Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2024 Mar 26;80(Pt 4):392–395. doi: 10.1107/S2056989024002573

Synthesis and crystal structure of N-phenyl-2-(phenyl­sulfan­yl)acetamide

Reham A Mohamed-Ezzat a,*, Benson M Kariuki b, Galal H Elgemeie c
Editor: C Schulzked
PMCID: PMC10993607  PMID: 38584738

In the crystal of the title compound, N—H⋯O hydrogen bonds form chains of mol­ecules along the [100] direction. The chains are linked by C—H⋯π inter­actions, forming a three-dimensional network.

Keywords: crystal structure, acetamide, sulfide, synthesis

Abstract

N-Phenyl-2-(phenyl­sulfan­yl)acetamide, C14H13NOS, was synthesized and structurally characterized. In the crystal, N—H⋯O hydrogen bonding leads to the formation of chains of mol­ecules along the [100] direction. The chains are linked by C—H⋯π inter­actions, forming a three-dimensional network. The crystal studied was twinned by a twofold rotation around [100].

1. Chemical context

The acetamide moiety possesses therapeutic potential for targeting various diseases. Acetamide-containing drugs are used for inflammation control, cyclo­oxygenase (COX) enzyme inhibition, and as anti­viral drugs (Agrawal et al., 2010; Orzalesi et al., 1977). Recently, starting from acetamides, we have synthesized various heterocyclic compounds that exhibit diverse activities, including anti-SARS CoV-2 (Mohamed-Ezzat & Elgemeie, 2023), anti­microbial (Elgemeie et al., 2017a ,b ), anti­tumor properties (Elgemeie & Mohamed-Ezzat, 2022; Mohamed-Ezzat et al., 2023a ,b ), as well as potential for other applications (Elgemeie et al., 2015, 2017a ,b , 2019; Mohamed-Ezzat et al., 2021, 2023a ,b ).

Additionally, the evolution of the pharmaceutical industry has been greatly aided by the discovery of sulfur-based therapies. Sulfur-derived functional groups can be found in a broad range of natural products and pharmaceuticals. Sulfur remains the dominant heteroatom integrated into a variety of FDA-approved sulfur-containing medications (Feng et al., 2016).

Sulfides have been presented inter alia as precursors for sulfonyl chloride synthesis (Langler et al., 1979). Advanced methods previously reported for the transformation of sulfides include, for example, using sulfate-modified multi-walled carbon nanotubes (S-MWCNT) and mesoporous carbon (S-MC) as heterogenous catalysts to facilitate the synthesis of acetamide derivatives (Minchitha et al., 2018). 1.

Herein, we report the first synthesis of a sulfide from a sulfonyl derivative via an alternative new, direct and efficient approach. Upon reaction of the sulfonyl­guanidine derivative with 2-chloro-N-phenyl­acetamide, the title compound N-phenyl-2-(phenyl­sulfan­yl)acetamide (3) is formed. Its chemical structure was confirmed by spectroscopic techniques and elemental analysis. The 1H NMR spectrum has a singlet signal of the methyl­ene group at δ 3.84 ppm, the multiplet aromatic protons at δ 7.30 ppm, as well as the amine proton at δ 9.15 ppm, which is roughly in accordance with previously reported data (Motherwell et al., 2002). Confirmation of the mol­ecular structure is provided by means of single crystal X-ray diffraction structural analysis which provides the first crystal structure and geometric parameters for the title compound.

2. Structural commentary

The asymmetric unit of the crystal structure is composed of two independent mol­ecules of the title compound (Fig. 1). The mol­ecules of 3 consist of three planar segments, namely sulfanyl­benzene [sb1 (C1–C6/S1) and sb2 (C15–C21/S2)], acetamide [ac1 (C7/C8/N1/O1) and ac2 (C22/C23/N2/O2)], and phenyl [ph1 (C9–C14) and ph2 (C24–C29)] groups. The conformations of the two independent mol­ecules in the structure are similar but not identical. The twist angles sb/ac are 85.12 (11) and 77.58 (11)° for mol­ecules 1 and 2, respectively, and twist angles sb/ph are 28.30 (10) and 30.60 (10)° for mol­ecules 1 and 2, respectively. Thus, the phenyl and acetamide groups are almost coplanar whereas the sulfanyl­benzene groups are almost perpendicular to this plane. The Cphen­yl—S-C—Ccarbon­yl torsion angles are 72.1 (3)° for C1—S1—C7—C8 and −65.13 (3)° for C15—S2—C22—C23. A similar mol­ecular conformation is observed in the crystal structures of the related compounds N-(2-hy­droxy-5-chloro­phen­yl)thio­phenyl­acetamide (Tarimci et al., 1998) and 2-[(2-amino­phen­yl)sulfan­yl]-N-(2-nitro­phen­yl)acetamide (Murtaza et al., 2019) in which the Cphen­yl—S—C—Ccarbon­yl torsion angles are ca 80°.

