Skip to main content

This is a preprint.

It has not yet been peer reviewed by a journal.

The National Library of Medicine is running a pilot to include preprints that result from research funded by NIH in PMC and PubMed.

bioRxiv logoLink to bioRxiv
[Preprint]. 2024 Apr 15:2024.04.15.589519. [Version 1] doi: 10.1101/2024.04.15.589519

Conservation of neuron-astrocyte coordinated activity among sensory processing centers of the developing brain

Vered Kellner, Patrick Parker, Xuelong Mi, Guoqiang Yu, Gesine Saher, Dwight E Bergles
PMCID: PMC11042386  PMID: 38659917

Summary

Afferent neurons in developing sensory organs exhibit a prolonged period of burst firing prior to the onset of sensory experience. This intrinsically generated activity propagates from the periphery through central processing centers to promote the survival and physiological maturation of neurons and refine their synaptic connectivity. Recent studies in the auditory system indicate that these bursts of action potentials also trigger metabotropic glutamate receptor-mediated calcium increases within astrocytes that are spatially and temporally correlated with neuronal events; however, it is not known if this phenomenon occurs in other sensory modalities. Here we show using in vivo simultaneous imaging of neuronal and astrocyte calcium activity in awake mouse pups that waves of retinal ganglion cell activity induce spatially and temporally correlated waves of astrocyte activity in the superior colliculus that depend on metabotropic glutamate receptors mGluR5 and mGluR3. Astrocyte calcium transients reliably occurred with each neuronal wave, but peaked more than one second after neuronal events. Despite differences in the temporal features of spontaneous activity in auditory and visual processing regions, individual astrocytes exhibited similar overall calcium activity patterns, providing a conserved mechanism to synchronize neuronal and astrocyte maturation within discrete sensory domains.

Full Text Availability

The license terms selected by the author(s) for this preprint version do not permit archiving in PMC. The full text is available from the preprint server.


Articles from bioRxiv are provided here courtesy of Cold Spring Harbor Laboratory Preprints

RESOURCES