Skip to main content
Ecology and Evolution logoLink to Ecology and Evolution
. 2024 Apr 18;14(4):e11267. doi: 10.1002/ece3.11267

Deep‐pelagic fishes: Demographic instability in a stable environment

Max D Weber 1, Travis M Richards 1, Tracey T Sutton 2, Joshua E Carter 1, Ron I Eytan 1,3,
PMCID: PMC11024635  PMID: 38638366

Abstract

Demographic histories are frequently a product of the environment, as populations expand or contract in response to major environmental changes, often driven by changes in climate. Meso‐ and bathy‐pelagic fishes inhabit some of the most temporally and spatially stable habitats on the planet. The stability of the deep‐pelagic could make deep‐pelagic fishes resistant to the demographic instability commonly reported in fish species inhabiting other marine habitats, however the demographic histories of deep‐pelagic fishes are unknown. We reconstructed the historical demography of 11 species of deep‐pelagic fishes using mitochondrial and nuclear DNA sequence data. We uncovered widespread evidence of population expansions in our study species, a counterintuitive result based on the nature of deep‐pelagic ecosystems. Frequency‐based methods detected potential demographic changes in nine species of fishes, while extended Bayesian skyline plots identified population expansions in four species. These results suggest that despite the relatively stable nature of the deep‐pelagic environment, the fishes that reside here have likely been impacted by past changes in climate. Further investigation is necessary to better understand how deep‐pelagic fishes, by far Earth's most abundant vertebrates, will respond to future climatic changes.

Keywords: bathypelagic, climate change, mesopelagic, population ecology, population genetics


In this study, we tested the hypothesis that a stable environment should lead to stable demographic histories for the species occupying that environment. We used molecular data to investigate the demographic histories of 11 species of fishes residing in the deep‐pelagic, one of the most stable environments on the planet. Contrary to expectations, we inferred multiple changes in effective population size in the study species.

graphic file with name ECE3-14-e11267-g004.jpg

1. INTRODUCTION

The demographic history of a species is strongly influenced by the environment it inhabits (Alheit & Hagen, 1997; Avise, 2000; Grant, 2015). Major changes in the environment can alter the distribution and size of suitable habitat for a species, reducing or increasing the species' range. Population sizes expand or contract in response to these fluctuations in habitat suitability (Avise, 2000; Nye et al., 2009). Evidence for the environment's control over population dynamics can be seen across taxonomic groups in terrestrial and marine habitats around the world (Almada et al., 2012; Eytan & Hellberg, 2010; Grant, 2015; Robalo et al., 2012).

Given that changes in environmental conditions strongly influence population size, species inhabiting unstable environments should be characterized by unstable population sizes. On the other hand, species inhabiting temporally stable environments should be less susceptible to frequent population expansions or contractions due to global or regional climatic events. Studies have supported this notion, finding genetic diversity to be greater in species inhabiting more stable environments than closely related species in environments more subject to change (Carnaval et al., 2009; Gugger et al., 2013).

The open ocean mesopelagic (200–1000 m depth) and bathypelagic (1000 m to approximately 100 m above the sea floor) domains (deep‐pelagic, cumulatively) are arguably the most temporally and spatially stable environments on the planet. In terms of physical characteristics like temperature, there is a strong latitudinal homogeneity in the environment that increases with depth (Robison, 2009). In comparison to shallower habitats, temperature change occurs slowly and the magnitude of change is less (Abraham et al., 2013; Clark et al., 2006, 2009; Levitus et al., 2012; Mora et al., 2013; Robison, 2009). Regarding age, the deep‐pelagic milieu has existed longer than continents; while the latter have shifted position, uplifted, submerged, and fractionated, the former have remained relatively unchanged, inter‐ocean connectivity notwithstanding. Based on the age and stability of the environment, as well as our current understanding of the manner in which habitat influences demography, the population sizes of the fishes inhabiting the deep‐pelagic would be expected to be stable over time.

If the demographic histories of deep‐pelagic fishes include population size fluctuations, it is difficult to predict which physical factors could drive this instability. Molecular analyses are frequently used to reconstruct and infer historical demography, however molecular investigations into the historical demography of deep‐sea organisms are few and have focused on deep‐benthic species (Etter et al., 2005; Sakuma et al., 2014; Varela et al., 2012). The deep‐benthic environment, benthic habitat found below 200 m depth, is much more heterogeneous than the deep‐pelagic and likely under differing environmental pressures (Sutton et al., 2017; Thurber et al., 2014; Watling et al., 2013). Recent publications based on the fossil record have reported local changes in deep‐pelagic fish abundance and community composition (Lin et al., 2023; Salvatteci et al., 2022). These observations could be indicative of range changes and fluctuations in population size. Correlations between climate have been made to these findings, but the precise mechanism driving the phenomenon is not yet known.

The physical factors influencing the historical demography of marine fishes inhabiting the less homogenous coastal and epipelagic (upper 200 m of the ocean water column) zones are better understood. Studies have consistently shown population size changes that correspond with major changes in these environments that would not be expected in the more homogenous, ‘sheltered’ deep‐pelagic domain. A plurality of these studies indicates widespread population expansions in shallow‐dwelling fishes following the last glacial maximum (Avise, 2000; Eytan & Hellberg, 2010; Grant, 2015; Robalo et al., 2012). Two factors are frequently cited to explain increases in geographic range and a corresponding increase in population size: an increase in global sea‐surface temperatures and sea‐level rise that dramatically increased shelf habitats (Avise, 2000; Eytan & Hellberg, 2010; Grant, 2015) During this period of great change for shallow marine habitats, the deep‐pelagic experienced far smaller changes in temperature, and the amount of deep‐pelagic habitat would have increased negligibly (Abraham et al., 2013; Clark et al., 2006, 2009; Levitus et al., 2012; Robison, 2009).

If the demographic histories of deep‐pelagic fishes reveal large‐scale population fluctuations, it is possible that physical conditions external to the deep‐pelagic domain drive these dynamics. One habit shared by many deep‐pelagic fishes could be responsible, diel vertical migration.

Most mesopelagic fish species perform diel vertical migrations, a nocturnal migration to the shallower and more variable epipelagic waters and a diurnal return to mesopelagic depths (Barham, 1966; Sutton, 2013). Vertical migrations by bathypelagic fishes, while not unknown are much less common (Cook et al., 2013). An analysis of the distribution of mesopelagic fishes found that the ranges of vertically migrating species were more likely to change in response to large‐scale changes in climate than the ranges of species that do not vertically migrate (Hsieh et al., 2009). This could be a result of the greater influence of atmospheric heating on the upper ocean than deep waters. If the changes in surface waters are no longer physiologically tolerable to vertically migrating fishes, then these species would no longer persist in their former range. If vertical migratory behavior alone drives demography in deep‐pelagic fishes, vertical migrators should be characterized by population expansions and/or contractions, while the population sizes of non‐vertical migrators should be relatively stable over time.

Given the current lack of knowledge regarding deep‐pelagic fish historical demography, we sought to investigate the demographic history of 11 species inhabiting this environment, using two sets of molecular based analyses: frequency‐based tests and gene tree‐based analyses. These tests can infer demographic events such as population expansion and complement one another. Knowledge of the demographic history of deep‐pelagic fishes serves two key purposes. First, it will provide insight into the ecological processes driving population dynamics in the world's largest and most environmentally stable ecosystem. These insights provide the basis for an ideal case study to test the hypothesis that a stable environment should in turn lead to stable demographic histories. Second, understanding how deep‐pelagic fishes responded to past climatic events will allow us to make predictions about how they will respond to future changes in climate.

2. METHODS

2.1. Sampling and sequence generation

We selected 11 deep‐pelagic species that span phylogenetic lineages, life histories, and vertical migration behavior (see Table 1). Samples were obtained by trawling with a MOCNESS (Multiple Opening and Closing Net and Environmental Sensing System) in discrete depth zones from the surface to 1500 m depth in the northern Gulf of Mexico (GOM) (see Figure 1 for sampling locations). Upon collection and identification of vouchers at sea, a ~1 cm strip of lateral muscle tissue was preserved in 95% non‐denatured ethanol, stored at −20°C while at sea, and moved to long‐term storage at −80°C when back on land. Voucher specimens are housed in the Ocean Ecology Lab at Nova Southeastern University pending accession into a permanently curated fish collection.

TABLE 1.

Life history traits and taxonomic data for the study species.

Species Family Order Diel vertical migrators Upper depth of occurrence Lower depth of occurrence Total depth range References
Bathophilus pawneei Stomiidae Stomiiformes Yes 0 1500 1500 McEachran and Fechhelm (1998) and Sutton and Hopkins (1996)
Chauliodus sloani Stomiidae Stomiiformes Yes 0 1800 1800 McEachran and Fechhelm (1998), Clarke (1983) and Sutton and Hopkins (1996)
Cyclothone alba Gonostomatidae Stomiiformes No 300 600 300 McEachran and Fechhelm (1998) and Miya and Nemoto (1986)
Cyclothone pseudopallida Gonostomatidae Stomiiformes No 300 900 600 McEachran and Fechhelm (1998) and Miya and Nemoto (1986)
Diplospinus multistriatus Gempylidae Perciformes Yes 100 1000 900 McEachran and Fechhelm (1998) and Clarke and Wagner (1976)
Ditropichthys storeri Cetomimidae Stephanoberyciformes No 650 2150 1500 McEachran and Fechhelm (1998) and Paxton (1989)
Photostomias guernei Stomiidae Stomiiformes Yes 15 800 785 Clarke (1983) and Sutton and Hopkins (1996)
Scopelogadus mizolepis Melamphaidae Stephanoberyciformes Yes 100 1000 900 McEachran and Fechhelm (1998), Clarke (1983) and Clarke and Wagner (1976)
Sigmops elongatus Gonostomatidae Stomiiformes Yes 50 1200 1150 McEachran and Fechhelm (1998) and Lancraft et al. (1988)
Sternoptyx pseudobscura Sternoptychidae Stomiiformes No 800 1500 700 McEachran and Fechhelm (1998)
Stomias affinis Stomiidae Stomiiformes Yes 50 850 800 McEachran and Fechhelm (1998) and Sutton and Hopkins (1996)

FIGURE 1.

FIGURE 1

Map of the sampling locations. Station locations are indicated by the black dots, and depth is indicated according to color.

DNA was extracted from tissues using a Qiagen DNEasy Blood & Tissue extraction kit (Germantown, MD, USA). We generated DNA sequence data from the mitochondrial gene cytochrome oxidase I (COI) as well as three nuclear DNA exons (PLAG, ENC, and MYH). PCR was performed using Promega GoTAQ (Madison, Wisconsin, USA) (see Table A2 for primers used). Following amplification, all PCR products were cleaned using a standard PEG protocol (Glenn, 2019). Amplicons were Sanger‐sequenced on an ABI 3730 capillary sequencer at Yale Keck Biotechnology Resource Laboratory. Sequences were cleaned and edited in Sequencher v5.1. Nuclear markers were phased using Phase v2.1 to resolve heterozygous sites (Stephens & Scheet, 2001, 2005). The sequences were then aligned using MAFFT in Geneiousv9.1.8 (Kearse et al., 2012).

2.2. Frequency‐based analyses

We calculated Tajima's D, Fu's F s, and R 2 for each marker (Fu, 1997; Ramos‐Onsins & Rozas, 2002; Tajima, 1989). Comparisons of the statistical power of frequency‐based tests have shown that F s and R 2 are the most capable of detecting population growth (Ramos‐Onsins & Rozas, 2002). They complement one another as well, with F s excelling at population growth detection in large sample sizes, while R 2 performs better with small sample sizes. A significant and large negative F s value suggests population growth, while a significant and small positive R 2 value indicates population growth. Tajimas's D points to population growth and/or a selective sweep when significant and negative.