Figure 1.

Figure 1

The asymmetric unit and mol­ecular structures of the two independent mol­ecules of N-phenyl-2-(phenyl­sulfan­yl)acetamide (3) showing displacement ellipsoids at the 50% probability level.

3. Supra­molecular features

The packing in the crystal structure of 3 is shown in Fig. 2 a. In the crystal, the acetamide groups of each set of independent mol­ecules inter­act through weak N—H⋯O contacts (Table 1), forming chains parallel to [100] (Fig. 2 b).

Figure 2.

Figure 2

(a) Crystal packing in the crystal structure of N-phenyl-2-(phenyl­sulfan­yl)acetamide (3). (b) A segment of the crystal structure of compound 3 showing the N—H⋯O and C—H⋯π inter­molecular contacts as green dotted lines.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.86 (3) 2.70 (3) 3.477 (3) 152 (3)
N2—H2A⋯O2ii 0.83 (3) 2.71 (4) 3.456 (3) 150 (3)

Symmetry codes: (i) Inline graphic ; (ii) Inline graphic .

Adjacent chains are linked by weak C—H⋯π contacts between methyl­ene and phenyl groups. The rings involved in the contacts are ph1 (C9–C14, Cg1) and ph2 # (C24–C29, Cg2#) where # is x + 1, y, z. The associated H⋯π distances H7Aph2 #, and H22Bph1 are 2.80 Å and 2.94 Å, respectively. The H⋯centroid distances H7ACg2# and H22BCg1 are 3.00 and 3.10 Å, respectively. The C—H⋯centroid angles for C7—H7ACg2# and C22—H22BCg1 are 129 and 128°, respectively.

4. Database survey

A search of the CSD (version 5.44, April 2023; Groom et al., 2016) using the routine ConQuest (Bruno et al., 2002) for crystal structures containing the N-phenyl-2-(phenyl­sulfan­yl)acetamide fragment returned N-(2-hy­droxy-5-chloro­phen­yl)thio­phenyl­acetamide (NILWEK; Tarimci et al., 1998) and 2-[(2-amino­phen­yl)sulfan­yl]-N-(2-nitro­phen­yl)acetamide (NULZOM; Murtaza et al., 2019), which both have similar conformational geometries to compound 3. In contrast, 2-[(2-amino­phen­yl)sulfan­yl]-N-(4-meth­oxy­phen­yl)acetamide (PAXTEP; Murtaza et al., 2012) has a Cphen­yl—S—C—Ccarbon­yl torsion angle of 159° compared to the values of ca 80° in NILWEK and NULZOM and even more acute ones are observed in the crystal of the title compound.

5. Synthesis and crystallization

A mixture of benzene­sulfonyl­guanidine (1) (0.01 mol) with 2-chloro-N-phenyl­acetamide 2 (0.01 mol) in dry 1,4-dioxane (20 mL) containing potassium hydroxide (0.015 mol) was refluxed for 1 h. The reaction mixture was poured onto ice–water and then neutralized using hydro­chloric acid (Fig. 3).

Figure 3.

Figure 3

The synthesis of compound 3 from sulfonyl­guanidine.

The solid precipitate that formed was then filtered, washed thoroughly with water and left in the open to dry at room temperature. The solid obtained was recrystallized from water to afford colorless crystals of compound 3 in 83% yield; mp > 573 K; 1H NMR (400 MHz, DMSO-d6 ): δ 3.84 (s, 2H, CH2), 7.30 (m, 10H, Ar-H), 9.15 (s, 1H, NH); analysis calculated for C14H13NOS (243.32): C, 69.11; H, 5.39; N, 5.76; S, 13.18. Found: C, 69.07; H, 5.35; N, 5.75; S, 13.16.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. The crystal studied was twinned by a twofold rotation around [100]. This problem was addressed using a HKLF5 file for refinement. The N-bound hydrogen atoms were refined with regard to location while the displacement parameters were constrained to those of their parent atoms [U iso(H) = 1.2U eq(N)]. All other hydrogen atoms were placed in idealized positions (C—H = 0.93–0.97 Å) and refined using a riding model with U iso(H) = 1.2U eq(C).

Table 2. Experimental details.

Crystal data
Chemical formula C14H13NOS
M r 243.31
Crystal system, space group Triclinic, P Inline graphic
Temperature (K) 293
a, b, c (Å) 5.6768 (3), 12.0747 (6), 18.1912 (9)
α, β, γ (°) 87.071 (4), 82.110 (4), 81.110 (4)
V3) 1219.72 (11)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.25
Crystal size (mm) 0.54 × 0.17 × 0.09
 
Data collection
Diffractometer Agilent SuperNova, Dual, Cu at home/near, Atlas
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2023)
T min, T max 0.662, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 7742, 7742, 5708
R int 0.040
(sin θ/λ)max−1) 0.697
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.058, 0.162, 1.03
No. of reflections 7742
No. of parameters 314
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.23, −0.23

Computer programs: CrysAlis PRO (Rigaku OD, 2023), SHELXT (Sheldrick, 2015a ), SHELXL (Sheldrick, 2015b ) and ORTEP-3 for Windows and WinGX (Farrugia, 2012).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989024002573/yz2049sup1.cif

e-80-00392-sup1.cif (358.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989024002573/yz2049Isup2.hkl

e-80-00392-Isup2.hkl (614.8KB, hkl)
e-80-00392-Isup3.cml (4.5KB, cml)

Supporting information file. DOI: 10.1107/S2056989024002573/yz2049Isup3.cml

CCDC reference: 2311395

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

We are grateful for support by the National Research Center, Cairo, Egypt, Cardiff University, Wales, and Helwan University, Cairo, Egypt.

supplementary crystallographic information

Crystal data

C14H13NOS Z = 4
Mr = 243.31 F(000) = 512
Triclinic, P1 Dx = 1.325 Mg m3
a = 5.6768 (3) Å Mo Kα radiation, λ = 0.71073 Å
b = 12.0747 (6) Å Cell parameters from 3492 reflections
c = 18.1912 (9) Å θ = 3.7–28.1°
α = 87.071 (4)° µ = 0.25 mm1
β = 82.110 (4)° T = 293 K
γ = 81.110 (4)° Needle, yellow
V = 1219.72 (11) Å3 0.54 × 0.17 × 0.09 mm

Data collection

Agilent SuperNova, Dual, Cu at home/near, Atlas diffractometer 5708 reflections with I > 2σ(I)
ω scans Rint = 0.040
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2023) θmax = 29.7°, θmin = 3.4°
Tmin = 0.662, Tmax = 1.000 h = −7→6
7742 measured reflections k = −15→15
7742 independent reflections l = −24→24

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.058 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.162 w = 1/[σ2(Fo2) + (0.0737P)2 + 0.551P] where P = (Fo2 + 2Fc2)/3
S = 1.03 (Δ/σ)max = 0.001
7742 reflections Δρmax = 0.23 e Å3
314 parameters Δρmin = −0.23 e Å3
0 restraints

