LJ. Effects of nitric oxide and nitric oxide-derived species on prostaglandin endoperoxide synthase and prostaglandin biosynthesis[J]. FASEB J, 1999, 13(10): 1121-1136. 10.1096/fasebj.13.10.1121. [DOI] [PubMed] [Google Scholar]
  • 75. Breyer RM, Bagdassarian CK, Myers SA, et al. Prostanoid receptors: subtypes and signaling[J]. Annu Rev Pharmacol Toxicol, 2001, 41: 661-690. 10.1146/annurev.pharmtox.41.1.661. [DOI] [PubMed] [Google Scholar]
  • 76. Chang SH, Liu CH, Wu MT, et al. Regulation of vascular endothelial cell growth factor expression in mouse mammary tumor cells by the EP2 subtype of the prostaglandin E2 receptor[J]. Prostaglandins Other Lipid Mediat, 2005, 76(1/2/3/4): 48-58. 10.1016/j.prostaglandins.2004.12.001. [DOI] [PubMed] [Google Scholar]
  • 77. Wang S, Yu L, Sun GF, et al. Danhong injection protects hemorrhagic brain by increasing Peroxiredoxin 1 in aged rats[J]. Front Pharmacol, 2020, 11: 346. 10.3389/fphar.2020.00346. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 78. Xiao L, Mochizuki M, Nakahara T, et al. Hydrogen-generating silica material prevents UVA-ray-induced cellular oxidative stress, cell death, collagen loss and melanogenesis in human cells and 3D skin equivalents[J]. Antioxidants, 2021, 10(1): 76. 10.3390/antiox10010076. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 79. Nguyen DT, Wu BJ, Long HA, et al. Variable spontaneous mutation and loss of heterozygosity among heterozygous genomes in yeast[J]. Mol Biol Evol, 2020, 37(11): 3118-3130. 10.1093/molbev/msaa150. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 80. Cao J, An WW, Reeves AG, et al. A chemiluminescent probe for cellular peroxynitrite using a self-immolative oxidative decarbonylation reaction[J]. Chem Sci, 2018, 9(9): 2552-2558. 10.1039/c7sc05087a. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 81. Li PC, Ramm GA, MacDonald GA. Value of the 8-oxodG/dG ratio in chronic liver inflammation of patients with hepatocellular carcinoma[J]. Redox Biol, 2016, 8: 259-270. 10.1016/j.redox.2016.02.003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 82. 马刚, 张汝鹏, 梁寒. 幽门螺杆菌与胃癌相关的研究进展[J]. 中国肿瘤临床, 2023, 50(1): 44-48. 10.12354/j.issn.1000-8179.2023.20220623. [DOI] [Google Scholar]; MA Gang, ZHANG Rupeng, LIANG Han. Research progress of Helicobacter pylori infection and gastric cancer[J]. Chinese Journal of Clinical Oncology, 2023, 50(1): 44-48. 10.12354/j.issn.1000-8179.2023.20220623. [DOI] [Google Scholar]
  • 83. Yu CX, Sun S. An emerging role for circular RNAs in osteoarthritis[J]. Yonsei Med J, 2018, 59(3): 349-355. 10.3349/ymj.2018.59.3.349. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 84. Qadir J, Li FY, Yang BB. Circular RNAs modulate Hippo-YAP signaling: functional mechanisms in cancer[J]. Theranostics, 2022, 12(9): 4269-4287. 10.7150/thno.71708. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 85. Bian Q, Chen B, Weng B, et al. circBTBD7 promotes immature porcine Sertoli cell growth through modulating miR-24-3p/MAPK7 axis to inactivate p38 MAPK signaling pathway[J]. Int J Mol Sci, 2021, 22(17): 9385. 10.3390/ijms22179385. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 86. Kurtović M, Piteša N, Bartoniček N, et al. RNA-seq and ChIP-seq identification of unique and overlapping targets of GLI transcription factors in melanoma cell lines[J]. Cancers, 2022, 14(18): 4540. 10.3390/cancers14184540. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 87. Wu FL, Yang J, Liu JJ, et al. Signaling pathways in cancer-associated fibroblasts and targeted therapy for cancer[J]. Signal Transduct Target Ther, 2021, 6(1): 218. 10.1038/s41392-021-00641-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 88. Wang YF, Li MY, Tang YF, et al. Circular RNA circEIF3I promotes papillary thyroid carcinoma progression through competitively binding to miR-149 and upregulating KIF2A expression[J]. Am J Cancer Res, 2020, 10(4): 1130-1139. [PMC free article] [PubMed] [Google Scholar]