All of the frequency‐based tests were performed in DNAsp v6 (Rozas et al., 2017). Ambiguity codes were replaced with Ns to allow for calculation in DNAsp. Significance of Tajima's D results are determined by the test itself. The significance of all three tests was also determined using coalescent simulations with 1000 replicates implemented in DNAsp.

2.3. Gene tree‐based analysis

The second set of tests makes use of the topologies and branch lengths of gene trees to infer changes in population size over time using the coalescent. We performed these analyses in BEAST v2.4.7 (Bouckaert et al., 2014) to generate extended Bayesian skyline plots (EBSPs). EBSPs utilize coalescent theory and a Markov Chain Monte Carlo Algorithm to infer and visualize demographic changes in a dataset. The Bayesian skyline plot is preferable to earlier skyline plot methods as it models both genealogy and demographic history simultaneously, which reduces error rates from uncertainty in estimates of node time (Heled & Drummond, 2008; Ho & Shapiro, 2011).

Nuclear and mitochondrial genes were included in the analysis for each species. The chain length was set to 50,000,000 sampling every 1000. COI rates were fixed, while the nuclear rates were allowed to vary. The partitioning scheme and substitution models were set based on PartitionFinder v2.0 results (Lanfear et al., 2012). A second set of trees was created using the same methodology, with the exception of the selection of substitution models. All partitions were set to the RBS substitution model (Bouckaert et al., 2014). RBS is a reversible‐jump based substitution model for nucleotide data. This substitution model does not require a fixed substitution model to be assigned to each partition at the beginning of the analysis. Instead, it allows five different substitution models to be explored through the run, to find the substitution model with the best fit to the dataset.

After running in BEAST, log files for both sets of trees were inspected using Tracer v 1.7.1 (Rambaut et al., 2014). The most strongly supported EBSP analysis, based on ESS values, was selected and used for the inference of each species' demographic history. The posterior estimate of the number of population size changes provided a test for a rejection of constant population size. A stable demographic history can be rejected in species that do not include a possibility of zero demographic events in this posterior estimate. Finally, the trees files were uploaded to Rstudio v 0.99.484 (Studio 2012). The Rscript “plotEBSP”, provided with the EBSP tutorial (http://www.beast2.org/files/2016/01/ebsp2‐tut.zip), was used to generate and visualize the extended Bayesian skyline plots to understand the nature of these demographic events (Heled, 2010).

We treated each species as a single population for the purpose of these analyses. The accuracy of EBSP results require that the sequences were derived from a single population. The small size of the sampling area (Figure 1) and lack of geographic barriers for dispersal, make this a reasonable assumption. This assumption is supported by genome wide, temporal (multi‐year) analyses of three species within the deep‐pelagic family Myctophidae that reside in the northern Gulf of Mexico (Bernard et al., 2022). Very little instraspecific structure was found, and the authors characterize the GOM lanternfishes as largely panmictic. The samples used in our study were collected alongside those used in the Myctophid research. Given the overlap in habitat, range, and life history traits between lanternfishes and our study species, we believe it is reasonable to assume panmictic populations for our study species within the northern Gulf of Mexico.

2.4. Population dynamics and vertical migration

We placed species into two categories; those that had undergone an inferred population size change and those that had not. Species placed into the “inferred population size change” group were categorized as such if the inference was uncovered in both the frequency‐based and gene tree‐based analyses. We further divided species into vertical migrators and non‐vertical migrators. The migration type for each species can be found in Table 1. A chi‐squared test was used to test for a correlation between inferred population size changes and vertical migration.

3. RESULTS

3.1. Summary

The number of sequences generated for each species and marker varied according to sample availability and our ability to achieve amplification. The number of unique sequences obtained for each gene ranged from 10 to 97 (Table 2). The COI dataset included a low of 10 of sequences (Bathophilus pawneei) and a high of 97 sequences (Chauliodus sloani). The PLAG dataset included a low of 10 sequences (B. pawneei, Cyclothone pseudopallida, and Photostomias guernei) and a high of 17 sequences (Sternoptyx pseudobscura) (see Figure 2 for Photo of P. guernei). The ENC dataset included a low of 12 sequences (Diplospinus multistriatus) and a high of 16 sequences (S. pseudobscura). Finally, the MYH dataset included 11 sequences (S. pseudobscura) and 15 sequences (Stomias affinis). We used two genes for analysis in nine species, three genes in one species, and four genes in one species (Table 2). All sequences have been deposited in Genbank (Accession numbers listed in Table A1).

TABLE 2.

Results of frequency‐based statistics analysis.

Species COI PLAG ENC MYH
# Of sequences Tajima's D R 2 F s # Of sequences Tajima's D R 2 F s # Of sequences Tajima's D R 2 F s # Of sequences Tajima's D R 2 F s
Bathophilus pawneei 10 1.21 .206 1.761 10 −0.395 .146 −0.07 NA NA NA NA NA NA NA NA
Chauliodus Sloani 97 −2.124 .027 −33.567 NA NA NA NA 19 −2.162 .046 −10.151 NA NA NA NA
Cyclothone alba 12 −1.831 .2 −1.008 12 −1.591 .068 −4.89 NA NA NA NA NA NA NA NA
Cyclothone pseudopallida 14 −0.026 .133 −0.68 10 −0.023 .137 0.216 NA NA NA NA NA NA NA NA
Diplospinus multistriatus 12 −1.141 .267 −0.476 12 −0.163 .126 0.2 12 −1.863 .073 −5.836 NA NA NA NA
Ditropichthys storeri 11 −0.796 .137 −0.865 10 −2.186 .074 −5.778 NA NA NA NA NA NA NA NA
Photostomias guernei 12 −1.83 .096 −3.216 12 −1.346 .086 −2.582 NA NA NA NA NA NA NA NA
Scopelogaus mizolepis 11 −0.786 .182 −2.995 11 −1.165 .121 −0.097 NA NA NA NA NA NA NA NA
Sigmops elongatus 12 −1.141 .227 −0.476 12 −1.494 .096 −2.383 NA NA NA NA NA NA NA NA
Sternoptyx pseudobscura 13 −1.149 .227 −0.537 17 −1.993 .046 −9.189 16 −2.41 .059 −6.027 15 −1.346 .074 −2.209
Stomias affinis 11 −1.673 .07 −8.668 NA NA NA NA NA NA NA NA 11 −0.477 .115 0.43

Note: Tajima's D values that were significant based on the two‐tailed test are dark gray. Significant values determined through coalescent simulations are highlighted in light gray.

FIGURE 2.

FIGURE 2

Photo of Photostomias guernei. Photo by Dante Fenolio.

3.2. Frequency‐based analyses

Frequency‐based analyses recovered population expansions in 9 of our 11 sampled species (Table 2). In four species (C. sloani, S. pseudobscura, Cyclothone alba, and P. guernei) more than half of the frequency‐based tests for all markers inferred population size changes. Weaker support was present in another five species (D. multistriatus, Ditropichthys storeri, Scopelogadus mizolepis, Sigmops elongatus, and S. affinis), where less than half of the markers tested produced significant results. No evidence for demographic change was present in B. pawneei or C. pseudopallida.

3.3. Gene tree based analysis

We were able to reject a stable demographic history in four of the 11 species; C. alba, C. sloani, P. guernei, and S. pseudobscura, based on the posterior estimate of the number of population size changes generated in the analyses (Table 3). The estimates suggest a minimum one demographic event and maximum of three demographic events. Population expansions were inferred in every case based on the EBSPs (Figure 3). These four species also shared the strongest evidence for population size changes based on the frequency‐based analyses.

TABLE 3.

Posterior estimate of population sizes changes.

Study species Reject constant population Posterior estimate of population size changes
Bathophilus pawneii No [0, 3]
Chauliodus Sloani Yes [1, 3]
Cyclothone alba Yes [1,3]
Cyclothone pseudopallida No [0,3]
Diplospinus multistriatus No [0,3]
Ditropichthys storeri No [0,3]
Photostomias guernei No [1,3]
Scopelogaus mizolepis No [0,3]
Sigmops elongatus No [0,3]
Sternoptyx pseudobscura Yes [1,3]
Stomias affinis No [0,3]

Note: These estimates were generated using the gene tree based analyses and provide a test to reject a stable demographic history.

FIGURE 3.

FIGURE 3

Extended Bayesian skyline plots. The x‐axis represents time, with the left side of the axis being the most recent time point. The y‐axis represents relative population size on a log scale. The gray area displays the 95% central posterior density.

3.4. Vertical migration and population dynamics

The chi‐squared test did not provide support for a relationship between vertical migration and population size changes (p‐value .8190, Table 4). Of the four species with strong support for population expansions, two (C. sloani and P. guernei) are vertical migrators while two (C. alba and S. pseudobscura) do not vertically migrate.

TABLE 4.

Chi‐squared test for significance of vertical migration on the inference of recent population size changes.

Pop size change inferred No pop size change inferred
Vertical migrator 4 3 Chi‐squared 0.0524
Non vertical migrator 2 2 p‐Value 0.819

4. DISCUSSION

Historic changes in population size are frequently inferred for marine fishes and attributed to major ecological events and past climatic change (Avise, 2000; Grant, 2015). Previous molecular studies however, have largely focused on marine species inhabiting shallower environments that are more variable over time in terms of physical conditions such as temperature in comparison to the deep‐pelagic. Given the temporal and abiotic stability of the deep‐pelagic environment, population sizes of fishes inhabiting this environment might also be predicted to be stable, so that no effective population size changes would be inferred from genetic examination. Nonetheless, we uncovered multiple lines of evidence suggesting population expansions in four of the 11 study species, while demographic events were inferred in an additional five species using frequency‐based tests.

4.1. Interpretation of frequency‐based statistics

Departures from neutrality frequently occur due to past demographic events, however other factors such as selective sweeps and reproductive skew may lead to departures from neutrality as well (Birkner et al., 2013; Eldon et al., 2015; Montano, 2016). This has been shown to be true in several marine fishes (Eldon et al., 2015; Niwa et al., 2016). We sought to avoid such issues by employing a multilocus approach, including both mitochondrial and nuclear genes. Selection could be leading to a positive result on a single gene, however it would be unlikely to be acting on multiple unrelated genes in concert.

4.2. Both frequency‐based statistics and EBSPs suggest population expansions

Population expansions were indicated using two different types of analyses that were largely in agreement, however the EBSPs suggested fewer instances of demographic change. It is not surprising that these tests would not agree in every case. Simulated datasets demonstrate that the EBSP analyses are prone to false negatives when using fewer than eight loci (Heled & Drummond, 2008). Given the number of loci sequenced, it seems likely that our EBSPs were more conservative in their inference of population expansions than the frequency‐based tests.

The generation of sequence data was complicated due to the evolutionary distance separating these species, over 200 million years in some cases (Near et al., 2012). Finding primer sets that successfully amplified genes in multiple study species was the limiting to factor to the number of sequences included in this investigation. In the future, the use of high‐throughput sequencing would greatly expand the number of genes available for analyses and provide greater resolution to the demographic histories of the fishes inhabiting the deep‐pelagic, likely increasing the number of demographic expansions that are inferred.