Special details

Experimental. Single-crystal XRD data were collected at room temperature on an Agilent SuperNova Dual Atlas diffractometer using mirror-monochromated Mo Kα radiation.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refined as a 2-component twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 1.1641 (5) −0.1130 (2) 0.11013 (13) 0.0415 (6)
C2 1.3815 (5) −0.1806 (3) 0.08899 (15) 0.0532 (7)
H2 1.506625 −0.150022 0.060835 0.064*
C3 1.4122 (6) −0.2916 (3) 0.10934 (17) 0.0600 (8)
H3 1.558973 −0.335965 0.095112 0.072*
C4 1.2294 (6) −0.3390 (3) 0.15062 (17) 0.0591 (8)
H4 1.251613 −0.414900 0.164104 0.071*
C5 1.0147 (6) −0.2730 (3) 0.17151 (17) 0.0560 (8)
H5 0.890629 −0.304415 0.199571 0.067*
C6 0.9792 (5) −0.1608 (2) 0.15170 (15) 0.0512 (7)
H6 0.831850 −0.116989 0.166072 0.061*
C7 0.8387 (6) 0.0859 (3) 0.10985 (15) 0.0551 (8)
H7A 0.807561 0.158969 0.085390 0.066*
H7B 0.741087 0.037878 0.090528 0.066*
C8 0.7505 (6) 0.0994 (2) 0.19250 (15) 0.0480 (7)
C9 0.8784 (5) 0.1283 (2) 0.31338 (14) 0.0434 (6)
C10 1.0655 (5) 0.0928 (3) 0.35418 (16) 0.0534 (7)
H10 1.212546 0.058503 0.330670 0.064*
C11 1.0350 (7) 0.1082 (3) 0.42985 (17) 0.0648 (9)
H11 1.161619 0.084293 0.457099 0.078*
C12 0.8180 (7) 0.1586 (3) 0.46490 (18) 0.0689 (10)
H12 0.796532 0.167685 0.515957 0.083*
C13 0.6343 (6) 0.1953 (3) 0.42445 (18) 0.0658 (9)
H13 0.488293 0.230248 0.448232 0.079*
C14 0.6618 (6) 0.1812 (2) 0.34868 (17) 0.0557 (7)
H14 0.535726 0.207188 0.321611 0.067*
C15 0.6954 (5) 0.6251 (2) 0.38739 (14) 0.0483 (7)
C16 0.8379 (6) 0.6999 (3) 0.40561 (17) 0.0594 (8)
H16 0.958419 0.676480 0.435258 0.071*
C17 0.8000 (7) 0.8093 (3) 0.37954 (19) 0.0677 (9)
H17 0.897550 0.859209 0.391344 0.081*
C18 0.6223 (6) 0.8462 (3) 0.33670 (19) 0.0655 (9)
H18 0.598021 0.920754 0.320109 0.079*
C19 0.4793 (6) 0.7723 (3) 0.31825 (19) 0.0667 (9)
H19 0.357922 0.796749 0.289068 0.080*
C21 0.5166 (6) 0.6616 (3) 0.34325 (17) 0.0579 (8)
H21 0.421285 0.611422 0.330344 0.069*
C22 1.0326 (6) 0.4309 (3) 0.38916 (15) 0.0568 (8)
H22A 1.133364 0.478430 0.407477 0.068*
H22B 1.070250 0.356802 0.411605 0.068*
C23 1.1052 (6) 0.4220 (2) 0.30651 (15) 0.0467 (7)
C24 0.9628 (5) 0.3906 (2) 0.18839 (14) 0.0405 (6)
C25 0.7707 (5) 0.4253 (3) 0.14992 (16) 0.0529 (7)
H25 0.626080 0.460022 0.174787 0.063*
C26 0.7913 (6) 0.4091 (3) 0.07505 (18) 0.0619 (8)
H26 0.661178 0.434012 0.049420 0.074*
C27 1.0032 (6) 0.3561 (3) 0.03737 (16) 0.0604 (8)
H27 1.017265 0.344880 −0.013342 0.072*
C28 1.1923 (6) 0.3204 (3) 0.07640 (17) 0.0596 (8)
H28 1.335639 0.284254 0.051660 0.071*
C29 1.1747 (5) 0.3368 (2) 0.15161 (16) 0.0508 (7)
H29 1.304784 0.311726 0.177232 0.061*
N1 0.9169 (5) 0.1113 (2) 0.23607 (13) 0.0484 (6)
H1 1.062 (6) 0.103 (3) 0.2146 (16) 0.058*
N2 0.9320 (5) 0.4085 (2) 0.26590 (13) 0.0483 (6)
H2A 0.790 (6) 0.419 (3) 0.2863 (17) 0.058*
O1 0.5380 (4) 0.1003 (2) 0.21474 (12) 0.0656 (6)
O2 1.3142 (4) 0.4238 (2) 0.28135 (11) 0.0618 (6)
S1 1.14801 (15) 0.03015 (6) 0.08281 (4) 0.0539 (2)
S2 0.72463 (16) 0.48404 (7) 0.42268 (4) 0.0584 (2)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0422 (15) 0.0485 (15) 0.0349 (12) −0.0088 (13) −0.0048 (11) −0.0066 (11)
C2 0.0443 (17) 0.0652 (19) 0.0493 (15) −0.0133 (15) 0.0039 (13) −0.0050 (14)
C3 0.0466 (18) 0.061 (2) 0.0661 (18) 0.0059 (16) 0.0017 (15) −0.0047 (15)
C4 0.057 (2) 0.0507 (17) 0.0667 (19) −0.0023 (16) −0.0053 (16) −0.0001 (14)
C5 0.0492 (18) 0.0543 (18) 0.0622 (18) −0.0114 (15) 0.0047 (15) −0.0020 (14)
C6 0.0398 (16) 0.0535 (17) 0.0564 (16) −0.0038 (14) 0.0059 (13) −0.0061 (13)
C7 0.0588 (19) 0.0538 (17) 0.0507 (16) −0.0015 (15) −0.0099 (14) 0.0036 (13)
C8 0.0507 (18) 0.0408 (15) 0.0500 (15) −0.0009 (14) −0.0054 (14) 0.0007 (12)
C9 0.0444 (16) 0.0380 (14) 0.0481 (14) −0.0100 (12) −0.0025 (12) −0.0018 (11)
C10 0.0424 (16) 0.0593 (18) 0.0573 (16) −0.0067 (14) −0.0027 (14) −0.0027 (13)
C11 0.063 (2) 0.080 (2) 0.0559 (17) −0.0175 (19) −0.0163 (17) −0.0002 (16)
C12 0.069 (2) 0.090 (3) 0.0513 (17) −0.031 (2) 0.0012 (17) −0.0101 (17)
C13 0.056 (2) 0.077 (2) 0.065 (2) −0.0172 (18) 0.0091 (17) −0.0246 (17)
C14 0.0471 (17) 0.0543 (18) 0.0642 (18) −0.0019 (15) −0.0043 (15) −0.0125 (14)
C15 0.0422 (16) 0.0599 (17) 0.0417 (13) −0.0109 (14) 0.0069 (12) −0.0134 (12)
C16 0.058 (2) 0.070 (2) 0.0545 (17) −0.0202 (17) −0.0063 (15) −0.0116 (15)
C17 0.073 (2) 0.065 (2) 0.070 (2) −0.0277 (19) −0.0017 (18) −0.0116 (17)
C18 0.060 (2) 0.0559 (19) 0.074 (2) −0.0052 (17) 0.0098 (18) −0.0068 (16)
C19 0.0473 (19) 0.076 (2) 0.073 (2) 0.0004 (18) −0.0070 (17) −0.0035 (18)
C21 0.0455 (17) 0.067 (2) 0.0643 (18) −0.0162 (16) −0.0031 (15) −0.0167 (16)
C22 0.0571 (19) 0.0625 (19) 0.0470 (16) −0.0046 (16) 0.0001 (14) 0.0019 (14)
C23 0.0483 (17) 0.0410 (15) 0.0475 (15) −0.0046 (13) 0.0011 (14) 0.0025 (12)
C24 0.0411 (15) 0.0329 (13) 0.0468 (14) −0.0094 (12) 0.0013 (12) −0.0017 (10)
C25 0.0381 (16) 0.0572 (18) 0.0602 (18) −0.0038 (14) 0.0000 (14) 0.0000 (14)
C26 0.0539 (19) 0.073 (2) 0.0614 (19) −0.0130 (17) −0.0140 (16) 0.0021 (16)
C27 0.063 (2) 0.074 (2) 0.0471 (15) −0.0232 (18) 0.0012 (15) −0.0110 (14)
C28 0.0445 (18) 0.066 (2) 0.0653 (19) −0.0062 (16) 0.0060 (15) −0.0216 (15)
C29 0.0419 (16) 0.0496 (16) 0.0593 (17) 0.0012 (14) −0.0058 (14) −0.0126 (13)
N1 0.0421 (14) 0.0522 (14) 0.0491 (13) −0.0056 (12) −0.0002 (11) −0.0045 (11)
N2 0.0395 (13) 0.0554 (14) 0.0475 (13) −0.0088 (12) 0.0058 (11) −0.0037 (10)
O1 0.0461 (13) 0.0878 (16) 0.0626 (13) −0.0066 (12) −0.0069 (11) −0.0105 (11)
O2 0.0508 (13) 0.0819 (15) 0.0526 (11) −0.0155 (12) 0.0021 (10) −0.0084 (10)
S1 0.0569 (5) 0.0547 (4) 0.0488 (4) −0.0124 (4) 0.0008 (4) 0.0004 (3)
S2 0.0579 (5) 0.0655 (5) 0.0487 (4) −0.0162 (4) 0.0119 (4) −0.0027 (3)