  • 89. Jiang R, Li H, Yang JM, et al. CircRNA profiling reveals an abundant circFUT10 that promotes adipocyte proliferation and inhibits adipocyte differentiation via sponging let-7[J]. Mol Ther Nucleic Acids, 2020, 20: 491-501. 10.1016/j.omtn.2020.03.011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 90. Xue C, Li GL, Lu J, et al. Crosstalk between circRNAs and the PI3K/AKT signaling pathway in cancer progression[J]. Signal Transduct Target Ther, 2021, 6(1): 400. 10.1038/s41392-021-00788-w. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 91. Dou YC, Kawaler EA, Cui Zhou D, et al. Proteogenomic characterization of endometrial carcinoma[J/OL]. Cell, 2020, 180(4): 729-748. e26e26[2023-05-08]. 10.1016/j.cell.2020.01.026. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 92. Akira S, Maeda K. Control of RNA stability in immunity[J]. Annu Rev Immunol, 2021, 39: 481-509. 10.1146/annurev-immunol-101819-075147. [DOI] [PubMed] [Google Scholar]
  • 93. Schultz CW, Preet R, Dhir T, et al. Understanding and targeting the disease-related RNA binding protein human antigen R (HuR)[J/OL]. Wiley Interdiscip Rev RNA, 2020, 11(3): e1581[2023-05-08]. 10.1002/wrna.1581. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 94. Liu RP, Wu KY, Li YJ, et al. Human antigen R: a potential therapeutic target for liver diseases[J]. Pharmacol Res, 2020, 155: 104684. 10.1016/j.phrs.2020.104684. [DOI] [PubMed] [Google Scholar]
  • 95. Wan DW, Wang ST, Xu ZH, et al. PRKAR2A-derived circular RNAs promote the malignant transformation of colitis and distinguish patients with colitis-associated colorectal cancer[J/OL]. Clin Transl Med, 2022, 12(2): e683[2023-05-08]. 10.1002/ctm2.683. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 96. Liu J, Chen S, Wang W, et al. Cancer-associated fibroblasts promote hepatocellular carcinoma metastasis through chemokine-activated hedgehog and TGF-β pathways[J]. Cancer Lett, 2016, 379(1): 49-59. 10.1016/j.canlet.2016.05.022. [DOI] [PubMed] [Google Scholar]
  • 97. Liu T, Zhang LY, Joo D, et al. NF-κB signaling in inflammation[J]. Signal Transduct Target Ther, 2017, 2: 17023. 10.1038/sigtrans.2017.23. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 98. Fu XW, Sun G, Tu SJ, et al. Hsa_circ_0046523 mediates an immunosuppressive tumor microenvironment by regulating miR-148a-3p/PD-L1 axis in pancreatic cancer[J]. Front Oncol, 2022, 12: 877376. 10.3389/fonc.2022.877376. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 99. Shi L, Yan PJ, Liang YL, et al. Circular RNA expression is suppressed by androgen receptor (AR)-regulated adenosine deaminase that acts on RNA (ADAR1) in human hepatocellular carcinoma[J/OL]. Cell Death Dis, 2017, 8(11): e3171[2023-05-08]. 10.1038/cddis.2017.556. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 100. Chen J, Wang F, Xu H, et al. Long non-coding RNA SNHG1 regulates the Wnt/β-catenin and PI3K/AKT/mTOR signaling pathways via EZH2 to affect the proliferation, apoptosis, and autophagy of prostate cancer cell[J]. Front Oncol, 2020, 10: 552907. 10.3389/fonc.2020.552907. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 101. Wang ZH, Yang B, Zhang M, et al. lncRNA epigenetic landscape analysis identifies EPIC1 as an oncogenic lncRNA that interacts with MYC and promotes cell-cycle progression in cancer[J]. Cancer Cell, 2018, 33(4): 706-720.e9. 10.1016/j.ccell.2018.03.006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 102. 侯艳娇. LncRNA EPIC1激活Ang2/Tie2信号通路促进非小细胞肺癌血管生成的研究[D]. 济南: 山东大学, 2021. [Google Scholar]; HOU Yanjiao. Study on activation of Ang2/Tie2 signaling pathway by LncRNA EPIC1 to promote angiogenesis in non-small cell lung cancer[D]. Jinan: Shandong University, 2021. [Google Scholar]
  • 103. 唐智国, 魏灿, 邰胜. 长链非编码RNA-EPIC1在前列腺癌中的表达及其临床意义[J]. 安徽医学, 2021, 42(7): 709-713. 10.3969/j.issn.1000-0399.2021.07.001. [DOI] [Google Scholar]; TANG Zhiguo, WEI Can, TAI Sheng. Relationship between long non-coding RNA-EPIC1 with lymph node metastasis and prognosis in prostate cancer[J]. Anhui Medical Journal, 2021, 42(7): 709-713. 10.3969/j.issn.1000-0399.2021.07.001. [DOI] [Google Scholar]
  • 104. Nie HX, Zhang L, He T, et al. lncRNA-XLOC012370 promotes the development of pancreatic cancer and inactivates the NF-κB pathway through miR-140-5p[J]. Front Oncol, 2020, 10: 620550. 10.3389/fonc.2020.620550. [DOI] [PMC free article] [PubMed] [Google Scholar] [Retracted]
  • 105. Zhang BS, Lin JW, Zhang JQ, et al. Integrated chromatin accessibility and transcriptome landscapes of 5-fluorouracil-resistant colon cancer cells[J]. Front Cell Dev Biol, 2022, 10: 838332. 10.3389/fcell.2022.838332. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 106. Matouk IJ, Raveh E, Abu-lail R, et al. Oncofetal H19 RNA promotes tumor metastasis[J]. Biochim Biophys Acta, 2014, 1843(7): 1414-1426. 10.1016/j.bbamcr.2014.03.023. [DOI] [PubMed] [Google Scholar]
  • 107. Raveh E, Matouk IJ, Gilon M, et al. The H19 Long non-coding RNA in cancer initiation, progression and metastasis-a proposed unifying theory[J]. Mol Cancer, 2015, 14: 184. 10.1186/s12943-015-0458-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 108. Lu YQ, Hu ZY, Mangala LS, et al. MYC targeted long noncoding RNA DANCR promotes cancer in part by reducing p21 levels[J]. Cancer Res, 2018, 78(1): 64-74. 10.1158/0008-5472.CAN-17-0815. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 109. Zhang KJ, Tan XL, Guo L. The long non-coding RNA DANCR regulates the inflammatory phenotype of breast cancer cells and promotes breast cancer progression via EZH2-dependent suppression of SOCS3 transcription[J]. Mol Oncol, 2020, 14(2): 309-328. 10.1002/1878-0261.12622. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 110. Zhou H, Wang FB, Chen H, et al. Increased expression of long-noncoding RNA ZFAS1 is associated with epithelial-mesenchymal transition of gastric cancer[J]. Aging, 2016, 8(9): 2023-2038. 10.18632/aging.101048. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 111. Tian FM, Meng FQ, Wang XB. Overexpression of long-noncoding RNA ZFAS1 decreases survival in human NSCLC patients[J]. Eur Rev Med Pharmacol Sci, 2016, 20(24): 5126-5131. [PubMed] [Google Scholar]
  • 112. Li T, Xie JJ, Shen C, et al. Amplification of long noncoding RNA ZFAS1 promotes metastasis in hepatocellular carcinoma[J]. Cancer Res, 2015, 75(15): 3181-3191. 10.1158/0008-5472.CAN-14-3721. [DOI] [PubMed] [Google Scholar]
  • 113. He AB, He SM, Li XS, et al. ZFAS1: a novel vital oncogenic lncRNA in multiple human cancers[J]. Cell Prolif, 2019, 52(1): e12513. 10.1111/cpr.12513. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 114. Geng Z, Dong BZ, Lv WS, et al. LncRNA ZFAS1 regulates the proliferation, oxidative stress, fibrosis, and inflammation of high glucose-induced human mesangial cells via the miR-588/ROCK1 axis[J]. Diabetol Metab Syndr, 2022, 14(1): 21. 10.1186/s13098-022-00791-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 115. 徐红艳, 楚晓飞, 葛茂功, 等. MiR497HG靶向miR-588调控肺癌细胞增殖、迁移侵袭和凋亡的机制研究[J]. 临床肺科杂志, 2020, 25(3): 393-398. 10.3969/j.issn.1009-6663.2020.03.017 [DOI] [Google Scholar]; XU Hongyan, CHU Xiaofei, GE Maogong, et al. Mechanism of MiR497HG regulating cell proliferation, migration, invasion and apoptosis of lung cancer cells by targeting miR-588[J]. Journal of Clinical Pulmonary Medicine, 2020, 25(3): 393-398. 10.3969/j.issn.1009-6663.2020.03.017. [DOI] [Google Scholar]
  • 116. Yu M, Zhang X, Li H, et al. MicroRNA-588 is downregulated and may have prognostic and functional roles in human breast cancer[J]. Med Sci Monit, 2017, 23: 5690-5696. 10.12659/msm.905126. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 117. Fattahi F, Kiani J, Khosravi M, et al. Enrichment of up-regulated and down-regulated gene clusters using gene ontology, miRNAs and lncRNAs in colorectal cancer[J]. Comb Chem High Throughput Screen, 2019, 22(8): 534-545. 10.2174/1386207321666191010114149. [DOI] [PubMed] [Google Scholar]
  • 118. Han S, Chen XR, Huang L. The tumor therapeutic potential of long non-coding RNA delivery and targeting[J]. Acta Pharm Sin B, 2023, 13(4): 1371-1382. 10.1016/j.apsb.2022.12.005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 119. Merritt WM, Lin YG, Han LY, et al. Dicer, Drosha, and outcomes in patients with ovarian cancer[J]. N Engl J Med, 2008, 359(25): 2641-2650. 10.1056/NEJMoa0803785. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 120. Rupaimoole R, Wu SY, Pradeep S, et al. Hypoxia-mediated downregulation of miRNA biogenesis promotes tumour progression[J]. Nat Commun, 2014, 5: 5202. 10.1038/ncomms6202. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 121. Ma L, Teruya-Feldstein J, Weinberg RA. Tumour invasion and metastasis initiated by microRNA-10b in breast cancer[J]. Nature, 2007, 449(7163): 682-688. 10.1038/nature06174. [DOI] [PubMed] [Google Scholar]
  • 122. Medina PP, Nolde M, Slack FJ. OncomiR addiction in an in vivo model of microRNA-21-induced pre-B-cell lymphoma[J]. Nature, 2010, 467(7311): 86-90. 10.1038/nature09284. [DOI] [PubMed] [Google Scholar]
  • 123. Ma ZJ, Wei K, Yang FM, et al. Tumor-derived exosomal miR-3157-3p promotes angiogenesis, vascular permeability and metastasis by targeting TIMP/KLF2 in non-small cell lung cancer[J]. Cell Death Dis, 2021, 12(9): 840. 10.1038/s41419-021-04037-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 124. Taganov KD, Boldin MP, Chang KJ, et al. NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses[J]. Proc Natl Acad Sci USA, 2006, 103(33): 12481-12486. 10.1073/pnas.0605298103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 125. Bhaumik D, Scott GK, Schokrpur S, et al. Expression of microRNA-146 suppresses NF-kappaB activity with reduction of metastatic potential in breast cancer cells[J]. Oncogene, 2008, 27(42): 5643-5647. 10.1038/onc.2008.171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 126. Lin SL, Chiang A, Chang D, et al. Loss of mir-146a function in hormone-refractory prostate cancer[J]. RNA, 2008, 14(3): 417-424. 10.1261/rna.874808. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 127. Li YW, Vandenboom TG, Wang ZW, et al. MiR-146a suppresses invasion of pancreatic cancer cells[J]. Cancer Res, 2010, 70(4): 1486-1495. 10.1158/0008-5472.CAN-09-2792. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 128. Zhang Z, Zhang Y, Sun XX, et al. MicroRNA-146a inhibits cancer metastasis by downregulating VEGF through dual pathways in hepatocellular carcinoma[J]. Mol Cancer, 2015, 14: 5. 10.1186/1476-4598-14-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 129. Shinohara H, Kuranaga Y, Kumazaki M, et al. Regulated polarization of tumor-associated macrophages by miR-145 via colorectal cancer-derived extracellular vesicles[J]. J Immunol, 2017, 199(4): 1505-1515. 10.4049/jimmunol.1700167. [DOI] [PubMed] [Google Scholar]
  • 130. Meng FD, Wei JC, Qu K, et al. FoxM1 overexpression promotes epithelial-mesenchymal transition and metastasis of hepatocellular carcinoma[J]. World J Gastroenterol, 2015, 21(1): 196-213. 10.3748/wjg.v21.i1.196. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 131. Hsieh CH, Tai SK, Yang MH. Snail-overexpressing cancer cells promote M2-like polarization of tumor-associated macrophages by delivering miR-21-abundant exosomes[J]. Neoplasia, 2018, 20(8): 775-788. 10.1016/j.neo.2018.06.004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 132. Cooks T, Pateras IS, Jenkins LM, et al. Mutant p53 cancers reprogram macrophages to tumor supporting macrophages via exosomal miR-1246[J]. Nat Commun, 2018, 9(1): 771. 10.1038/s41467-018-03224-w. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 133. 李雨薇, 王裕民, 张雪莹, 等. 长链非编码RNA HOTAIR在恶性肿瘤中的研究进展[J]. 生物化学与生物物理进展, 2015, 42(3): 228-235. 10.16476/j.pibb.2014.0230. [DOI] [Google Scholar]; LI Yuwei, WANG Yumin, ZHANG Xueying, et al. Progress of long noncoding RNA HOTAIR in human cancer[J]. Progress in Biochemistry and Biophysics, 2015, 42(3): 228-235. 10.16476/j.pibb.2014.0230. [DOI] [Google Scholar]
  • 134. Huang PJ, Chiu CC, Hsiao MH, et al. Potential of antiviral drug oseltamivir for the treatment of liver cancer[J]. Int J Oncol, 2021, 59(6): 109. 10.3892/ijo.2021.5289. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 135. Kleeff J, Korc M, Apte M, et al. Pancreatic cancer[J]. Nat Rev Dis Primers, 2016, 2: 16022. 10.1038/nrdp.2016.22. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Central South University Medical Sciences are provided here courtesy of Central South University

RESOURCES