4.3. Genetic evidence furthers recent findings based on the fossil record

While molecular techniques can infer demographic history directly, analyses of the fossil record can uncover trends in local species abundance and community composition over time, which can be indicative of larger demographic trends. Several recent publications have used the fossil record to recreate prehistoric deep‐pelagic fish communities. Salvatteci et al. (2022) identified fossilized vertebrae to compare the community structure of fishes inhabiting Humboldt Current at two points in time (the last interglacial and the Holocene) (Salvatteci et al., 2022). The study includes two deep‐pelagic species, with one species increasing and the other decreasing in frequency in the Holocene sample. Lin et al. 2023) utilized fossilized otoliths to investigate trends in deep‐pelagic fishes in the Warm Pacific Pool over the last 460 thousand years (Lin et al., 2023). They included species from five major deep‐pelagic families and found temporal changes in the number of otoliths present in the fossil record as well as the community composition. While some species remained well represented throughout the record others fluctuated greatly. These inferred changes in community composition and abundance could be a record of large‐scale fluctuations in range and population sizes in deep‐pelagic fishes. Given our widespread inference of population instability, it seems likely that the fossil‐based analyses are identifying the same phenomenon.

4.4. Potential drivers of deep‐pelagic fish population dynamics

Our widespread inference of population expansions in deep‐pelagic fishes was unexpected. Demographic events are typically attributed to major climate changes that alter the environment, in turn increasing or decreasing the amount of optimal habitat for a given species (Avise, 2000; Grant, 2015). Populations expand or contract in response to these alterations in optimal habitat. Because the deep‐pelagic domain has been a relatively stable habitat in terms of its size and temperature for millions of years, it would seem likely that the demographic histories of deep‐pelagic fishes would be characterized by a lack of expansions/contractions (Clark et al., 2009; Levitus et al., 2012; Robison, 2009). Instead, we uncovered a minimum of four cases of population expansion (identified by both frequency‐based statistics and gene tree‐based analysis) and possibly nine cases of population expansion (based on frequency‐based statistics alone).

We proposed and tested one potential driver of population size change in deep‐pelagic fishes, diel vertical migration. We hypothesized that the obligate use of the more volatile epipelagic domain by vertically migrating species may increase their likelihood of undergoing population fluctuations relative to species that do not vertically migrate. Hsieh et al. (2009) provide support for the hypothesis as they reported the larval distribution of fish species with vertically migrating adults changed more rapidly/frequently than non‐vertically migrating species (Hsieh et al., 2009). This could be attributed to short‐term changes in surface water conditions that impact vertically migrating species but are unfelt by those adults that remain at depth. If vertical migratory habits were the primary driver of population dynamics in deep‐pelagic fishes, the demographic histories of vertically migrating species would be characterized by population expansions/contractions, while non‐vertically migrating species should be less variable over time. Based on our chi‐squared test, we were unable to detect any difference in population dynamics between these two groups. Of the four species with the strongest evidence for population expansions, two are vertical migrators and two are non‐vertical migrators. We find vertical migration, to be an unlikely driver of population dynamics in deep‐pelagic fishes.

Another feature of deep‐pelagic fish biology might explain population dynamics in the fishes inhabiting this environment, a pelagic larval phase, where the larvae of most deep‐pelagic fishes reside in the upper 200 m (Bowlin, 2016; Johnson et al., 2009; Moser, 1996). Two lines of evidence support the hypothesis that the physiological tolerances of the larvae residing in the epipelagic domain drive population dynamics in deep‐pelagic fishes: long‐term monitoring of larval distribution and deep‐pelagic patterns of distribution.

Long‐term monitoring efforts in transition zones between tropical and subpolar regions have shown that physical conditions, such as sea surface temperature, are key predictors of larval community composition. Furthermore, physical changes in these environments alter the larval composition of the community (Ahlstrom, 1969; Netburn & Koslow, 2018; Sassa et al., 2004; Urias‐Leyva et al., 2018). Aceves‐Medina et al. (2004) found that the distribution of larvae was congruent with that of the adults. This suggests that as sea surface conditions alter larval distributions, the ranges of adults would change accordingly.

The second piece of evidence for larval control on demography comes from the distribution patterns of deep‐pelagic fishes. Most deep‐pelagic fishes can broadly be classified as warm‐water or cold‐water species, and many species have latitudinal biogeographic boundaries (see Table A3 for range description of study species) (Olson, 2001; Pearcy, 1991; Randall, 1981). Within oceanic basins, latitudinal differences in temperature decrease by depth (Vecchione et al., 2015). By 1000 m depth the temperature is a near uniform 5°C throughout most of the world's oceans (Helfman et al., 2009; Tyus, 2011). It is therefore noteworthy that even some non‐vertically migrating bathypelagic groups such as the whale fishes exhibit strong latitudinal biogeographic boundaries (Paxton, 1989). It seems unlikely that the distribution trends exhibited by deep‐pelagic fishes can be explained by physiological constraints on the adults of these species given the relative homogeneity of the environment. Rather, a given species range is constrained to regions with surface waters tolerable to their larvae. If correct periods of warm SST in high latitudes would increase available habitat to deep‐pelagic larval fishes and lead to population expansions.

Finally, trophic dynamics could potentially drive changes in population size in deep‐pelagic fishes. Vertically migrating fishes in the upper mesopelagic typically forage in surface waters where the food web is supported by recent in situ primary production (Gloeckler et al., 2018; Sutton & Hopkins, 1996). In contrast, some non‐migratory fishes that reside in the lower mesopelagic and the bathypelagic largely rely on a suspended, particle‐based food web composed of degraded particulate organic matter originating in the epipelagic (Crichton et al., 2023; Eduardo et al., 2023; Gloeckler et al., 2018; Hannides et al., 2020). Thus, the amount of carbon available to non‐migratory consumers in the lower mesopelagic and bathypelagic zones is directly linked to the amount of primary production in surface waters and the rate at which it can reach deeper depths.

Changes in ocean temperatures can greatly alter the amount of the particulate organic carbon (POC) that reaches this environment, in turn affecting the amount of food available to support this community (Crichton et al., 2023; John et al., 2013; Olivarez Lyle & Lyle, 2006). Crichton et al. (2023) suggest that bacteria may drive this phenomenon. As oceans warm the metabolic rates of bacteria increase, leading to greater consumption of sinking organic material, and less POC reaching deep waters (Crichton et al., 2023).

The availability of organic carbon at depth may be evident in the fossil record (Boscolo‐Galazzo et al., 2021). Deep‐pelagic formaninifera diversity and abundance increases as ocean temperatures decrease, a feature attributed to a greater volume of food reaching this habitat (Boscolo‐Galazzo et al., 2021; Crichton et al., 2023). This increase in food availability would be expected to positively benefit population sizes for the other members of the deep‐pelagic food web, including fish species. If food availability shapes deep‐pelagic fish demographics, periods of global warming would lead to population contractions while periods of global cooling would lead to population expansions. This feature would be more pronounced in deeper dwelling species.

5. CONCLUSIONS

Insights into the nature of deep‐pelagic fish population dynamics are currently lacking. Our results demonstrate that despite the long‐term stability of the global mesopelagic and bathypelagic domains, the population sizes of the fishes that reside within them are not static in nature. It seems likely that previous changes to the environment, potentially as a result of large‐scale changes in climate, have impacted the fish community residing in the deep‐pelagic. As we continue to investigate the particular environmental factors that influence demographic changes in these fishes, we will better be able to predict how populations of these fishes will behave in the face of future climate change.

AUTHOR CONTRIBUTIONS

Max D. Weber: Conceptualization (lead); data curation (lead); investigation (equal); writing – original draft (lead). Travis M. Richards: Investigation (equal); writing – review and editing (equal). Tracey T. Sutton: Funding acquisition (lead); investigation (equal); writing – review and editing (equal). Joshua E. Carter: Investigation (equal); writing – review and editing (equal). Ron I. Eytan: Funding acquisition (supporting); investigation (equal); resources (lead); supervision (lead); writing – review and editing (equal).

CONFLICT OF INTEREST STATEMENT

The authors declare that they have no conflicts of interest.

ACKNOWLEDGEMENTS

This work was supported by a grant from The Gulf of Mexico Research Initiative, and in part by the National Oceanic and Atmospheric Administration's RESTORE Science Program (NA19NOS4510193). Data are publicly available through the Gulf of Mexico Research Initiative Information & Data Cooperative (GRIIDC) at https://data.gulfresearchinitiative.org. We thank M. Hellberg and two anonymous reviewers for their helpful comments on previous versions of the manuscript. We thank D. Fenolio for the high quality photo of one of our study species (Dante@anotheca.com).

TABLE A1.

List of GenBank accession numbers.

Species Gene Accession number Specimen ID
Bathophilus pawneei COI OP131918 DPND_1336
Bathophilus pawneei COI OP131919 DPND_1900
Bathophilus pawneei COI OP131920 DPND_1914
Bathophilus pawneei COI OP131921 DPND_1985
Bathophilus pawneei COI OP131922 DPND_2001
Bathophilus pawneei COI OP131923 DPND_2002
Bathophilus pawneei COI OP131924 DPND_2267
Bathophilus pawneei COI OP131925 RIE_0008
Bathophilus pawneei COI OP131926 RIE_0313
Bathophilus pawneei COI OP131927 RIE_0516
Chauliodus sloani COI OP132420 DPND_1241
Chauliodus sloani COI OP132421 DPND_1556
Chauliodus sloani COI OP132422 DPND_1557
Chauliodus sloani COI OP132423 DPND_1605
Chauliodus sloani COI OP132424 DPND_1669
Chauliodus sloani COI OP132425 DPND_1695
Chauliodus sloani COI OP132426 DPND_1877
Chauliodus sloani COI OP132427 DPND_1895
Chauliodus sloani COI OP132428 DPND_1896
Chauliodus sloani COI OP132429 DPND_1937
Chauliodus sloani COI OP132430 DPND_1997
Chauliodus sloani COI OP132431 DPND_2027
Chauliodus sloani COI OP132432 DPND_2037
Chauliodus sloani COI OP132433 DPND_2097
Chauliodus sloani COI OP132434 DPND_2181
Chauliodus sloani COI OP132435 DPND_2208
Chauliodus sloani COI OP132436 DPND_2260
Chauliodus sloani COI OP132437 DPND_2387
Chauliodus sloani COI OP132438 DPND_2418
Chauliodus sloani COI OP132439 DPND_2490
Chauliodus sloani COI OP132440 DPND_2528
Chauliodus sloani COI OP132441 DPND_2699
Chauliodus sloani COI OP132442 DPND_2731
Chauliodus sloani COI OP132443 DPND_2756
Chauliodus sloani COI OP132444 DPND_2757
Chauliodus sloani COI OP132445 DPND_2813
Chauliodus sloani COI OP132446 DPND_2958
Chauliodus sloani COI OP132447 DPND_3621
Chauliodus sloani COI OP132448 DPND_3682
Chauliodus sloani COI OP132449 DPND_3774
Chauliodus sloani COI OP132450 DPND_3789
Chauliodus sloani COI OP132451 DPND_3790
Chauliodus sloani COI OP132452 DPND_3937
Chauliodus sloani COI OP132453 DPND_3938
Chauliodus sloani COI OP132454 DPND_4109
Chauliodus sloani COI OP132455 DPND_4119
Chauliodus sloani COI OP132456 DPND_4120
Chauliodus sloani COI OP132457 DPND_4121
Chauliodus sloani COI OP132458 DPND_4138
Chauliodus sloani COI OP132459 DPND_4139
Chauliodus sloani COI OP132460 DPND_4212
Chauliodus sloani COI OP132461 DPND_4278
Chauliodus sloani COI OP132462 DPND_4465
Chauliodus sloani COI OP132463 DPND_4528
Chauliodus sloani COI OP132464 DPND_4529
Chauliodus sloani COI OP132465 DPND_4546
Chauliodus sloani COI OP132466 DPND_4551
Chauliodus sloani COI OP132467 DPND_4649
Chauliodus sloani COI OP132468 DPND_4693
Chauliodus sloani COI OP132469 DPND_4694
Chauliodus sloani COI OP132470 DPND_4695
Chauliodus sloani COI OP132471 DPND_4736
Chauliodus sloani COI OP132472 DPND_4920
Chauliodus sloani COI OP132473 DPND_4946
Chauliodus sloani COI OP132474 DPND_5014
Chauliodus sloani COI OP132475 DPND_5015
Chauliodus sloani COI OP132476 DPND_5050
Chauliodus sloani COI OP132477 DPND_5126
Chauliodus sloani COI OP132478 DPND_5302
Chauliodus sloani COI OP132479 DPND_5334
Chauliodus sloani COI OP132480 DPND_5335
Chauliodus sloani COI OP132481 DPND_5398
Chauliodus sloani COI OP132482 DPND_5426
Chauliodus sloani COI OP132483 DPND_5427
Chauliodus sloani COI OP132484 DPND_5467
Chauliodus sloani COI OP132485 DPND_5468
Chauliodus sloani COI OP132486 DPND_5500
Chauliodus sloani COI OP132487 DPND_5573
Chauliodus sloani COI OP132488 DPND_5574
Chauliodus sloani COI OP132489 DPND_5593
Chauliodus sloani COI OP132490 DPND_5610
Chauliodus sloani COI OP132491 DPND_5634
Chauliodus sloani COI OP132492 DPND_5665
Chauliodus sloani COI OP132493 DPND_5675
Chauliodus sloani COI OP132494 DPND_5680
Chauliodus sloani COI OP132495 DPND_5682
Chauliodus sloani COI OP132496 DPND_5723
Chauliodus sloani COI OP132497 DPND_5741
Chauliodus sloani COI OP132498 RIE_18
Chauliodus sloani COI OP132499 RIE_236
Chauliodus sloani COI OP132500 RIE_510
Chauliodus sloani COI OP132501 RIE_576
Chauliodus sloani COI OP132502 RIE_642
Chauliodus sloani COI OP132503 RIE_690
Chauliodus sloani COI OP132504 RIE_698
Chauliodus sloani COI OP132505 RIE_912
Chauliodus sloani COI OP132506 RIE_913
Chauliodus sloani COI OP132507 RIE_914
Chauliodus sloani COI OP132508 RIE_948
Chauliodus sloani COI OP132509 RIE_0994
Chauliodus sloani COI OP132510 DPND_5114
Chauliodus sloani COI OP132511 DPND_4579
Chauliodus sloani COI OP132512 DPND_2788
Chauliodus sloani COI OP132513 DPND_3505
Chauliodus sloani COI OP132514 DPND_4717
Chauliodus sloani COI OP132515 DPND_4008
Chauliodus sloani COI OP132516 DPND_3987
Cyclothone alba COI OP131971 RIE_0349
Cyclothone alba COI OP131972 RIE_0350
Cyclothone alba COI OP131973 RIE_0351
Cyclothone alba COI OP131974 RIE_0031
Cyclothone alba COI OP131975 RIE_0252
Cyclothone alba COI OP131976 RIE_0253
Cyclothone alba COI OP131977 RIE_0254
Cyclothone alba COI OP131978 RIE_0255
Cyclothone alba COI OP131979 RIE_0344
Cyclothone alba COI OP131980 RIE_0345
Cyclothone alba COI OP131981 RIE_0347
Cyclothone alba COI OP131982 RIE_0348
Cyclothone pseudopallida COI OP131984 RIE_0359
Cyclothone pseudopallida COI OP131985 RIE_0357
Cyclothone pseudopallida COI OP131986 RIE_0077
Cyclothone pseudopallida COI OP131987 RIE_0354
Cyclothone pseudopallida COI OP131988 RIE_0239
Cyclothone pseudopallida COI OP131989 RIE_0360
Cyclothone pseudopallida COI OP131990 RIE_0477
Cyclothone pseudopallida COI OP131991 RIE_0493
Cyclothone pseudopallida COI OP131992 RIE_0544
Cyclothone pseudopallida COI OP131993 DPND_4547
Cyclothone pseudopallida COI OP131994 DPND_4483
Cyclothone pseudopallida COI OP131995 RIE_0238
Cyclothone pseudopallida COI OP131996 RIE_0358
Cyclothone pseudopallida COI OP131997 RIE_0492
Diplospinus multistriatus COI OP132142 DPND_2718
Diplospinus multistriatus COI OP132143 RIE_0886
Diplospinus multistriatus COI OP132144 RIE_0887
Diplospinus multistriatus COI OP132145 RIE_0171
Diplospinus multistriatus COI OP132146 RIE_0240
Diplospinus multistriatus COI OP132147 RIE_0413
Diplospinus multistriatus COI OP132148 RIE_0495
Diplospinus multistriatus COI OP132149 RIE_0713
Diplospinus multistriatus COI OP132150 RIE_0882
Diplospinus multistriatus COI OP132151 RIE_0883
Diplospinus multistriatus COI OP132152 RIE_0884
Diplospinus multistriatus COI OP132153 RIE_0885
Ditropichthys storeri COI OP131959 DPND_2989
Ditropichthys storeri COI OP131960 DDPND_3302
Ditropichthys storeri COI OP131961 DPND_3911
Ditropichthys storeri COI OP131962 DPND_4130
Ditropichthys storeri COI OP131963 DPND_4210
Ditropichthys storeri COI OP131964 DPND_1466
Ditropichthys storeri COI OP131965 DPND_2251
Ditropichthys storeri COI OP131966 RIE_0438
Ditropichthys storeri COI OP131967 RIE_0522
Ditropichthys storeri COI OP131968 RIE_0243
Ditropichthys storeri COI OP131969 DPND_4431
Photostomias guernei COI OP132211 RIE_0506
Photostomias guernei COI OP132212 RIE_0514
Photostomias guernei COI OP132213 RIE_0551
Photostomias guernei COI OP132214 RIE_0081
Photostomias guernei COI OP132215 RIE_0107
Photostomias guernei COI OP132216 RIE_0176
Photostomias guernei COI OP132217 RIE_0337
Photostomias guernei COI OP132218 RIE_0400
Photostomias guernei COI OP132219 RIE_0401
Photostomias guernei COI OP132220 RIE_0459
Photostomias guernei COI OP132221 RIE_0460
Photostomias guernei COI OP132222 RIE_0461
Scopelogadus mizolepis COI OP132154 DPND_2511
Scopelogadus mizolepis COI OP132155 DPND_2512
Scopelogadus mizolepis COI OP132156 DPND_4271
Scopelogadus mizolepis COI OP132157 DPND_1298
Scopelogadus mizolepis COI OP132158 DPND_1299
Scopelogadus mizolepis COI OP132159 DPND_1379
Scopelogadus mizolepis COI OP132160 DPND_1380
Scopelogadus mizolepis COI OP132161 DPND_2220
Scopelogadus mizolepis COI OP132162 RIE_0041
Scopelogadus mizolepis COI OP132163 RIE_0518
Scopelogadus mizolepis COI OP132164 RIE_0954
Sigmops elongatus COI OP132179 RIE_0278
Sigmops elongatus COI OP132180 RIE_0279
Sigmops elongatus COI OP132181 RIE_0280
Sigmops elongatus COI OP132182 RIE_0002
Sigmops elongatus COI OP132183 RIE_0017
Sigmops elongatus COI OP132184 RIE_0097
Sigmops elongatus COI OP132185 RIE_0182
Sigmops elongatus COI OP132186 RIE_0204
Sigmops elongatus COI OP132187 RIE_0205
Sigmops elongatus COI OP132188 RIE_0206
Sigmops elongatus COI OP132189 RIE_0244
Sigmops elongatus COI OP132190 RIE_0277
Sternoptyx pseudobscura COI OP132242 RIE_0415
Sternoptyx pseudobscura COI OP132243 RIE_0417
Sternoptyx pseudobscura COI OP132244 RIE_0078
Sternoptyx pseudobscura COI OP132245 RIE_0195
Sternoptyx pseudobscura COI OP132246 RIE_0196
Sternoptyx pseudobscura COI OP132247 RIE_0197
Sternoptyx pseudobscura COI OP132248 RIE_0200
Sternoptyx pseudobscura COI OP132249 RIE_0201
Sternoptyx pseudobscura COI OP132250 RIE_0223
Sternoptyx pseudobscura COI OP132251 RIE_0224
Sternoptyx pseudobscura COI OP132252 RIE_0226
Sternoptyx pseudobscura COI OP132253 DPND_3772
Sternoptyx pseudobscura COI OP132254 DPND_4225
Stomias affinis COI OP132165 RIE_0237
Stomias affinis COI OP132166 RIE_0517
Stomias affinis COI OP132167 DPND_3645
Stomias affinis COI OP132168 DPND_1314
Stomias affinis COI OP132169 DPND_1543
Stomias affinis COI OP132170 DPND_1639
Stomias affinis COI OP132171 RIE_0917
Stomias affinis COI OP132172 RIE_0466
Stomias affinis COI OP132173 RIE_0577
Stomias affinis COI OP132174 DPND_1201
Stomias affinis COI OP132175 DPND_1315
Bathophilus pawneei PLAG1 OP149759 DPND_1336
Bathophilus pawneei PLAG1 OP149760 DPND_1336
Bathophilus pawneei PLAG1 OP149761 DPND_1900
Bathophilus pawneei PLAG1 OP149762 DPND_1900
Bathophilus pawneei PLAG1 OP149763 DPND_1914
Bathophilus pawneei PLAG1 OP149764 DPND_1914
Bathophilus pawneei PLAG1 OP149765 DPND_1985
Bathophilus pawneei PLAG1 OP149766 DPND_1985
Bathophilus pawneei PLAG1 OP149767 DPND_2001
Bathophilus pawneei PLAG1 OP149768 DPND_2001
Bathophilus pawneei PLAG1 OP149769 DPND_2002
Bathophilus pawneei PLAG1 OP149770 DPND_2002
Bathophilus pawneei PLAG1 OP149771 DPND_2267
Bathophilus pawneei PLAG1 OP149772 DPND_2267
Bathophilus pawneei PLAG1 OP149773 RIE_313
Bathophilus pawneei PLAG1 OP149774 RIE_313
Bathophilus pawneei PLAG1 OP149775 RIE_516
Bathophilus pawneei PLAG1 OP149776 RIE_516
Bathophilus pawneei PLAG1 OP149777 RIE_8
Bathophilus pawneei PLAG1 OP149778 RIE_8
Cyclothone alba PLAG1 OP149779 RIE_252
Cyclothone alba PLAG1 OP149780 RIE_252
Cyclothone alba PLAG1 OP149781 RIE_253
Cyclothone alba PLAG1 OP149782 RIE_253
Cyclothone alba PLAG1 OP149783 RIE_254
Cyclothone alba PLAG1 OP149784 RIE_254
Cyclothone alba PLAG1 OP149785 RIE_255
Cyclothone alba PLAG1 OP149786 RIE_255
Cyclothone alba PLAG1 OP149787 RIE_31
Cyclothone alba PLAG1 OP149788 RIE_31
Cyclothone alba PLAG1 OP149789 RIE_344
Cyclothone alba PLAG1 OP149790 RIE_344
Cyclothone alba PLAG1 OP149791 RIE_345
Cyclothone alba PLAG1 OP149792 RIE_345
Cyclothone alba PLAG1 OP149793 RIE_347
Cyclothone alba PLAG1 OP149794 RIE_347
Cyclothone alba PLAG1 OP149795 RIE_348
Cyclothone alba PLAG1 OP149796 RIE_348
Cyclothone alba PLAG1 OP149797 RIE_349
Cyclothone alba PLAG1 OP149798 RIE_349
Cyclothone alba PLAG1 OP149799 RIE_350
Cyclothone alba PLAG1 OP149800 RIE_350
Cyclothone alba PLAG1 OP149801 RIE_351
Cyclothone alba PLAG1 OP149802 RIE_351
Cyclothone pseudopallida PLAG1 OP149803 RIE_238
Cyclothone pseudopallida PLAG1 OP149804 RIE_238
Cyclothone pseudopallida PLAG1 OP149805 RIE_239
Cyclothone pseudopallida PLAG1 OP149806 RIE_239
Cyclothone pseudopallida PLAG1 OP149807 RIE_357
Cyclothone pseudopallida PLAG1 OP149808 RIE_357
Cyclothone pseudopallida PLAG1 OP149809 RIE_358
Cyclothone pseudopallida PLAG1 OP149810 RIE_358
Cyclothone pseudopallida PLAG1 OP149811 RIE_359
Cyclothone pseudopallida PLAG1 OP149812 RIE_359
Cyclothone pseudopallida PLAG1 OP149813 RIE_360
Cyclothone pseudopallida PLAG1 OP149814 RIE_360
Cyclothone pseudopallida PLAG1 OP149815 RIE_477
Cyclothone pseudopallida PLAG1 OP149816 RIE_477
Cyclothone pseudopallida PLAG1 OP149817 RIE_492
Cyclothone pseudopallida PLAG1 OP149818 RIE_492
Cyclothone pseudopallida PLAG1 OP149819 RIE_493
Cyclothone pseudopallida PLAG1 OP149820 RIE_493
Cyclothone pseudopallida PLAG1 OP149821 RIE_544
Cyclothone pseudopallida PLAG1 OP149822 RIE_544
Diplospinus multistriatus PLAG1 OP149823 DPND_2718
Diplospinus multistriatus PLAG1 OP149824 DPND_2718
Diplospinus multistriatus PLAG1 OP149825 RIE_171
Diplospinus multistriatus PLAG1 OP149826 RIE_171
Diplospinus multistriatus PLAG1 OP149827 RIE_240
Diplospinus multistriatus PLAG1 OP149828 RIE_240
Diplospinus multistriatus PLAG1 OP149829 RIE_413
Diplospinus multistriatus PLAG1 OP149830 RIE_413
Diplospinus multistriatus PLAG1 OP149831 RIE_495
Diplospinus multistriatus PLAG1 OP149832 RIE_495
Diplospinus multistriatus PLAG1 OP149833 RIE_713
Diplospinus multistriatus PLAG1 OP149834 RIE_713
Diplospinus multistriatus PLAG1 OP149835 RIE_882
Diplospinus multistriatus PLAG1 OP149836 RIE_882
Diplospinus multistriatus PLAG1 OP149837 RIE_883
Diplospinus multistriatus PLAG1 OP149838 RIE_883
Diplospinus multistriatus PLAG1 OP149839 RIE_884
Diplospinus multistriatus PLAG1 OP149840 RIE_884
Diplospinus multistriatus PLAG1 OP149841 RIE_885
Diplospinus multistriatus PLAG1 OP149842 RIE_885
Diplospinus multistriatus PLAG1 OP149843 RIE_886
Diplospinus multistriatus PLAG1 OP149844 RIE_886
Diplospinus multistriatus PLAG1 OP149845 RIE_887
Diplospinus multistriatus PLAG1 OP149846 RIE_887
Ditropichthys storeri PLAG1 OP149847 DPND_1466
Ditropichthys storeri PLAG1 OP149848 DPND_1466
Ditropichthys storeri PLAG1 OP149849 DPND_2251
Ditropichthys storeri PLAG1 OP149850 DPND_2251
Ditropichthys storeri PLAG1 OP149851 DPND_2989
Ditropichthys storeri PLAG1 OP149852 DPND_2989
Ditropichthys storeri PLAG1 OP149853 DPND_3302
Ditropichthys storeri PLAG1 OP149854 DPND_3302
Ditropichthys storeri PLAG1 OP149855 DPND_3911
Ditropichthys storeri PLAG1 OP149856 DPND_3911
Ditropichthys storeri PLAG1 OP149857 DPND_4130
Ditropichthys storeri PLAG1 OP149858 DPND_4130
Ditropichthys storeri PLAG1 OP149859 DPND_4210
Ditropichthys storeri PLAG1 OP149860 DPND_4210
Ditropichthys storeri PLAG1 OP149861 RIE_243
Ditropichthys storeri PLAG1 OP149862 RIE_243
Ditropichthys storeri PLAG1 OP149863 RIE_438
Ditropichthys storeri PLAG1 OP149864 RIE_438
Ditropichthys storeri PLAG1 OP149865 RIE_522
Ditropichthys storeri PLAG1 OP149866 RIE_522
Photostomias guernei PLAG1 OP149867 RIE_107
Photostomias guernei PLAG1 OP149868 RIE_107
Photostomias guernei PLAG1 OP149869 RIE_176
Photostomias guernei PLAG1 OP149870 RIE_176
Photostomias guernei PLAG1 OP149871 RIE_337
Photostomias guernei PLAG1 OP149872 RIE_337
Photostomias guernei PLAG1 OP149873 RIE_400
Photostomias guernei PLAG1 OP149874 RIE_400
Photostomias guernei PLAG1 OP149875 RIE_401
Photostomias guernei PLAG1 OP149876 RIE_401
Photostomias guernei PLAG1 OP149877 RIE_459
Photostomias guernei PLAG1 OP149878 RIE_459
Photostomias guernei PLAG1 OP149879 RIE_461
Photostomias guernei PLAG1 OP149880 RIE_461
Photostomias guernei PLAG1 OP149881 RIE_506
Photostomias guernei PLAG1 OP149882 RIE_506
Photostomias guernei PLAG1 OP149883 RIE_514
Photostomias guernei PLAG1 OP149884 RIE_514
Photostomias guernei PLAG1 OP149885 RIE_551
Photostomias guernei PLAG1 OP149886 RIE_551
Photostomias guernei PLAG1 OP149887 RIE_552
Photostomias guernei PLAG1 OP149888 RIE_552
Photostomias guernei PLAG1 OP149889 RIE_81
Photostomias guernei PLAG1 OP149890 RIE_81
Scopelogadus mizolepis PLAG1 OP149891 DPND_1298
Scopelogadus mizolepis PLAG1 OP149892 DPND_1298
Scopelogadus mizolepis PLAG1 OP149893 DPND_1299
Scopelogadus mizolepis PLAG1 OP149894 DPND_1299
Scopelogadus mizolepis PLAG1 OP149895 DPND_1379
Scopelogadus mizolepis PLAG1 OP149896 DPND_1379
Scopelogadus mizolepis PLAG1 OP149897 DPND_1380
Scopelogadus mizolepis PLAG1 OP149898 DPND_1380
Scopelogadus mizolepis PLAG1 OP149899 DPND_2220
Scopelogadus mizolepis PLAG1 OP149900 DPND_2220
Scopelogadus mizolepis PLAG1 OP149901 DPND_2511
Scopelogadus mizolepis PLAG1 OP149902 DPND_2511
Scopelogadus mizolepis PLAG1 OP149903 DPND_2512
Scopelogadus mizolepis PLAG1 OP149904 DPND_2512
Scopelogadus mizolepis PLAG1 OP149905 DPND_4271
Scopelogadus mizolepis PLAG1 OP149906 DPND_4271
Scopelogadus mizolepis PLAG1 OP149907 RIE_41
Scopelogadus mizolepis PLAG1 OP149908 RIE_41
Scopelogadus mizolepis PLAG1 OP149909 RIE_518
Scopelogadus mizolepis PLAG1 OP149910 RIE_518
Scopelogadus mizolepis PLAG1 OP149911 RIE_954
Scopelogadus mizolepis PLAG1 OP149912 RIE_954
Sigmops elongatus PLAG1 OP149913 RIE_17
Sigmops elongatus PLAG1 OP149914 RIE_17
Sigmops elongatus PLAG1 OP149915 RIE_182
Sigmops elongatus PLAG1 OP149916 RIE_182
Sigmops elongatus PLAG1 OP149917 RIE_204
Sigmops elongatus PLAG1 OP149918 RIE_204
Sigmops elongatus PLAG1 OP149919 RIE_205
Sigmops elongatus PLAG1 OP149920 RIE_205
Sigmops elongatus PLAG1 OP149921 RIE_206
Sigmops elongatus PLAG1 OP149922 RIE_206
Sigmops elongatus PLAG1 OP149923 RIE_244
Sigmops elongatus PLAG1 OP149924 RIE_244
Sigmops elongatus PLAG1 OP149925 RIE_277
Sigmops elongatus PLAG1 OP149926 RIE_277
Sigmops elongatus PLAG1 OP149927 RIE_278
Sigmops elongatus PLAG1 OP149928 RIE_278
Sigmops elongatus PLAG1 OP149929 RIE_279
Sigmops elongatus PLAG1 OP149930 RIE_279
Sigmops elongatus PLAG1 OP149931 RIE_280
Sigmops elongatus PLAG1 OP149932 RIE_280
Sigmops elongatus PLAG1 OP149933 RIE_2
Sigmops elongatus PLAG1 OP149934 RIE_2
Sigmops elongatus PLAG1 OP149935 RIE_97
Sigmops elongatus PLAG1 OP149936 RIE_97
Sternoptyx pseudobscura PLAG1 OP149937 DPND_3772
Sternoptyx pseudobscura PLAG1 OP149938 DPND_3772
Sternoptyx pseudobscura PLAG1 OP149939 RIE_195
Sternoptyx pseudobscura PLAG1 OP149940 RIE_195
Sternoptyx pseudobscura PLAG1 OP149941 RIE_196
Sternoptyx pseudobscura PLAG1 OP149942 RIE_196
Sternoptyx pseudobscura PLAG1 OP149943 RIE_197
Sternoptyx pseudobscura PLAG1 OP149944 RIE_197
Sternoptyx pseudobscura PLAG1 OP149945 RIE_200
Sternoptyx pseudobscura PLAG1 OP149946 RIE_200
Sternoptyx pseudobscura PLAG1 OP149947 RIE_201
Sternoptyx pseudobscura PLAG1 OP149948 RIE_201
Sternoptyx pseudobscura PLAG1 OP149949 RIE_223
Sternoptyx pseudobscura PLAG1 OP149950 RIE_223
Sternoptyx pseudobscura PLAG1 OP149951 RIE_224
Sternoptyx pseudobscura PLAG1 OP149952 RIE_224
Sternoptyx pseudobscura PLAG1 OP149953 RIE_225
Sternoptyx pseudobscura PLAG1 OP149954 RIE_225
Sternoptyx pseudobscura PLAG1 OP149955 RIE_226
Sternoptyx pseudobscura PLAG1 OP149956 RIE_226
Sternoptyx pseudobscura PLAG1 OP149957 RIE_415
Sternoptyx pseudobscura PLAG1 OP149958 RIE_415
Sternoptyx pseudobscura PLAG1 OP149959 RIE_417
Sternoptyx pseudobscura PLAG1 OP149960 RIE_417
Sternoptyx pseudobscura PLAG1 OP149961 RIE_537
Sternoptyx pseudobscura PLAG1 OP149962 RIE_537
Sternoptyx pseudobscura PLAG1 OP149963 RIE_538
Sternoptyx pseudobscura PLAG1 OP149964 RIE_538
Sternoptyx pseudobscura PLAG1 OP149965 RIE_539
Sternoptyx pseudobscura PLAG1 OP149966 RIE_539
Sternoptyx pseudobscura PLAG1 OP149967 RIE_78
Sternoptyx pseudobscura PLAG1 OP149968 RIE_78
Sternoptyx pseudobscura PLAG1 OP149969 RIE_915
Sternoptyx pseudobscura PLAG1 OP149970 RIE_915
Chauliodus sloani ENC1 OP149971 DPND_1556
Chauliodus sloani ENC1 OP149972 DPND_1556
Chauliodus sloani ENC1 OP149973 DPND_1669
Chauliodus sloani ENC1 OP149974 DPND_1669
Chauliodus sloani ENC1 OP149975 DPND_1695
Chauliodus sloani ENC1 OP149976 DPND_1695
Chauliodus sloani ENC1 OP149977 DPND_1877
Chauliodus sloani ENC1 OP149978 DPND_1877
Chauliodus sloani ENC1 OP149979 DPND_1895
Chauliodus sloani ENC1 OP149980 DPND_1895
Chauliodus sloani ENC1 OP149981 DPND_1896
Chauliodus sloani ENC1 OP149982 DPND_1896
Chauliodus sloani ENC1 OP149983 DPND_1937
Chauliodus sloani ENC1 OP149984 DPND_1937
Chauliodus sloani ENC1 OP149985 DPND_2027
Chauliodus sloani ENC1 OP149986 DPND_2027
Chauliodus sloani ENC1 OP149987 DPND_2037
Chauliodus sloani ENC1 OP149988 DPND_2037
Chauliodus sloani ENC1 OP149989 DPND_2097
Chauliodus sloani ENC1 OP149990 DPND_2097
Chauliodus sloani ENC1 OP149991 DPND_2208
Chauliodus sloani ENC1 OP149992 DPND_2208
Chauliodus sloani ENC1 OP149993 DPND_2260
Chauliodus sloani ENC1 OP149994 DPND_2260
Chauliodus sloani ENC1 OP149995 DPND_2387
Chauliodus sloani ENC1 OP149996 DPND_2387
Chauliodus sloani ENC1 OP149997 DPND_2418
Chauliodus sloani ENC1 OP149998 DPND_2418
Chauliodus sloani ENC1 OP149999 DPND_2490
Chauliodus sloani ENC1 OP150000 DPND_2490
Chauliodus sloani ENC1 OP150001 DPND_2528
Chauliodus sloani ENC1 OP150002 DPND_2528
Chauliodus sloani ENC1 OP150003 DPND_2669
Chauliodus sloani ENC1 OP150004 DPND_2669
Chauliodus sloani ENC1 OP150005 DPND_2756
Chauliodus sloani ENC1 OP150006 DPND_2756
Chauliodus sloani ENC1 OP150007 DPND_2757
Chauliodus sloani ENC1 OP150008 DPND_2757
Diplospinus multistriatus ENC1 OP150009 DPND_2718
Diplospinus multistriatus ENC1 OP150010 DPND_2718
Diplospinus multistriatus ENC1 OP150011 RIE_171
Diplospinus multistriatus ENC1 OP150012 RIE_171
Diplospinus multistriatus ENC1 OP150013 RIE_240
Diplospinus multistriatus ENC1 OP150014 RIE_240
Diplospinus multistriatus ENC1 OP150015 RIE_413
Diplospinus multistriatus ENC1 OP150016 RIE_413
Diplospinus multistriatus ENC1 OP150017 RIE_495
Diplospinus multistriatus ENC1 OP150018 RIE_495
Diplospinus multistriatus ENC1 OP150019 RIE_713
Diplospinus multistriatus ENC1 OP150020 RIE_713
Diplospinus multistriatus ENC1 OP150021 RIE_882
Diplospinus multistriatus ENC1 OP150022 RIE_882
Diplospinus multistriatus ENC1 OP150023 RIE_883
Diplospinus multistriatus ENC1 OP150024 RIE_883
Diplospinus multistriatus ENC1 OP150025 RIE_884
Diplospinus multistriatus ENC1 OP150026 RIE_884
Diplospinus multistriatus ENC1 OP150027 RIE_885
Diplospinus multistriatus ENC1 OP150028 RIE_885
Diplospinus multistriatus ENC1 OP150029 RIE_886
Diplospinus multistriatus ENC1 OP150030 RIE_886
Diplospinus multistriatus ENC1 OP150031 RIE_887
Diplospinus multistriatus ENC1 OP150032 RIE_887
Sternoptyx pseudobscura ENC1 OP150033 DPND_3772
Sternoptyx pseudobscura ENC1 OP150034 DPND_3772
Sternoptyx pseudobscura ENC1 OP150035 RIE_195
Sternoptyx pseudobscura ENC1 OP150036 RIE_195
Sternoptyx pseudobscura ENC1 OP150037 RIE_196
Sternoptyx pseudobscura ENC1 OP150038 RIE_196
Sternoptyx pseudobscura ENC1 OP150039 RIE_197
Sternoptyx pseudobscura ENC1 OP150040 RIE_197
Sternoptyx pseudobscura ENC1 OP150041 RIE_200
Sternoptyx pseudobscura ENC1 OP150042 RIE_200
Sternoptyx pseudobscura ENC1 OP150043 RIE_201
Sternoptyx pseudobscura ENC1 OP150044 RIE_201
Sternoptyx pseudobscura ENC1 OP150045 RIE_224
Sternoptyx pseudobscura ENC1 OP150046 RIE_224
Sternoptyx pseudobscura ENC1 OP150047 RIE_225
Sternoptyx pseudobscura ENC1 OP150048 RIE_225
Sternoptyx pseudobscura ENC1 OP150049 RIE_226
Sternoptyx pseudobscura ENC1 OP150050 RIE_226
Sternoptyx pseudobscura ENC1 OP150051 RIE_415
Sternoptyx pseudobscura ENC1 OP150052 RIE_415
Sternoptyx pseudobscura ENC1 OP150053 RIE_417
Sternoptyx pseudobscura ENC1 OP150054 RIE_417
Sternoptyx pseudobscura ENC1 OP150055 RIE_537
Sternoptyx pseudobscura ENC1 OP150056 RIE_537
Sternoptyx pseudobscura ENC1 OP150057 RIE_538
Sternoptyx pseudobscura ENC1 OP150058 RIE_538
Sternoptyx pseudobscura ENC1 OP150059 RIE_539
Sternoptyx pseudobscura ENC1 OP150060 RIE_539
Sternoptyx pseudobscura ENC1 OP150061 RIE_78
Sternoptyx pseudobscura ENC1 OP150062 RIE_78
Sternoptyx pseudobscura ENC1 OP150063 RIE_915
Sternoptyx pseudobscura ENC1 OP150064 RIE_915
Sternoptyx pseudobscura MYH6 OP150065 DPND_4225
Sternoptyx pseudobscura MYH6 OP150066 DPND_4225
Sternoptyx pseudobscura MYH6 OP150067 RIE_195
Sternoptyx pseudobscura MYH6 OP150068 RIE_195
Sternoptyx pseudobscura MYH6 OP150069 RIE_196
Sternoptyx pseudobscura MYH6 OP150070 RIE_196
Sternoptyx pseudobscura MYH6 OP150071 RIE_197
Sternoptyx pseudobscura MYH6 OP150072 RIE_197
Sternoptyx pseudobscura MYH6 OP150073 RIE_200
Sternoptyx pseudobscura MYH6 OP150074 RIE_200
Sternoptyx pseudobscura MYH6 OP150075 RIE_201
Sternoptyx pseudobscura MYH6 OP150076 RIE_201
Sternoptyx pseudobscura MYH6 OP150077 RIE_223
Sternoptyx pseudobscura MYH6 OP150078 RIE_223
Sternoptyx pseudobscura MYH6 OP150079 RIE_224
Sternoptyx pseudobscura MYH6 OP150080 RIE_224
Sternoptyx pseudobscura MYH6 OP150081 RIE_226
Sternoptyx pseudobscura MYH6 OP150082 RIE_226
Sternoptyx pseudobscura MYH6 OP150083 RIE_415
Sternoptyx pseudobscura MYH6 OP150084 RIE_415
Sternoptyx pseudobscura MYH6 OP150085 RIE_417
Sternoptyx pseudobscura MYH6 OP150086 RIE_417
Sternoptyx pseudobscura MYH6 OP150087 RIE_537
Sternoptyx pseudobscura MYH6 OP150088 RIE_537
Sternoptyx pseudobscura MYH6 OP150089 RIE_538
Sternoptyx pseudobscura MYH6 OP150090 RIE_538
Sternoptyx pseudobscura MYH6 OP150091 RIE_539
Sternoptyx pseudobscura MYH6 OP150092 RIE_539
Sternoptyx pseudobscura MYH6 OP150093 RIE_78
Sternoptyx pseudobscura MYH6 OP150094 RIE_78
Stomias affinis MYH6 OP150095 DPND_1201
Stomias affinis MYH6 OP150096 DPND_1201
Stomias affinis MYH6 OP150097 DPND_1302
Stomias affinis MYH6 OP150098 DPND_1302
Stomias affinis MYH6 OP150099 DPND_1314
Stomias affinis MYH6 OP150100 DPND_1314
Stomias affinis MYH6 OP150101 DPND_1315
Stomias affinis MYH6 OP150102 DPND_1315
Stomias affinis MYH6 OP150103 DPND_1408
Stomias affinis MYH6 OP150104 DPND_1408
Stomias affinis MYH6 OP150105 DPND_1543
Stomias affinis MYH6 OP150106 DPND_1543
Stomias affinis MYH6 OP150107 DPND_1639
Stomias affinis MYH6 OP150108 DPND_1639
Stomias affinis MYH6 OP150109 DPND_3645
Stomias affinis MYH6 OP150110 DPND_3645
Stomias affinis MYH6 OP150111 RIE_466
Stomias affinis MYH6 OP150112 RIE_466
Stomias affinis MYH6 OP150113 RIE_577
Stomias affinis MYH6 OP150114 RIE_577
Stomias affinis MYH6 OP150115 RIE_917
Stomias affinis MYH6 OP150116 RIE_917

TABLE A2.

List of primers used.

Gene Primer name Primer sequence
COI FISH1F TCAACCAACCACAAAGACATTGGCAC
COI FISH1R TAGACTTCTGGGTGGCCAAAGAATCA
COI FISH2F TCGACTAATCATAAAGATATCGGCAC
COI FISH2R ACTTCAGGGTGACCGAAGAATCAGAA
COI BOLD_COI_Forward TTCTCCACCAACCACAARGAYATYGG
COI BOLD_COI_Reverse CACCTCAGGGTGTCCGAARAAYCARAA
COI FISHCOI_F TCAACYAATCAYAAAGATATYGGCAC
COI FISHCOI_R ACTTCYGGGTGRCCRAARAATCA
ENC Perc_ENC_F TTCCTRGAGAGAAACCTTCACC
ENC Perc_ENC_R GAYGGAGARGCNGGGAGGCAGCC
PLAG Perc_PLAG_F CATGAYCCYAACAARGARGCCTT
PLAG Perc_PLAG_R TGRCARCCCATGCCCATAGCTG
MYH Perc_MYH_F ACYAARAGRGTYATYCAGTACT
MYH Perc_MYH_R CCRAKGGMRTAGTAGACYTGRTC

TABLE A3.

Range description of study species.

Species Range description Oceans inhabited Latitudes inhabited Citations Notes
Bathophilus pawneei Circumglobal; Tropical Atlantic, Indian, Pacific 36° N–34° S Agustin (2018)
Chauliodus sloani Circumglobal; Tropical and Polar Atlantic, Indian, Pacific 50° N–50° S Mundy (2005)

Less common but records exist from individuals as far as 70° N–56° S (Priede, 2017)

Cyclothone alba Circumglobal; Tropical Atlantic, Indian, Pacific 40° N–40° S Miya and Nemoto (1986)
Cyclothone pseudopallida Circumglobal; Tropical and Polar Atlantic, Indian, Pacific 65° N–30° S Mundy (2005)
Diplospinus multistriatus Circumglobal; Tropical Atlantic, Indian, Pacific 40° N–40° S Mundy (2005)
Ditropichthys storeri Circumglobal; Tropical Atlantic, Indian, Pacific 48° N–43° S Paxton (1989)
Photostomias guernei Non circumglobal; Tropical Atlantic 40° N–3° N Kenaley (2009)
Scopelogadus mizolepis Circumglobal; Tropical Atlantic, Indian, Pacific 40° N–22° S Mundy (2005)
Sigmops elongatus Circumglobal; Tropical and Polar Atlantic, Indian, Pacific 65° N–35° S Torres (2018)
Sternoptyx pseudobscura Circumglobal; Tropical Atlantic, Indian, Pacific 40° N–40° S Mundy (2005) and Zamarro and Lloris (1999) One record from 42° N and 47° N
Stomias affinis Circumglobal; Tropical Atlantic, Indian, Pacific 35° N–39° S Priede (2017)

Weber, M. D. , Richards, T. M. , Sutton, T. T. , Carter, J. E. , & Eytan, R. I. (2024). Deep‐pelagic fishes: Demographic instability in a stable environment. Ecology and Evolution, 14, e11267. 10.1002/ece3.11267

DATA AVAILABILITY STATEMENT

DNA sequences: available on Genbank. The accession numbers and corresponding sample data are located in Table A1.

REFERENCES

  1. Abraham, J. P. , Baringer, M. , Bindoff, N. L. , Boyer, T. , Cheng, L. J. , Church, J. A. , Conroy, J. L. , Domingues, C. M. , Fasullo, J. T. , Gilson, J. , Goni, G. , Good, S. A. , Gorman, J. M. , Gouretski, V. , Ishii, M. , Johnson, G. C. , Kizu, S. , Lyman, J. M. , Macdonald, A. M. , … Willis, J. K. (2013). A review of global ocean temperature observations: Implications for ocean heat content estimates and climate change. Reviews of Geophysics, 51, 450–483. [Google Scholar]
  2. Aceves‐Medina, G. , Jiménez‐Rosenberg, S. P. A. , Hinojosa‐Medina, A. , Funes‐Rodríguez, R. , Saldierna‐Martínez, R. J. , & Smith, P. E. (2004). Fish larvae assemblages in the Gulf of California. Journal of Fish Biology, 65, 832–847. [Google Scholar]
  3. Agustin, L. Q. (2018). Bathophilus pawneei . http://fishbase.org/summary/Bathophilus‐pawneei
  4. Ahlstrom, E. H. (1969). Mesopelagic and bathypelagic fishes in the California current region. California Cooperative Oceanic Fisheries Investigations Reports, 13, 39–44. [Google Scholar]
  5. Alheit, J. , & Hagen, E. (1997). Long‐term climate forcing of European herring and sardine populations. Fisheries Oceanography, 6, 130–139. [Google Scholar]
  6. Almada, V. C. , Almada, F. , Francisco, S. M. , Castilho, R. , & Robalo, J. I. (2012). Unexpected high genetic diversity at the extreme northern geographic limit of Taurulus bubalis (Euphrasen, 1786). PLoS One, 7, e44404. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Avise, J. C. (2000). Phylogeography: The history and formation of species. Harvard University Press. [Google Scholar]
  8. Barham, E. G. (1966). Deep scattering layer migration and composition: Observations from a diving saucer. Science, 151, 1399–1403. [DOI] [PubMed] [Google Scholar]
  9. Bernard, A. M. , Finnegan, K. A. , Sutton, T. T. , Eytan, R. I. , Weber, M. D. , & Shivji, M. S. (2022). Population genomic dynamics of mesopelagic lanternfishes Diaphus dumerilii, Lepidophanes guentheri, and Ceratoscopelus warmingii (Family: Myctophidae) in the Gulf of Mexico. Deep Sea Research Part I: Oceanographic Research Papers, 185, 103786. [Google Scholar]
  10. Birkner, M. , Blath, J. , & Eldon, B. (2013). Statistical properties of the site‐frequency spectrum associated with Λ‐coalescents. Genetics, 195, 1037–1053. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Boscolo‐Galazzo, F. , Crichton, K. A. , Ridgwell, A. , Mawbey, E. M. , Wade, B. S. , & Pearson, P. N. (2021). Temperature controls carbon cycling and biological evolution in the ocean twilight zone. Science, 371, 1148–1152. [DOI] [PubMed] [Google Scholar]
  12. Bouckaert, R. , Heled, J. , Kühnert, D. , Vaughan, T. , Wu, C. H. , Xie, D. , Suchard, M. A. , Rambaut, A. , & Drummond, A. J. (2014). BEAST 2: A software platform for Bayesian evolutionary analysis. PLoS Computational Biology, 10, e1003537. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Bowlin, N. M. (2016). Ontogenetic changes in the distribution and abundance of early life history stages of mesopelagic fishes off California. University of California. [Google Scholar]
  14. Carnaval, A. C. , Hickerson, M. J. , Haddad, C. F. , Rodrigues, M. T. , & Moritz, C. (2009). Stability predicts genetic diversity in the Brazilian Atlantic forest hotspot. Science, 323, 785–789. [DOI] [PubMed] [Google Scholar]
  15. Clarke, T. A. (1983). Sex ratios and sexual differences in size among mesopelagic fishes from the central Pacific Ocean. Marine Biology, 73, 203–209. [Google Scholar]
  16. Clark, P. U. , Archer, D. , Pollard, D. , Blum, J. D. , Rial, J. A. , Brovkin, V. , Mix, A. C. , Pisias, N. G. , & Roy, M. (2006). The middle Pleistocene transition: Characteristics, mechanisms, and implications for long‐term changes in atmospheric pCO2 . Quaternary Science Reviews, 25, 3150–3184. [Google Scholar]
  17. Clark, P. U. , Dyke, A. S. , Shakun, J. D. , Carlson, A. E. , Clark, J. , Wohlfarth, B. , Mitrovica, J. X. , Hostetler, S. W. , & McCabe, A. (2009). The last glacial maximum. Science, 325, 710–714. [DOI] [PubMed] [Google Scholar]
  18. Clarke, T. A. , & Wagner, P. J. (1976). Vertical distribution and other aspects of the ecology of certain mesopelagic fishes taken near Hawaii. Fishery Bulletin, 74(3), 635–645. [Google Scholar]
  19. Cook, A. B. , Sutton, T. T. , Galbraith, J. K. , & Vecchione, M. (2013). Deep‐pelagic (0–3000 m) fish assemblage structure over the mid‐Atlantic ridge in the area of the Charlie‐Gibbs fracture zone. Deep Sea Research Part II: Topical Studies in Oceanography, 98, 279–291. [Google Scholar]
  20. Crichton, K. A. , Wilson, J. D. , Ridgwell, A. , Boscolo‐Galazzo, F. , John, E. H. , Wade, B. S. , & Pearson, P. N. (2023). What the geological past can tell us about the future of the ocean's twilight zone. Nature Communications, 14, 2376. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Eduardo, L. N. , Lucena‐Frédou, F. , Lanco Bertrand, S. , Lira, A. S. , Mincarone, M. M. , Nunes, G. T. , Frédou, T. , Soares, A. , le Loc'h, F. , Pelage, L. , Schwamborn, R. , Travassos, P. , Martins, K. , Lira, S. M. A. , Figueiredo, G. A. A. , Júnior, T. V. , Ménard, F. , & Bertrand, A. (2023). From the light blue sky to the dark deep sea: Trophic and resource partitioning between epipelagic and mesopelagic layers in a tropical oceanic ecosystem. Science of the Total Environment, 878, 163098. [DOI] [PubMed] [Google Scholar]
  22. Eldon, B. , Birkner, M. , Blath, J. , & Freund, F. (2015). Can the site‐frequency spectrum distinguish exponential population growth from multiple‐merger coalescents? Genetics, 199, 841–856. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Etter, R. , Rex, M. A. , Chase, M. R. , & Quattro, J. M. (2005). Population differentiation decreases with depth in deep‐sea bivalves. Evolution, 59, 1479–1491. [PubMed] [Google Scholar]
  24. Eytan, R. I. , & Hellberg, M. E. (2010). Nuclear and mitochondrial sequence data reveal and conceal different demographic histories and population genetic processes in Caribbean reef fishes. Evolution: International Journal of Organic Evolution, 64, 3380–3397. [DOI] [PubMed] [Google Scholar]
  25. Fu, Y.‐X. (1997). Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics, 147, 915–925. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Glenn, T. (2019). PEG precipitation of PCR products . http://labs.mcdb.lsa.umich.edu/labs/olsen/files/PCR.pdf
  27. Gloeckler, K. , Choy, C. A. , Hannides, C. C. S. , Close, H. G. , Goetze, E. , Popp, B. N. , & Drazen, J. C. (2018). Stable isotope analysis of micronekton around Hawaii reveals suspended particles are an important nutritional source in the lower mesopelagic and upper bathypelagic zones. Limnology and Oceanography, 63, 1168–1180. [Google Scholar]
  28. Grant, W. S. (2015). Problems and cautions with sequence mismatch analysis and Bayesian skyline plots to infer historical demography. Journal of Heredity, 106, 333–346. [DOI] [PubMed] [Google Scholar]
  29. Gugger, P. F. , Ikegami, M. , & Sork, V. L. (2013). Influence of late Quaternary climate change on present patterns of genetic variation in valley oak, Quercus lobata Née. Molecular Ecology, 22, 3598–3612. [DOI] [PubMed] [Google Scholar]
  30. Hannides, C. C. , Popp, B. N. , Close, H. G. , Benitez‐Nelson, C. R. , Cassie, A. , Gloeckler, K. , Wallsgrove, N. , Umhau, B. , Palmer, E. , & Drazen, J. C. (2020). Seasonal dynamics of midwater zooplankton and relation to particle cycling in the North Pacific Subtropical Gyre. Progress in Oceanography, 182, 102266. [Google Scholar]
  31. Heled, J. (2010). Extended Bayesian skyline plot tutorial . tutorial.east.bio.ed.ac.uk/Tutorials
  32. Heled, J. , & Drummond, A. J. (2008). Bayesian inference of population size history from multiple loci. BMC Evolutionary Biology, 8, 289. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Helfman, G. , Collette, B. B. , Facey, D. E. , & Bowen, B. W. (2009). The diversity of fishes: Biology, evolution, and ecology. John Wiley & Sons. [Google Scholar]
  34. Ho, S. Y. , & Shapiro, B. (2011). Skyline‐plot methods for estimating demographic history from nucleotide sequences. Molecular Ecology Resources, 11, 423–434. [DOI] [PubMed] [Google Scholar]
  35. Hsieh, C. H. , Kim, H. J. , Watson, W. , Di Lorenzo, E. , & Sugihara, G. (2009). Climate‐driven changes in abundance and distribution of larvae of oceanic fishes in the southern California region. Global Change Biology, 15, 2137–2152. [Google Scholar]
  36. John, E. H. , Pearson, P. N. , Coxall, H. K. , Birch, H. , Wade, B. S. , & Foster, G. L. (2013). Warm ocean processes and carbon cycling in the Eocene. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 371, 20130099. [DOI] [PubMed] [Google Scholar]
  37. Johnson, G. D. , Paxton, J. R. , Sutton, T. T. , Satoh, T. P. , Sado, T. , Nishida, M. , & Miya, M. (2009). Deep‐sea mystery solved: Astonishing larval transformations and extreme sexual dimorphism unite three fish families. Biology Letters, 5, 235–239. 10.1098/rsbl.2008.0722 [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Kearse, M. , Moir, R. , Wilson, A. , Stones‐Havas, S. , Cheung, M. , Sturrock, S. , Buxton, S. , Cooper, A. , Markowitz, S. , Duran, C. , Thierer, T. , Ashton, B. , Meintjes, P. , & Drummond, A. (2012). Geneious basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics, 28, 1647–1649. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Kenaley, C. P. (2009). Revision of Indo‐Pacific species of the loosejaw dragonfish genus Photostomias (Teleostei: Stomiidae: Malacosteinae). Copeia, 2009, 175–189. [Google Scholar]
  40. Lancraft, T. M. , Hopkins, T. L. , & Torres, J. J. (1988). Aspects of the ecology of the mesopelagic fish Gonostoma elongatum (Gonostomatidae, Stomiiformes) in the eastern Gulf of Mexico. Marine Ecology Progress Series. Oldendorf, 49(1), 27–40. [Google Scholar]
  41. Lanfear, R. , Calcott, B. , Ho, S. Y. , & Guindon, S. (2012). PartitionFinder: Combined selection of partitioning schemes and substitution models for phylogenetic analyses. Molecular Biology and Evolution, 29, 1695–1701. [DOI] [PubMed] [Google Scholar]
  42. Levitus, S. , Antonov, J. I. , Boyer, T. P. , Baranova, O. K. , Garcia, H. E. , Locarnini, R. A. , Mishonov, A. V. , Reagan, J. R. , Seidov, D. , Yarosh, E. S. , & Zweng, M. M. (2012). World ocean heat content and thermosteric sea level change (0–2000 m), 1955–2010. Geophysical Research Letters, 39. [Google Scholar]
  43. Lin, C. H. , Wei, C. L. , Ho, S. L. , & Lo, L. (2023). Ocean temperature drove changes in the mesopelagic fish community at the edge of the Pacific Warm Pool over the past 460,000 years. Science Advances, 9(27), eadf0656. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. McEachran, J. , & Fechhelm, J. D. (1998). Fishes of the Gulf of Mexico. University of Texas Press. [Google Scholar]
  45. Miya, M. , & Nemoto, T. (1986). Life history and vertical distribution of the mesopelagic fish Cyclothone alba (family Gonostomatidae) in Sagami Bay, Central Japan. Deep Sea Research Part A. Oceanographic Research Papers, 33(8), 1053–1068. [Google Scholar]
  46. Montano, V. (2016). Coalescent inferences in conservation genetics: Should the exception become the rule? Biology Letters, 12, 20160211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Mora, C. , Wei, C. L. , Rollo, A. , Amaro, T. , Baco, A. R. , Billett, D. , Bopp, L. , Chen, Q. , Collier, M. , Danovaro, R. , Gooday, A. J. , Grupe, B. M. , Halloran, P. R. , Ingels, J. , Jones, D. O. B. , Levin, L. A. , Nakano, H. , Norling, K. , Ramirez‐Llodra, E. , … Yasuhara, M. (2013). Biotic and human vulnerability to projected changes in ocean biogeochemistry over the 21st century. PLoS Biology, 11, e1001682. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Moser, H. G. (1996). The early life stages of fishes in the California current region. California Cooperative Oceanic Fisheries Investigations Atlas, 33, 1505. [Google Scholar]
  49. Mundy, B. C. (2005). Checklist of the fishes of the Hawaiian Archipelago. Bishop Museum Bulletins in Zoology, 6, 1–704. [Google Scholar]
  50. Near, T. J. , Eytan, R. I. , Dornburg, A. , Kuhn, K. L. , Moore, J. A. , Davis, M. P. , Wainwright, P. C. , Friedman, M. , & Smith, W. L. (2012). Resolution of ray‐finned fish phylogeny and timing of diversification. Proceedings of the National Academy of Sciences of the United States of America, 109, 13698–13703. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Netburn, A. N. , & Koslow, J. A. (2018). Mesopelagic fish assemblages across oceanic fronts: A comparison of three frontal systems in the southern California current ecosystem. Deep Sea Research Part I: Oceanographic Research Papers, 134, 80–91. [Google Scholar]
  52. Niwa, H.‐S. , Nashida, K. , Yanagimoto, T. , & Grant, H. e. W. S. (2016). Reproductive skew in Japanese sardine inferred from DNA sequences. ICES Journal of Marine Science, 73, 2181–2189. [Google Scholar]
  53. Nye, J. A. , Link, J. S. , Hare, J. A. , & Overholtz, W. J. (2009). Changing spatial distribution of fish stocks in relation to climate and population size on the Northeast United States continental shelf. Marine Ecology Progress Series, 393, 111–129. [Google Scholar]
  54. Olivarez Lyle, A. , & Lyle, M. W. (2006). Missing organic carbon in Eocene marine sediments: Is metabolism the biological feedback that maintains end‐member climates? Paleoceanography, 21. [Google Scholar]
  55. Olson, D. B. (2001). Biophysical dynamics of western transition zones: A preliminary synthesis. Fisheries Oceanography, 10, 133–150. [Google Scholar]
  56. Paxton, J. R. (1989). Synopsis of the whalefishes (family Cetomimidae) with descriptions of four new genera. Records of the Australian Museum, 41, 135–206. [Google Scholar]
  57. Pearcy, W. G. (1991). Biology of the transition region. NOAA Technical Report NMFS, 105, 39–55. [Google Scholar]
  58. Priede, I. G. (2017). Deep‐sea fishes: Biology, diversity, ecology and fisheries. Cambridge University Press. [Google Scholar]
  59. Rambaut, A. , Drummond, A. , & Suchard, M. (2014). Tracer v1. 6 . http://beast.bio.ed.ac.uk.Tracer
  60. Ramos‐Onsins, S. E. , & Rozas, J. (2002). Statistical properties of new neutrality tests against population growth. Molecular Biology and Evolution, 19, 2092–2100. [DOI] [PubMed] [Google Scholar]
  61. Randall, J. E. (1981). Examples of antitropical and antiequatorial distribution of Indo‐West‐Pacific fishes. Pacific Science, 35, 197–209. [Google Scholar]
  62. Robalo, J. I. , Castilho, R. , Francisco, S. M. , Almada, F. , Knutsen, H. , Jorde, P. E. , Pereira, A. M. , & Almada, V. C. (2012). Northern refugia and recent expansion in the North Sea: The case of the wrasse Symphodus melops (Linnaeus, 1758). Ecology and Evolution, 2, 153–164. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Robison, B. H. (2009). Conservation of deep pelagic biodiversity conservación de la biodiversidad pelágica profunda. Conservation Biology, 23, 847–858. 10.1111/j.1523-1739.2009.01219.x [DOI] [PubMed] [Google Scholar]
  64. Rozas, J. , Ferrer‐Mata, A. , Sánchez‐DelBarrio, J. C. , Guirao‐Rico, S. , Librado, P. , Ramos‐Onsins, S. E. , & Sánchez‐Gracia, A. (2017). DnaSP 6: DNA sequence polymorphism analysis of large data sets. Molecular Biology and Evolution, 34, 3299–3302. [DOI] [PubMed] [Google Scholar]
  65. Sakuma, K. , Ueda, Y. , Hamatsu, T. , & Kojima, S. (2014). Contrasting population histories of the deep‐sea demersal fish, Lycodes matsubarai, in the Sea of Japan and the Sea of Okhotsk. Zoological Science, 31, 375–382. [DOI] [PubMed] [Google Scholar]
  66. Salvatteci, R. , Schneider, R. R. , Galbraith, E. , Field, D. , Blanz, T. , Bauersachs, T. , Crosta, X. , Martinez, P. , Echevin, V. , Scholz, F. , & Bertrand, A. (2022). Smaller fish species in a warm and oxygen‐poor Humboldt current system. Science, 375, 101–104. [DOI] [PubMed] [Google Scholar]
  67. Sassa, C. , Kawaguchi, K. , Oozeki, Y. , Kubota, H. , & Sugisaki, H. (2004). Distribution patterns of larval myctophid fishes in the transition region of the western North Pacific. Marine Biology, 144, 417–428. [Google Scholar]
  68. Stephens, M. , & Scheet, P. (2001). Estimating population haplotype frequencies from pooled DNA samples using PHASE algorithm. American Journal of Human Genetics, 68, 978–989.11254454 [Google Scholar]
  69. Stephens, M. , & Scheet, P. (2005). Accounting for decay of linkage disequilibrium in haplotype inference and missing‐data imputation. The American Journal of Human Genetics, 76, 449–462. [DOI] [PMC free article] [PubMed] [Google Scholar]
  70. Sutton, T. (2013). Vertical ecology of the pelagic ocean: Classical patterns and new perspectives. Journal of Fish Biology, 83, 1508–1527. [DOI] [PubMed] [Google Scholar]
  71. Sutton, T. T. , Clark, M. R. , Dunn, D. C. , Halpin, P. N. , Rogers, A. D. , Guinotte, J. , Bograd, S. J. , Angel, M. V. , Perez, J. A. A. , Wishner, K. , Haedrich, R. L. , Lindsay, D. J. , Drazen, J. C. , Vereshchaka, A. , Piatkowski, U. , Morato, T. , Błachowiak‐Samołyk, K. , Robison, B. H. , Gjerde, K. M. , … Heino, M. (2017). A global biogeographic classification of the mesopelagic zone. Deep Sea Research Part I: Oceanographic Research Papers, 126, 85–102. [Google Scholar]
  72. Sutton, T. T. , & Hopkins, T. (1996). Trophic ecology of the stomiid (Pisces: Stomiidae) fish assemblage of the eastern Gulf of Mexico: Strategies, selectivity and impact of a top mesopelagic predator group. Marine Biology, 127, 179–192. [Google Scholar]
  73. Tajima, F. (1989). Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics, 123, 585–595. [DOI] [PMC free article] [PubMed] [Google Scholar]
  74. Thurber, A. R. , Sweetman, A. K. , Narayanaswamy, B. E. , Jones, D. O. B. , Ingels, J. , & Hansman, R. L. (2014). Ecosystem function and services provided by the deep sea. Biogeosciences, 11, 3941–3963. [Google Scholar]
  75. Torres, A. G. (2018). Sigmops elongatus .
  76. Tyus, H. M. (2011). Ecology and conservation of fishes. CRC Press. [Google Scholar]
  77. Urias‐Leyva, H. , Aceves‐Medina, G. , Avendaño‐Ibarra, R. , Saldierna‐Martínez, R. J. , Gómez‐Gutiérrez, J. , & Robinson, C. J. (2018). Regionalization in the distribution of larval fish assemblages during winter and autumn in the Gulf of California. Latin American Journal of Aquatic Research, 46, 20–36. [Google Scholar]
  78. Varela, A. I. , Ritchie, P. A. , & Smith, P. J. (2012). Low levels of global genetic differentiation and population expansion in the deep‐sea teleost Hoplostethus atlanticus revealed by mitochondrial DNA sequences. Marine Biology, 159, 1049–1060. [Google Scholar]
  79. Vecchione, M. , Falkenhaug, T. , Sutton, T. , Cook, A. , Gislason, A. , Hansen, H. Ø. , Heino, M. , Miller, P. I. , Piatkowski, U. , Porteiro, F. , Søiland, H. , & Bergstad, O. A. (2015). The effect of the North Atlantic Subpolar Front as a boundary in pelagic biogeography decreases with increasing depth and organism size. Progress in Oceanography, 138, 105–115. [Google Scholar]
  80. Watling, L. , Guinotte, J. , Clark, M. R. , & Smith, C. R. (2013). A proposed biogeography of the deep ocean floor. Progress in Oceanography, 111, 91–112. [Google Scholar]
  81. Zamarro, J. , & Lloris, D. (1999). New northern limit for the distribution of Sternoptyx pseudobscura Baird, 1971 (Pisces: Sternoptychidae) in the Atlantic .

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Data Availability Statement

DNA sequences: available on Genbank. The accession numbers and corresponding sample data are located in Table A1.


Articles from Ecology and Evolution are provided here courtesy of Wiley

RESOURCES