Geometric parameters (Å, º)

C1—C2 1.388 (4) C15—C21 1.385 (4)
C1—C6 1.389 (4) C15—S2 1.781 (3)
C1—S1 1.767 (3) C16—C17 1.375 (5)
C2—C3 1.363 (4) C16—H16 0.9300
C2—H2 0.9300 C17—C18 1.366 (5)
C3—C4 1.376 (5) C17—H17 0.9300
C3—H3 0.9300 C18—C19 1.378 (5)
C4—C5 1.368 (4) C18—H18 0.9300
C4—H4 0.9300 C19—C21 1.385 (5)
C5—C6 1.375 (4) C19—H19 0.9300
C5—H5 0.9300 C21—H21 0.9300
C6—H6 0.9300 C22—C23 1.508 (4)
C7—C8 1.527 (4) C22—S2 1.800 (3)
C7—S1 1.791 (3) C22—H22A 0.9700
C7—H7A 0.9700 C22—H22B 0.9700
C7—H7B 0.9700 C23—O2 1.215 (4)
C8—O1 1.217 (4) C23—N2 1.342 (4)
C8—N1 1.342 (4) C24—C25 1.376 (4)
C9—C10 1.380 (4) C24—C29 1.378 (4)
C9—C14 1.384 (4) C24—N2 1.420 (3)
C9—N1 1.414 (3) C25—C26 1.373 (4)
C10—C11 1.382 (4) C25—H25 0.9300
C10—H10 0.9300 C26—C27 1.381 (5)
C11—C12 1.373 (5) C26—H26 0.9300
C11—H11 0.9300 C27—C28 1.370 (5)
C12—C13 1.364 (5) C27—H27 0.9300
C12—H12 0.9300 C28—C29 1.380 (4)
C13—C14 1.382 (4) C28—H28 0.9300
C13—H13 0.9300 C29—H29 0.9300
C14—H14 0.9300 N1—H1 0.86 (3)
C15—C16 1.382 (4) N2—H2A 0.83 (3)
C2—C1—C6 118.9 (3) C17—C16—H16 120.3
C2—C1—S1 116.2 (2) C15—C16—H16 120.3
C6—C1—S1 124.9 (2) C18—C17—C16 121.5 (3)
C3—C2—C1 120.2 (3) C18—C17—H17 119.3
C3—C2—H2 119.9 C16—C17—H17 119.3
C1—C2—H2 119.9 C17—C18—C19 119.5 (3)
C2—C3—C4 121.0 (3) C17—C18—H18 120.2
C2—C3—H3 119.5 C19—C18—H18 120.2
C4—C3—H3 119.5 C18—C19—C21 119.8 (3)
C5—C4—C3 119.0 (3) C18—C19—H19 120.1
C5—C4—H4 120.5 C21—C19—H19 120.1
C3—C4—H4 120.5 C19—C21—C15 120.2 (3)
C4—C5—C6 121.1 (3) C19—C21—H21 119.9
C4—C5—H5 119.5 C15—C21—H21 119.9
C6—C5—H5 119.5 C23—C22—S2 118.5 (2)
C5—C6—C1 119.8 (3) C23—C22—H22A 107.7
C5—C6—H6 120.1 S2—C22—H22A 107.7
C1—C6—H6 120.1 C23—C22—H22B 107.7
C8—C7—S1 118.2 (2) S2—C22—H22B 107.7
C8—C7—H7A 107.8 H22A—C22—H22B 107.1
S1—C7—H7A 107.8 O2—C23—N2 124.4 (3)
C8—C7—H7B 107.8 O2—C23—C22 118.9 (3)
S1—C7—H7B 107.8 N2—C23—C22 116.6 (3)
H7A—C7—H7B 107.1 C25—C24—C29 119.6 (3)
O1—C8—N1 124.2 (3) C25—C24—N2 118.3 (2)
O1—C8—C7 119.3 (3) C29—C24—N2 122.2 (3)
N1—C8—C7 116.5 (3) C26—C25—C24 120.4 (3)
C10—C9—C14 119.4 (3) C26—C25—H25 119.8
C10—C9—N1 118.5 (3) C24—C25—H25 119.8
C14—C9—N1 122.0 (3) C25—C26—C27 120.7 (3)
C9—C10—C11 120.2 (3) C25—C26—H26 119.7
C9—C10—H10 119.9 C27—C26—H26 119.7
C11—C10—H10 119.9 C28—C27—C26 118.5 (3)
C12—C11—C10 120.1 (3) C28—C27—H27 120.8
C12—C11—H11 119.9 C26—C27—H27 120.8
C10—C11—H11 119.9 C27—C28—C29 121.5 (3)
C13—C12—C11 119.7 (3) C27—C28—H28 119.3
C13—C12—H12 120.2 C29—C28—H28 119.3
C11—C12—H12 120.2 C24—C29—C28 119.4 (3)
C12—C13—C14 121.0 (3) C24—C29—H29 120.3
C12—C13—H13 119.5 C28—C29—H29 120.3
C14—C13—H13 119.5 C8—N1—C9 127.0 (3)
C13—C14—C9 119.5 (3) C8—N1—H1 115 (2)
C13—C14—H14 120.2 C9—N1—H1 118 (2)
C9—C14—H14 120.2 C23—N2—C24 126.2 (2)
C16—C15—C21 119.5 (3) C23—N2—H2A 118 (2)
C16—C15—S2 121.9 (2) C24—N2—H2A 115 (2)
C21—C15—S2 118.5 (2) C1—S1—C7 103.55 (14)
C17—C16—C15 119.4 (3) C15—S2—C22 102.38 (14)
C6—C1—C2—C3 −0.5 (4) S2—C15—C21—C19 176.3 (2)
S1—C1—C2—C3 178.3 (2) S2—C22—C23—O2 155.3 (3)
C1—C2—C3—C4 0.4 (5) S2—C22—C23—N2 −27.0 (4)
C2—C3—C4—C5 −0.3 (5) C29—C24—C25—C26 −1.6 (4)
C3—C4—C5—C6 0.3 (5) N2—C24—C25—C26 −179.5 (3)
C4—C5—C6—C1 −0.4 (5) C24—C25—C26—C27 1.1 (5)
C2—C1—C6—C5 0.5 (4) C25—C26—C27—C28 −0.1 (5)
S1—C1—C6—C5 −178.2 (2) C26—C27—C28—C29 −0.3 (5)
S1—C7—C8—O1 −155.7 (3) C25—C24—C29—C28 1.2 (4)
S1—C7—C8—N1 25.3 (4) N2—C24—C29—C28 179.0 (3)
C14—C9—C10—C11 1.3 (4) C27—C28—C29—C24 −0.2 (5)
N1—C9—C10—C11 179.9 (3) O1—C8—N1—C9 −0.9 (5)
C9—C10—C11—C12 0.1 (5) C7—C8—N1—C9 178.0 (2)
C10—C11—C12—C13 −1.2 (5) C10—C9—N1—C8 153.0 (3)
C11—C12—C13—C14 0.8 (5) C14—C9—N1—C8 −28.4 (4)
C12—C13—C14—C9 0.6 (5) O2—C23—N2—C24 2.1 (5)
C10—C9—C14—C13 −1.6 (4) C22—C23—N2—C24 −175.4 (2)
N1—C9—C14—C13 179.8 (3) C25—C24—N2—C23 −152.4 (3)
C21—C15—C16—C17 −0.1 (4) C29—C24—N2—C23 29.7 (4)
S2—C15—C16—C17 −177.0 (2) C2—C1—S1—C7 173.7 (2)
C15—C16—C17—C18 0.8 (5) C6—C1—S1—C7 −7.6 (3)
C16—C17—C18—C19 −0.8 (5) C8—C7—S1—C1 72.1 (3)
C17—C18—C19—C21 0.0 (5) C16—C15—S2—C22 −59.3 (3)
C18—C19—C21—C15 0.7 (5) C21—C15—S2—C22 123.7 (2)
C16—C15—C21—C19 −0.7 (4) C23—C22—S2—C15 −65.1 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1···O1i 0.86 (3) 2.70 (3) 3.477 (3) 152 (3)
N2—H2A···O2ii 0.83 (3) 2.71 (4) 3.456 (3) 150 (3)

Symmetry codes: (i) x+1, y, z; (ii) x−1, y, z.

References

  1. Agrawal, R., Rewatkar, P. V., Kokil, G. R., Verma, A. & Kalra, A. (2010). Med. Chem. 6, 247–251. [DOI] [PubMed]
  2. Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397. [DOI] [PubMed]
  3. Elgemeie, G. H., Alkhursani, S. A. & Mohamed, R. A. (2019). Nucleosides Nucleotides Nucleic Acids, 38, 1–11. [DOI] [PubMed]
  4. Elgemeie, G. H., Mohamed, R. A., Hussein, H. A. & Jones, P. G. (2015). Acta Cryst. E71, 1322–1324. [DOI] [PMC free article] [PubMed]
  5. Elgemeie, G. H. & Mohamed-Ezzat, R. A. (2022). New Strategies Targeting Cancer Metabolism, pp. 1–619. Amsterdam: Elsevier. ISBN: 978-0-12-821783-2.
  6. Elgemeie, G. H., Salah, A. M., Abbas, N. S., Hussein, H. A. & Mohamed, R. A. (2017a). Nucleosides Nucleotides Nucleic Acids, 36, 139–150. [DOI] [PubMed]
  7. Elgemeie, G. H., Salah, A. M., Abbas, N. S., Hussein, H. A. & Mohamed, R. A. (2017b). Nucleosides Nucleotides Nucleic Acids, 36, 213–223. [DOI] [PubMed]
  8. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  9. Feng, M., Tang, B., Liang, S. H. & Jiang, X. (2016). Curr. Top. Med. Chem. 16, 1200–1216. [DOI] [PMC free article] [PubMed]
  10. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  11. Langler, R. F., Marini, Z. A. & Spalding, E. S. (1979). Can. J. Chem. 57, 3193–3199.
  12. Minchitha, K. U., Hareesh, H. N., Nagaraju, N. & Kathyayini, N. (2018). J Nanosci. Nanotechnol. 18, 426–433. [DOI] [PubMed]
  13. Mohamed-Ezzat, R. A. & Elgemeie, G. H. (2023). Egypt. J. Chem. 66, 167–185.
  14. Mohamed-Ezzat, R. A., Elgemeie, G. H. & Jones, P. G. (2021). Acta Cryst. E77, 547–550. [DOI] [PMC free article] [PubMed]
  15. Mohamed-Ezzat, R. A., Hashem, A. H. & Dacrory, S. (2023a). BMC Chem. 17, 88, 1–13. [DOI] [PMC free article] [PubMed]
  16. Mohamed-Ezzat, R. A., Kariuki, B. M. & Elgemeie, G. H. (2023b). Egypt. J. Chem. 66, 225–239.
  17. Motherwell, W. B., Greaney, M. F., Edmunds, J. J. & Steed, J. W. (2002). J. Chem. Soc. Perkin Trans. 1, pp. 2816–2826.
  18. Murtaza, S., Altaf, A. A., Hamayun, M., Iftikhar, K., Tahir, M. N., Tariq, J. & Faiz, K. (2019). Eur. J. Chem. 10, 358–366.
  19. Murtaza, S., Tahir, M. N., Tariq, J., Abbas, A. & Kausar, N. (2012). Acta Cryst. E68, o1968. [DOI] [PMC free article] [PubMed]
  20. Orzalesi, G., Selleri, R., Caldini, O., Volpato, I., Innocenti, F., Colome, J., Sacristan, A. & Varez, G. (1977). Arzneimittelforsch. 27, 1006–1012. [PubMed]
  21. Rigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
  22. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  23. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  24. Tarimci, Ç., Ercan, F., Koçog¯lu, M. & Ören, İ. (1998). Acta Cryst. C54, 488–489.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989024002573/yz2049sup1.cif

e-80-00392-sup1.cif (358.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989024002573/yz2049Isup2.hkl

e-80-00392-Isup2.hkl (614.8KB, hkl)
e-80-00392-Isup3.cml (4.5KB, cml)

Supporting information file. DOI: 10.1107/S2056989024002573/yz2049Isup3.cml

CCDC reference: 2311395

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES