Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2024 Mar 26;80(Pt 4):396–400. doi: 10.1107/S2056989024002615

Crystal structure of 2,4-di­amino-5-(4-hy­droxy-3-meth­oxy­phen­yl)-8,8-dimethyl-6-oxo-6,7,8,9-tetra­hydro-5H-chromeno[2,3-b]pyridine-3-carbo­nitrile–di­methyl­formamide–water (1/1/1)

Nadia H Metwally a, Galal H Elgemeie b, El-shimaa S M Abd Al-latif a, Peter G Jones c,*
Editor: C Schulzked
PMCID: PMC10993592  PMID: 38584733

The heterocyclic system of the title compound is approximately planar except for the carbon atom of the CMe2 group; the residues are connected by extensive classical hydrogen bonding.

Keywords: crystal structure, chromeno­pyridine, solvate, secondary inter­actions

Abstract

In the structure of the title compound, C22H22N4O4·C3H7NO·H2O, the entire tricyclic system is approximately planar except for the carbon atom bearing the two methyl groups; the meth­oxy­phenyl ring is approximately perpendicular to the tricycle. All seven potential hydrogen-bond donors take part in classical hydrogen bonds. The main mol­ecule and the DMF combine to form broad ribbons parallel to the a axis and roughly parallel to the ab plane; the water mol­ecules connect the residues in the third dimension.

1. Chemical context

Activated nitriles and α,β-unsaturated nitrile moieties are involved in a wide variety of natural plant products, drugs, colourants and agrochemicals (Fleming & Wang, 2003; Ahmed et al., 2022); they also represent versatile starting materials for the synthesis of a wide variety of therapeutically important heterocycles (Zhang et al., 2019; Metwally et al., 2023). The generally accepted importance of these functions (Wang et al., 2016; Hebishy et al., 2023) is reflected in the investment of much effort to synthesize them (Zhang et al., 2023; Elgemeie et al., 1998a ,b ). Recently, we have reported several new methods for the synthesis of pharmaceutically relevant heterocycles utilizing activated nitriles and α,β-unsaturated nitriles as starting materials (e.g. Mohamed-Ezzat et al., 2021). In this context, we and others have synthesized several condensed carbocyclic pyrans and carbocyclic pyridines using dimedone as the starting material (Hebishy et al., 2022; Tu et al., 2014). 1.

The present investigation reports a new one-pot synthesis of condensed carbocyclic pyridines by the reaction of dimedone with enamino nitriles. It was found that 2-amino­prop-1-ene-1,1,3-tricarbo­nitrile (1) reacted with 4-hy­droxy-3-meth­oxy­benzaldehyde (2) and dimedone (4) in refluxing n-butanol containing catalytic amounts of tri­methyl­amine to give the corresponding condensed chromeno[2,3-b]pyridine-3-carbo­nitrile (7) (Fig. 1). The structure of 7 was confirmed on the basis of elemental analysis and spectroscopic studies (1H NMR, IR and MS). We suggest that the formation mechanism of 7 from 1, 2 and 4 involves a condensation reaction that consists of an initial Michael addition of the methyl­ene group of the dimedone 4 to the double bond of inter­mediate 3 to give the next inter­mediate 5, which then cyclizes to the condensed chromeno[2,3-b]pyridine-3-carbo­nitrile 7. In order to establish the structure of the compound unambiguously, the crystal structure was determined and is presented here.

Figure 1.

Figure 1

The reaction scheme for the synthesis of compound 7.

2. Structural commentary

The structure of the product 7, which crystallized from DMF as a 1/1/1 adduct with DMF and water, is shown in Fig. 2. Mol­ecular dimensions, a selection of which are given in Table 1, may be regarded as normal (e.g. the double-bond length C5A=C9A). The pyridinic ring is planar, and its direct substituents also lie in the same plane (r.m.s. deviation of eleven atoms = 0.008 Å); the angle between this plane and that of the meth­oxy­phenyl ring is 77.86 (2)°. The atoms C5A and C9A lie 0.317 (1) and 0.249 (1) Å, respectively, out of the plane in the same direction. The central ring has the form of a flattened boat, with C5 and O10 lying 0.166 (1) and 0.101 (1) Å, respectively, out of the plane of the other four atoms (r.m.s. deviation = 0.015 Å). The third ring of the tricyclic system, formally related to cyclo­hexen-2-one, has the expected envelope form, in which the atom C8 lies 0.673 (1) Å out of the plane of the other five atoms (r.m.s. deviation 0.029 Å). Viewed from the side (Fig. 3), it can be seen that the entire tricyclic system is approximately planar (r.m.s. deviation 0.14 Å) except for C8.

Figure 2.

Figure 2

The structure of compound 7 (as its 1/1/1 adduct with DMF and water) in the crystal. Ellipsoids correspond to 50% probability levels. The dashed lines indicate hydrogen bonds.

Table 1. Selected geometric parameters (Å, °).

N1—C10A 1.3324 (7) C9A—O10 1.3617 (7)
N1—C2 1.3399 (7) O10—C10A 1.3783 (7)
C5A—C9A 1.3484 (8)    
       
C10A—N1—C2 117.21 (5) C4A—C10A—O10 122.17 (5)
       
C10A—C4A—C5—C5A 11.45 (7) C5—C5A—C9A—O10 5.67 (9)
C4A—C5—C5A—C9A −14.61 (7) C6—C5A—C9A—C9 5.77 (9)
C9A—C5A—C6—C7 −8.71 (8) C8—C9—C9A—C5A 26.39 (9)
C5A—C6—C7—C8 −21.02 (8) C5A—C9A—O10—C10A 8.25 (9)
C6—C7—C8—C9 50.42 (7) C5—C4A—C10A—O10 0.48 (9)
C7—C8—C9—C9A −51.84 (7) C9A—O10—C10A—C4A −11.26 (9)

Figure 3.

Figure 3

Side view of compound 7 (hydrogen atoms excluded).

3. Supra­molecular features

All seven of the potential hydrogen-bond donors do indeed take part in classical hydrogen bonds (Table 2), although the contact N4—H03⋯O98 is appreciably longer than the others, and O99—H07 is part of a three-centre system with N1 and the more distant O10 as acceptors. There is also one short linear contact involving a phenyl hydrogen, C22—H22⋯O98, which may be considered as a weak hydrogen bond; this is, however, not represented in the Figures for clarity reasons.

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H01⋯O1i 0.886 (13) 2.268 (13) 3.1492 (7) 173.6 (11)
N2—H02⋯O98 0.885 (13) 2.170 (13) 2.9167 (8) 141.8 (11)
N4—H03⋯O98ii 0.836 (13) 2.590 (12) 3.2891 (8) 142.0 (11)
N4—H04⋯N3iii 0.863 (13) 2.237 (13) 3.0413 (8) 154.9 (12)
O3—H05⋯O99 0.879 (14) 1.816 (14) 2.6399 (7) 155.2 (12)
O99—H06⋯O1iv 0.856 (14) 1.944 (14) 2.7944 (7) 172.0 (13)
O99—H07⋯N1v 0.877 (14) 2.012 (14) 2.8699 (7) 165.5 (13)
O99—H07⋯O10v 0.877 (14) 2.519 (14) 3.2180 (7) 137.2 (11)
C22—H22⋯O98ii 0.95 2.39 3.3210 (8) 167

Symmetry codes: (i) Inline graphic ; (ii) Inline graphic ; (iii) Inline graphic ; (iv) Inline graphic ; (v) Inline graphic .

The mol­ecules of 7 and the DMF combine to form broad ribbons parallel to the a axis (Fig. 4), in which inversion-symmetric Inline graphic (12) rings, based on the hydrogen bond N4—H04⋯N3, are prominent. The DMF mol­ecules project above and below the planes of the ribbons. The water mol­ecules connect the residues in the third dimension (Fig. 5). They accept one hydrogen bond and act as donor for three hydrogen bonds (counting both branches of the three-centre system).

Figure 4.

Figure 4

Packing diagram of compound 7 (including the DMF mol­ecules, which are seen edge-on), showing two broad ribbons running vertically. The meth­oxy­phenyl rings are reduced to the ipso atoms C21 for clarity. Hydrogen atoms not involved in hydrogen bonding are also omitted. View direction: perpendicular to the ab plane. Hydrogen bonds are shown as dashed lines (thin for the longer bonds N4—H03⋯O98, otherwise thick).

Figure 5.

Figure 5

Packing diagram of compound 7, with view direction approximately perpendicular to (101), showing the role of the water mol­ecules. Hydrogen bonds involving these mol­ecules are shown as thick dashed bonds, other hydrogen bonds as thin dashed bonds.

4. Database survey

The search employed the routine ConQuest (Bruno et al., 2002), part of Version 2022.3.0 of the Cambridge Database (Groom et al., 2016).

A search for the same tricyclic ring system gave only one hit, namely 8-(furan-2-yl)-12-(4-meth­oxy­phen­yl)-3,3,11-trimethyl-3,4,7,8,9,12-hexa­hydro-1H-chromeno[2,3-b]quinoline-1,10(2H)-dione (refcode EVANEW; Han et al., 2015). This, however, has a further cyclo­hexa­none-type ring fused to the pyridinic ring. In common with compound 7, it bears two methyl groups at the atom corresponding to our C8, a keto function at C6 and an aromatic substituent (p-meth­oxy­phen­yl) at C5. The inter­planar angle involving this ring is given as 83.7 (7)°.

A search for solvates with precisely one DMF and one water mol­ecule (under the stringent conditions only organic, no disorder, no ionic compounds, no metals, all solvent H present) gave only 32 hits. We did not check for the plausibility of the water H atoms. The structures represented a broad distribution of organic compounds, e.g. during systematic studies of solvates of crown ethers [17,23-di­bromo-18,22-di­nitro-2,5,8,11,14-penta­oxa-26-aza­tetra­cyclo-(13.9.3.019,27.021,25)hepta­cosa-1(24),15,17,19 (27),21 (25),22-hexa­ene-20(26H)-one, refcode AMARAH; Huszthy et al., 2003] or steroids [bis­(17β-hy­droxy-17α-methyl­androstano[3,2-c]pyrazole, AVEQUO; Karpinska et al., 2011]. Heterocyclic systems with groups likely to hydrogen bond were also well represented, e.g. 2′-amino-6′-ethyl-2,5′-dioxo-1,2,5′,6′-tetra­hydro­spiro­[indole-3,4′-pyrano[3,2-c]quinoline]-3′-carbo­nitrile (MESVAL; Upadhyay et al., 2023). Our own studies have shown that DMF is often a useful solvent for crystallization of heterocyclic compounds; as a hydrogen-bond acceptor, it has formed solvates with N-[2-amino-5-cyano-4-(methyl­sulfan­yl)-6-oxopyrimidin-1(6H)-yl]-4-bromo­benzene­sulfonamide (WUSMUU; Elgemeie et al., 2015) and N-[6-amino-5-(1,3-benzo­thia­zol-2-yl)-3-cyano-4-(methyl­sulfan­yl)-2-oxopyridin-1(2H)-yl]-4-methyl­benzene-1-sulfonamide (ZELBUQ; Azzam et al., 2017).

5. Synthesis and crystallization

Method A

A mixture of 2-amino­prop-1-ene-1,1,3-tricarbo­nitrile 1 (1.32 g, 0.01 mmol), 4-hy­droxy-3-meth­oxy­benzaldehyde 2 (1.52 g, 0.01 mmol) and a few drops of tri­ethyl­amine in n-butanol (50 mL) was refluxed for 3 h. Then 5,5-di­methyl­cyclo­hexane-1,3-dione 4 (1.4 g, 0.01 mmol) was added and the mixture was refluxed for another 2 h. After cooling, the precipitate was collected by filtration and recrystallized from DMF. Yield 2.84 g (70%).

Method B

A mixture of 2-amino­prop-1-ene-1,1,3-tricarbo­nitrile 1 (1.32 g, 0.01 mmol), 4-hy­droxy-3-meth­oxy­benzaldehyde 2 (1.52 g, 0.01 m mol), 5,5-di­methyl­cyclo­hexane-1,3-dione 4 (1.4 g, 0.01 mmol) and few drops of tri­ethyl­amine in n-butanol (5 ml) was refluxed for 6 h. After cooling, the precipitate was collected by filtration and recrystallized from DMF. Yield 3.04 g (75%).

Orange crystals, yield 75%, m.p. 516–518 K. IR (KBr): νmax = 3448 (OH), 3351(NH2), 2204 (CN), 1662 (C=O) cm−1; 1H NMR (400 MHz, DMSO-d 6): δ = 1.00 (s, 3H,CH3), 1.05 (s, 3H, CH3), 2.43–2.52 (m, 4H, 2 CH2), 3.66 (s, 3H,OCH3), 4.75 (s, 1H, pyran-H), 6.38–6.42 (m, 5H, Ar-1H and 2 NH2), 6.96 (s, 1H, Ar), 7.92 (s, 1H, Ar), 8.71 (s, 1H, OH) ppm. 13C NMR (100 MHz, DMSO-d 6): δ = 196.19 (C=O), 164.06 (O—C—N), 162.84 (C—O), 159.72 (C—NH2), 157.22 (N=C—NH2), 147.36 (C—OCH3), 145.52 (C—OH), 135.72 (Ar—C), 120.37, 116.67 (Ar—CH), 115.07 (CN), 92.51 (C—CO), 72.13 (pyridine-C), 56.21(C—CN), 50.68 (OCH3), 33.29 (CH2), 32.56 (CH2), 29.32 (CH3), 26.83 (CH3) ppm. MS (70 eV, Fab mass, %): m/z = 406 (11%), 372 (9), 282 (100), 226 (33), 170 (11), 66 (9). Analysis calculated for C22H22N4O4 (406.16): C 65.01, H 5.46, N 13.78. Found: C 65.0, H 5.5, N 13.7%.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. Hydrogen atoms bonded to nitro­gen or oxygen were refined freely. The methyl groups were included as an idealized rigid group allowed to rotate but not tip (command AFIX 137), with C—H = 0.99 Å and H—C—H = 109.5°. Other hydrogen atoms were included using a riding model starting from calculated positions (C—Hmethyl­ene = 0.99, C—Hmethine = 1.00, C—Harom = 0.95 Å). The U(H) values were fixed at 1.5 × U eq of the parent carbon atoms for the methyl groups and 1.2 × U eq for other hydrogens. Three reflections, with intensities clearly in error, were omitted. The largest peaks of residual electron density (max. 0.67 e Å−3) lie in the middle of bonds and thus do not give cause for concern.

Table 3. Experimental details.

Crystal data
Chemical formula C22H22N4O4·C3H7NO·H2O
M r 497.55
Crystal system, space group Monoclinic, P21/n
Temperature (K) 100
a, b, c (Å) 9.9055 (2), 15.9600 (3), 16.4794 (4)
β (°) 106.344 (2)
V3) 2499.98 (10)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.10
Crystal size (mm) 0.2 × 0.2 × 0.1
 
Data collection
Diffractometer XtaLAB Synergy
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2022)
T min, T max 0.735, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 210685, 13416, 11108
R int 0.056
θ values (°) θmax = 37.8, θmin = 2.2
(sin θ/λ)max−1) 0.862
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.038, 0.114, 1.04
No. of reflections 13416
No. of parameters 358
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.67, −0.22

Computer programs: CrysAlis PRO (Rigaku OD, 2022), SHELXT (Sheldrick, 2015a ), SHELXL2019/3 (Sheldrick, 2015b ) and XP (Bruker, 1998).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989024002615/yz2052sup1.cif

e-80-00396-sup1.cif (6.9MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989024002615/yz2052Isup2.hkl

e-80-00396-Isup3.cml (10KB, cml)

Supporting information file. DOI: 10.1107/S2056989024002615/yz2052Isup3.cml

CCDC reference: 2341559

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge support by the Open Access Publication Funds of the Technical University of Braunschweig.

supplementary crystallographic information

Crystal data

C22H22N4O4·C3H7NO·H2O F(000) = 1056
Mr = 497.55 Dx = 1.322 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
a = 9.9055 (2) Å Cell parameters from 76991 reflections
b = 15.9600 (3) Å θ = 2.2–39.6°
c = 16.4794 (4) Å µ = 0.10 mm1
β = 106.344 (2)° T = 100 K
V = 2499.98 (10) Å3 Tablet, colourless
Z = 4 0.2 × 0.2 × 0.1 mm

Data collection

XtaLAB Synergy diffractometer 13416 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Mo) X-ray Source 11108 reflections with I > 2σ(I)
Mirror monochromator Rint = 0.056
Detector resolution: 10.0000 pixels mm-1 θmax = 37.8°, θmin = 2.2°
ω scans h = −17→17
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2022) k = −27→27
Tmin = 0.735, Tmax = 1.000 l = −28→28
210685 measured reflections

Refinement

Refinement on F2 Primary atom site location: dual
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.038 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.114 w = 1/[σ2(Fo2) + (0.0626P)2 + 0.4082P] where P = (Fo2 + 2Fc2)/3
S = 1.04 (Δ/σ)max = 0.001
13416 reflections Δρmax = 0.67 e Å3
358 parameters Δρmin = −0.22 e Å3
0 restraints

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.41040 (5) 0.66845 (3) 0.58286 (3) 0.01573 (8)
C2 0.35681 (6) 0.74408 (3) 0.55675 (4) 0.01397 (8)
N2 0.21622 (5) 0.75300 (4) 0.54244 (4) 0.01919 (9)
H01 0.1683 (13) 0.7091 (8) 0.5522 (8) 0.029 (3)*
H02 0.1692 (13) 0.7983 (8) 0.5197 (8) 0.032 (3)*
C3 0.44457 (6) 0.81052 (3) 0.54550 (3) 0.01332 (8)
C4 0.59114 (6) 0.79689 (3) 0.55989 (3) 0.01270 (8)
N4 0.67486 (5) 0.85813 (3) 0.54512 (4) 0.01630 (9)
H03 0.7612 (13) 0.8503 (8) 0.5540 (8) 0.030 (3)*
H04 0.6425 (14) 0.9076 (8) 0.5296 (8) 0.032 (3)*
C4A 0.64624 (5) 0.71688 (3) 0.58823 (3) 0.01254 (8)
C5 0.80070 (5) 0.69551 (3) 0.60532 (3) 0.01224 (8)
H5 0.832899 0.714157 0.555889 0.015*
C5A 0.81825 (6) 0.60167 (3) 0.61409 (3) 0.01306 (8)
C6 0.94969 (6) 0.56393 (3) 0.60992 (4) 0.01383 (8)
O1 1.03852 (5) 0.60592 (3) 0.58804 (3) 0.01802 (8)
C7 0.97538 (6) 0.47181 (4) 0.63057 (4) 0.01648 (9)
H7A 1.075931 0.463992 0.661303 0.020*
H7B 0.956598 0.440073 0.576928 0.020*
C8 0.88588 (6) 0.43440 (4) 0.68387 (4) 0.01705 (9)
C9 0.73204 (6) 0.45817 (4) 0.64135 (4) 0.01770 (10)
H9A 0.698047 0.427626 0.587129 0.021*
H9B 0.673250 0.441184 0.678188 0.021*
C9A 0.71700 (6) 0.55019 (3) 0.62522 (4) 0.01452 (9)
O10 0.58553 (5) 0.57747 (3) 0.62246 (3) 0.01756 (8)
C10A 0.54867 (6) 0.65861 (3) 0.59701 (4) 0.01403 (9)
C11 0.38620 (6) 0.89004 (4) 0.51709 (4) 0.01655 (9)
N3 0.34038 (7) 0.95535 (4) 0.49419 (5) 0.02514 (12)
C12 0.93212 (8) 0.46813 (5) 0.77471 (4) 0.02391 (12)
H12A 1.026948 0.447741 0.803183 0.036*
H12B 0.866481 0.448682 0.805418 0.036*
H12C 0.932458 0.529524 0.773538 0.036*
C13 0.90238 (8) 0.33896 (4) 0.68645 (6) 0.02501 (13)
H13A 0.867471 0.316360 0.629044 0.038*
H13B 0.848265 0.314956 0.722263 0.038*
H13C 1.001952 0.324471 0.709689 0.038*
C21 0.89109 (5) 0.73909 (3) 0.68486 (3) 0.01264 (8)
C22 0.98270 (6) 0.80413 (3) 0.67880 (3) 0.01367 (8)
H22 0.991495 0.819834 0.624914 0.016*
C23 1.06120 (6) 0.84614 (4) 0.75094 (4) 0.01489 (9)
O2 1.15118 (5) 0.91117 (3) 0.75031 (3) 0.01993 (9)
C24 1.05186 (6) 0.82200 (4) 0.83128 (4) 0.01673 (9)
O3 1.12872 (6) 0.85824 (4) 0.90394 (3) 0.02564 (11)
H05 1.1648 (14) 0.9072 (8) 0.8971 (8) 0.034 (3)*
C25 0.96244 (7) 0.75654 (4) 0.83672 (4) 0.01757 (10)
H25 0.955884 0.739310 0.890663 0.021*
C26 0.88214 (6) 0.71565 (4) 0.76446 (4) 0.01552 (9)
H26 0.820851 0.671449 0.769635 0.019*
C27 1.16872 (8) 0.93355 (4) 0.67030 (4) 0.02151 (11)
H27A 1.077008 0.947598 0.631269 0.032*
H27B 1.209836 0.886314 0.647569 0.032*
H27C 1.231375 0.982140 0.676969 0.032*
C97 −0.12972 (7) 0.83937 (4) 0.40895 (4) 0.02086 (11)
H97 −0.220125 0.819639 0.409112 0.025*
C98 0.02521 (8) 0.88437 (5) 0.32596 (5) 0.02539 (13)
H98A 0.082462 0.904757 0.380990 0.038*
H98B 0.008664 0.930221 0.284779 0.038*
H98C 0.074841 0.838697 0.306776 0.038*
O98 −0.04221 (6) 0.84926 (4) 0.47838 (3) 0.02704 (11)
N99 −0.10846 (6) 0.85392 (4) 0.33387 (3) 0.01883 (9)
C99 −0.21966 (8) 0.83914 (6) 0.25620 (5) 0.02841 (14)
H99A −0.193276 0.792258 0.225408 0.043*
H99B −0.233445 0.889604 0.220932 0.043*
H99C −0.307232 0.825602 0.269909 0.043*
O99 1.23412 (5) 1.01108 (3) 0.92936 (3) 0.02037 (9)
H06 1.3078 (14) 1.0356 (8) 0.9237 (8) 0.033 (3)*
H07 1.1765 (15) 1.0538 (9) 0.9237 (9) 0.039 (3)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.01093 (17) 0.01421 (18) 0.0225 (2) 0.00127 (14) 0.00540 (16) 0.00266 (15)
C2 0.01156 (19) 0.0146 (2) 0.0158 (2) 0.00106 (15) 0.00391 (16) 0.00067 (16)
N2 0.01142 (19) 0.0177 (2) 0.0285 (3) 0.00216 (16) 0.00582 (17) 0.00442 (18)
C3 0.01208 (19) 0.01273 (19) 0.0148 (2) 0.00120 (15) 0.00318 (15) 0.00130 (15)
C4 0.01184 (19) 0.01280 (19) 0.01307 (19) 0.00009 (15) 0.00285 (15) 0.00058 (15)
N4 0.01292 (18) 0.01354 (18) 0.0221 (2) −0.00014 (15) 0.00446 (16) 0.00403 (16)
C4A 0.01060 (18) 0.01223 (18) 0.01442 (19) 0.00021 (14) 0.00292 (15) 0.00092 (15)
C5 0.01039 (18) 0.01210 (18) 0.01403 (19) −0.00016 (14) 0.00309 (15) 0.00053 (15)
C5A 0.01084 (18) 0.01237 (18) 0.0157 (2) 0.00037 (15) 0.00333 (15) 0.00069 (15)
C6 0.01133 (19) 0.0143 (2) 0.0155 (2) 0.00046 (15) 0.00311 (16) 0.00048 (16)
O1 0.01310 (17) 0.01693 (18) 0.0254 (2) −0.00010 (14) 0.00763 (15) 0.00243 (15)
C7 0.0139 (2) 0.0144 (2) 0.0213 (2) 0.00266 (16) 0.00530 (18) 0.00277 (17)
C8 0.0144 (2) 0.0142 (2) 0.0224 (2) 0.00181 (17) 0.00503 (18) 0.00436 (18)
C9 0.0133 (2) 0.0129 (2) 0.0266 (3) 0.00028 (16) 0.00501 (19) 0.00304 (18)
C9A 0.01132 (19) 0.01308 (19) 0.0190 (2) 0.00082 (15) 0.00398 (16) 0.00187 (16)
O10 0.01171 (16) 0.01288 (16) 0.0291 (2) 0.00140 (13) 0.00737 (15) 0.00510 (15)
C10A 0.01180 (19) 0.01265 (19) 0.0178 (2) 0.00074 (15) 0.00446 (16) 0.00174 (16)
C11 0.0130 (2) 0.0159 (2) 0.0198 (2) 0.00068 (16) 0.00297 (17) 0.00216 (17)
N3 0.0186 (2) 0.0177 (2) 0.0366 (3) 0.00268 (18) 0.0038 (2) 0.0075 (2)
C12 0.0241 (3) 0.0267 (3) 0.0200 (3) 0.0026 (2) 0.0046 (2) 0.0068 (2)
C13 0.0210 (3) 0.0150 (2) 0.0396 (4) 0.0037 (2) 0.0094 (3) 0.0076 (2)
C21 0.01090 (18) 0.01291 (19) 0.01364 (19) −0.00027 (15) 0.00269 (15) 0.00041 (15)
C22 0.01250 (19) 0.0141 (2) 0.01379 (19) −0.00121 (15) 0.00278 (15) 0.00045 (15)
C23 0.0142 (2) 0.0144 (2) 0.0151 (2) −0.00214 (16) 0.00256 (16) 0.00023 (16)
O2 0.0216 (2) 0.01943 (19) 0.01761 (18) −0.00873 (16) 0.00363 (15) −0.00127 (15)
C24 0.0180 (2) 0.0169 (2) 0.0136 (2) −0.00189 (18) 0.00167 (17) −0.00018 (17)
O3 0.0343 (3) 0.0243 (2) 0.01417 (18) −0.0115 (2) 0.00005 (18) −0.00124 (16)
C25 0.0201 (2) 0.0185 (2) 0.0137 (2) −0.00243 (19) 0.00417 (18) 0.00106 (17)
C26 0.0154 (2) 0.0158 (2) 0.0153 (2) −0.00179 (17) 0.00414 (17) 0.00110 (16)
C27 0.0242 (3) 0.0197 (2) 0.0215 (3) −0.0072 (2) 0.0078 (2) −0.0002 (2)
C97 0.0195 (2) 0.0257 (3) 0.0172 (2) 0.0028 (2) 0.0049 (2) 0.0038 (2)
C98 0.0200 (3) 0.0277 (3) 0.0303 (3) −0.0008 (2) 0.0100 (2) 0.0045 (2)
O98 0.0258 (2) 0.0361 (3) 0.0163 (2) 0.0069 (2) 0.00111 (17) 0.00401 (18)
N99 0.0165 (2) 0.0236 (2) 0.0159 (2) −0.00074 (17) 0.00382 (16) 0.00215 (17)
C99 0.0252 (3) 0.0405 (4) 0.0169 (3) −0.0059 (3) 0.0015 (2) −0.0013 (2)
O99 0.01655 (19) 0.01737 (19) 0.0278 (2) −0.00084 (15) 0.00723 (17) −0.00182 (16)

Geometric parameters (Å, º)

N1—C10A 1.3324 (7) C12—H12B 0.9800
N1—C2 1.3399 (7) C12—H12C 0.9800
C2—N2 1.3529 (8) C13—H13A 0.9800
C2—C3 1.4160 (8) C13—H13B 0.9800
N2—H01 0.886 (13) C13—H13C 0.9800
N2—H02 0.885 (13) C21—C26 1.3907 (8)
C3—C11 1.4183 (8) C21—C22 1.4007 (8)
C3—C4 1.4204 (8) C22—C23 1.3954 (8)
C4—N4 1.3476 (7) C22—H22 0.9500
C4—C4A 1.4154 (7) C23—O2 1.3700 (7)
N4—H03 0.836 (13) C23—C24 1.4068 (8)
N4—H04 0.863 (13) O2—C27 1.4230 (8)
C4A—C10A 1.3779 (8) C24—O3 1.3545 (8)
C4A—C5 1.5146 (7) C24—C25 1.3888 (9)
C5—C5A 1.5101 (7) O3—H05 0.879 (14)
C5—C21 1.5308 (8) C25—C26 1.3941 (8)
C5—H5 1.0000 C25—H25 0.9500
C5A—C9A 1.3484 (8) C26—H26 0.9500
C5A—C6 1.4535 (8) C27—H27A 0.9800
C6—O1 1.2377 (7) C27—H27B 0.9800
C6—C7 1.5145 (8) C27—H27C 0.9800
C7—C8 1.5337 (9) C97—O98 1.2359 (8)
C7—H7A 0.9900 C97—N99 1.3326 (9)
C7—H7B 0.9900 C97—H97 0.9500
C8—C13 1.5313 (9) C98—N99 1.4503 (9)
C8—C12 1.5345 (10) C98—H98A 0.9800
C8—C9 1.5349 (8) C98—H98B 0.9800
C9—C9A 1.4925 (8) C98—H98C 0.9800
C9—H9A 0.9900 N99—C99 1.4538 (9)
C9—H9B 0.9900 C99—H99A 0.9800
C9A—O10 1.3617 (7) C99—H99B 0.9800
O10—C10A 1.3783 (7) C99—H99C 0.9800
C11—N3 1.1570 (8) O99—H06 0.856 (14)
C12—H12A 0.9800 O99—H07 0.877 (14)
C10A—N1—C2 117.21 (5) C8—C12—H12A 109.5
N1—C2—N2 116.49 (5) C8—C12—H12B 109.5
N1—C2—C3 120.95 (5) H12A—C12—H12B 109.5
N2—C2—C3 122.56 (5) C8—C12—H12C 109.5
C2—N2—H01 117.6 (8) H12A—C12—H12C 109.5
C2—N2—H02 123.6 (8) H12B—C12—H12C 109.5
H01—N2—H02 118.6 (11) C8—C13—H13A 109.5
C2—C3—C11 120.33 (5) C8—C13—H13B 109.5
C2—C3—C4 119.98 (5) H13A—C13—H13B 109.5
C11—C3—C4 119.65 (5) C8—C13—H13C 109.5
N4—C4—C4A 120.95 (5) H13A—C13—H13C 109.5
N4—C4—C3 120.71 (5) H13B—C13—H13C 109.5
C4A—C4—C3 118.32 (5) C26—C21—C22 118.77 (5)
C4—N4—H03 120.8 (9) C26—C21—C5 120.55 (5)
C4—N4—H04 121.4 (9) C22—C21—C5 120.68 (5)
H03—N4—H04 117.7 (12) C23—C22—C21 120.81 (5)
C10A—C4A—C4 115.27 (5) C23—C22—H22 119.6
C10A—C4A—C5 122.02 (5) C21—C22—H22 119.6
C4—C4A—C5 122.69 (5) O2—C23—C22 124.42 (5)
C5A—C5—C4A 108.92 (4) O2—C23—C24 115.46 (5)
C5A—C5—C21 110.17 (4) C22—C23—C24 120.12 (5)
C4A—C5—C21 111.95 (4) C23—O2—C27 116.52 (5)
C5A—C5—H5 108.6 O3—C24—C25 118.31 (5)
C4A—C5—H5 108.6 O3—C24—C23 123.06 (6)
C21—C5—H5 108.6 C25—C24—C23 118.61 (5)
C9A—C5A—C6 117.67 (5) C24—O3—H05 114.5 (9)
C9A—C5A—C5 123.19 (5) C24—C25—C26 121.20 (5)
C6—C5A—C5 119.14 (5) C24—C25—H25 119.4
O1—C6—C5A 120.61 (5) C26—C25—H25 119.4
O1—C6—C7 120.18 (5) C21—C26—C25 120.48 (5)
C5A—C6—C7 119.19 (5) C21—C26—H26 119.8
C6—C7—C8 114.77 (5) C25—C26—H26 119.8
C6—C7—H7A 108.6 O2—C27—H27A 109.5
C8—C7—H7A 108.6 O2—C27—H27B 109.5
C6—C7—H7B 108.6 H27A—C27—H27B 109.5
C8—C7—H7B 108.6 O2—C27—H27C 109.5
H7A—C7—H7B 107.6 H27A—C27—H27C 109.5
C13—C8—C7 109.19 (5) H27B—C27—H27C 109.5
C13—C8—C12 108.77 (6) O98—C97—N99 125.77 (7)
C7—C8—C12 111.11 (5) O98—C97—H97 117.1
C13—C8—C9 110.06 (5) N99—C97—H97 117.1
C7—C8—C9 107.58 (5) N99—C98—H98A 109.5
C12—C8—C9 110.12 (5) N99—C98—H98B 109.5
C9A—C9—C8 111.17 (5) H98A—C98—H98B 109.5
C9A—C9—H9A 109.4 N99—C98—H98C 109.5
C8—C9—H9A 109.4 H98A—C98—H98C 109.5
C9A—C9—H9B 109.4 H98B—C98—H98C 109.5
C8—C9—H9B 109.4 C97—N99—C98 121.91 (6)
H9A—C9—H9B 108.0 C97—N99—C99 120.70 (6)
C5A—C9A—O10 122.79 (5) C98—N99—C99 117.39 (6)
C5A—C9A—C9 125.66 (5) N99—C99—H99A 109.5
O10—C9A—C9 111.55 (5) N99—C99—H99B 109.5
C9A—O10—C10A 118.66 (5) H99A—C99—H99B 109.5
N1—C10A—C4A 128.24 (5) N99—C99—H99C 109.5
N1—C10A—O10 109.59 (5) H99A—C99—H99C 109.5
C4A—C10A—O10 122.17 (5) H99B—C99—H99C 109.5
N3—C11—C3 179.08 (6) H06—O99—H07 100.5 (12)
C10A—N1—C2—N2 179.82 (6) C6—C5A—C9A—C9 5.77 (9)
C10A—N1—C2—C3 −0.47 (9) C5—C5A—C9A—C9 −174.65 (6)
N1—C2—C3—C11 179.43 (6) C8—C9—C9A—C5A 26.39 (9)
N2—C2—C3—C11 −0.88 (9) C8—C9—C9A—O10 −153.90 (5)
N1—C2—C3—C4 1.58 (8) C5A—C9A—O10—C10A 8.25 (9)
N2—C2—C3—C4 −178.73 (6) C9—C9A—O10—C10A −171.47 (5)
C2—C3—C4—N4 176.42 (5) C2—N1—C10A—C4A −0.02 (9)
C11—C3—C4—N4 −1.44 (8) C2—N1—C10A—O10 −179.40 (5)
C2—C3—C4—C4A −2.14 (8) C4—C4A—C10A—N1 −0.56 (9)
C11—C3—C4—C4A 180.00 (5) C5—C4A—C10A—N1 −178.82 (6)
N4—C4—C4A—C10A −176.96 (5) C4—C4A—C10A—O10 178.74 (5)
C3—C4—C4A—C10A 1.60 (8) C5—C4A—C10A—O10 0.48 (9)
N4—C4—C4A—C5 1.29 (8) C9A—O10—C10A—N1 168.16 (5)
C3—C4—C4A—C5 179.84 (5) C9A—O10—C10A—C4A −11.26 (9)
C10A—C4A—C5—C5A 11.45 (7) C5A—C5—C21—C26 −52.13 (7)
C4—C4A—C5—C5A −166.67 (5) C4A—C5—C21—C26 69.23 (6)
C10A—C4A—C5—C21 −110.63 (6) C5A—C5—C21—C22 128.86 (5)
C4—C4A—C5—C21 71.24 (6) C4A—C5—C21—C22 −109.79 (6)
C4A—C5—C5A—C9A −14.61 (7) C26—C21—C22—C23 −1.52 (8)
C21—C5—C5A—C9A 108.55 (6) C5—C21—C22—C23 177.51 (5)
C4A—C5—C5A—C6 164.97 (5) C21—C22—C23—O2 −178.88 (5)
C21—C5—C5A—C6 −71.88 (6) C21—C22—C23—C24 1.67 (9)
C9A—C5A—C6—O1 169.75 (6) C22—C23—O2—C27 −3.02 (9)
C5—C5A—C6—O1 −9.86 (8) C24—C23—O2—C27 176.45 (6)
C9A—C5A—C6—C7 −8.71 (8) O2—C23—C24—O3 −1.81 (9)
C5—C5A—C6—C7 171.68 (5) C22—C23—C24—O3 177.69 (6)
O1—C6—C7—C8 160.51 (6) O2—C23—C24—C25 179.90 (6)
C5A—C6—C7—C8 −21.02 (8) C22—C23—C24—C25 −0.60 (9)
C6—C7—C8—C13 169.85 (5) O3—C24—C25—C26 −178.96 (6)
C6—C7—C8—C12 −70.19 (7) C23—C24—C25—C26 −0.59 (9)
C6—C7—C8—C9 50.42 (7) C22—C21—C26—C25 0.33 (9)
C13—C8—C9—C9A −170.71 (6) C5—C21—C26—C25 −178.70 (5)
C7—C8—C9—C9A −51.84 (7) C24—C25—C26—C21 0.73 (9)
C12—C8—C9—C9A 69.39 (7) O98—C97—N99—C98 −0.18 (11)
C6—C5A—C9A—O10 −173.91 (5) O98—C97—N99—C99 179.44 (7)
C5—C5A—C9A—O10 5.67 (9)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N2—H01···O1i 0.886 (13) 2.268 (13) 3.1492 (7) 173.6 (11)
N2—H02···O98 0.885 (13) 2.170 (13) 2.9167 (8) 141.8 (11)
N4—H03···O98ii 0.836 (13) 2.590 (12) 3.2891 (8) 142.0 (11)
N4—H04···N3iii 0.863 (13) 2.237 (13) 3.0413 (8) 154.9 (12)
O3—H05···O99 0.879 (14) 1.816 (14) 2.6399 (7) 155.2 (12)
O99—H06···O1iv 0.856 (14) 1.944 (14) 2.7944 (7) 172.0 (13)
O99—H07···N1v 0.877 (14) 2.012 (14) 2.8699 (7) 165.5 (13)
O99—H07···O10v 0.877 (14) 2.519 (14) 3.2180 (7) 137.2 (11)
C22—H22···O98ii 0.95 2.39 3.3210 (8) 167

Symmetry codes: (i) x−1, y, z; (ii) x+1, y, z; (iii) −x+1, −y+2, −z+1; (iv) −x+5/2, y+1/2, −z+3/2; (v) −x+3/2, y+1/2, −z+3/2.

References

  1. Ahmed, E. A., Elgemeie, G. H. & Ahmed, K. A. (2022). Pigm. Resin Technol. 51, 1–5.
  2. Azzam, R. A., Elgemeie, G. H., Elsayed, R. E. & Jones, P. G. (2017). Acta Cryst. E73, 1820–1822. [DOI] [PMC free article] [PubMed]
  3. Bruker (1998). XP. Bruker Analytical X–Ray Instruments, Madison, Wisconsin, USA.
  4. Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397. [DOI] [PubMed]
  5. Elgemeie, G. E. H., Farag, D. S. & Jones, P. G. (1998a). Acta Cryst. C54, 1466–1468.
  6. Elgemeie, G. E. H., Fathy, N. M. & Jones, P. G. (1998b). Acta Cryst. C54, 1314–1316.
  7. Elgemeie, G. H., Mohamed, R. A., Hussein, H. A. & Jones, P. G. (2015). Acta Cryst. E71, 1322–1324. [DOI] [PMC free article] [PubMed]
  8. Fleming, F. F. & Wang, Q. Z. (2003). Chem. Rev. 103, 2035–2078. [DOI] [PubMed]
  9. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  10. Han, G.-F., Zhao, L.-J., Chen, L.-Z., Du, J.-W. & Wang, Z.-X. (2015). J. Heterocycl. Chem. 52, 1219–1225.
  11. Hebishy, A. M. S., Elgemeie, G. H., Ali, R. A. E. & Jones, P. G. (2022). Acta Cryst. E78, 638–641. [DOI] [PMC free article] [PubMed]
  12. Hebishy, A. M. S., Elgemeie, G. H., Gouda, L. M. & Jones, P. G. (2023). Acta Cryst. E79, 335–340. [DOI] [PMC free article] [PubMed]
  13. Huszthy, P., Vermes, B., Báthori, N. & Czugler, M. (2003). Tetrahedron, 59, 9371–9377.
  14. Karpinska, J., Erxleben, A. & McArdle, P. (2011). Cryst. Growth Des. 11, 2829–2838.
  15. Metwally, N. H., Elgemeie, G. H. & Fahmy, F. G. (2023). ACS Omega, 8, 36636–36654. [DOI] [PMC free article] [PubMed]
  16. Mohamed-Ezzat, R. A., Elgemeie, G. H. & Jones, P. G. (2021). Acta Cryst. E77, 547–550. [DOI] [PMC free article] [PubMed]
  17. Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
  18. Sheldrick, G. M. (2015a). Acta Cryst. C71, 3–8.
  19. Sheldrick, G. M. (2015b). Acta Cryst. A71, 3–8.
  20. Tu, X., Fan, W., Hao, W., Jiang, B. & Tu, S. (2014). ACS Comb. Sci. 16, 647–651. [DOI] [PubMed]
  21. Upadhyay, D. B., Vala, R. M., Patel, S. G., Patel, P. J., Chi, C. & Patel, C. (2023). J. Mol. Struct. 1273, 134305.
  22. Wang, C., Li, Y., Gong, M., Wu, Q., Zhang, J., Kim, J. K., Huang, M. & Wu, Y. (2016). Org. Lett. 18, 4151–4153. [DOI] [PubMed]
  23. Zhang, W., Yang, C., Zhang, Z., Li, X. & Cheng, J. (2019). Org. Lett. 21, 4137–4142. [DOI] [PubMed]
  24. Zhang, G., Zhang, C., Tian, Y. & Chen, F. (2023). Org. Lett. 25, 917–922. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989024002615/yz2052sup1.cif

e-80-00396-sup1.cif (6.9MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989024002615/yz2052Isup2.hkl

e-80-00396-Isup3.cml (10KB, cml)

Supporting information file. DOI: 10.1107/S2056989024002615/yz2052Isup3.cml

CCDC reference: 2341559

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES