Skip to main content
IUCrData logoLink to IUCrData
. 2024 Apr 26;9(Pt 4):x240360. doi: 10.1107/S2414314624003602

(S C,R S)-Bromido­(N-{4-methyl-1-[(4-methyl­phenyl)sul­fan­yl]­pentan-2-yl}-N′-(pyridin-2-yl)imidazol-2-yl­idene)palladium(II) bromide

Xianggui Zeng a, Yanze Xu a, Shuling Guo a, Yongmei Xiao a, Jinwei Yuan a, Liangru Yang a,*
Editor: M Zellerb
PMCID: PMC11074546  PMID: 38721001

The mol­ecule of the title NCNHCS pincer N-heterocyclic carbene palladium(II) complex, [PdBr(C21H25N3S)]Br, exhibits a slightly distorted square-planar coordination at the palladium(II) atom, with the five-membered chelate ring nearly planar. The six-membered chelate ring adopts an envelope conformation. Upon chelation, the sulfur atom becomes a stereogenic centre with an RS configuration induced by the chiral carbon of the precursor imidazolium salt.

Keywords: crystal structure, N-heterocyclic carbene, palladium(II), hydrogen bonds

Abstract

The mol­ecule of the title NCNHCS pincer N-heterocyclic carbene palladium(II) complex, [PdBr(C21H25N3S)]Br, exhibits a slightly distorted square-planar coordination at the palladium(II) atom, with the five-membered chelate ring nearly planar. The six-membered chelate ring adopts an envelope conformation. Upon chelation, the sulfur atom becomes a stereogenic centre with an RS configuration induced by the chiral carbon of the precursor imidazolium salt. There are intra­molecular C—H⋯Br—Pd hydrogen bonds in the structure. The two inter­stitial Br atoms, as the counter-anion of the structure, are both located on crystallographic twofold axes and are connected to the complex cations via C—H⋯·Br hydrogen bonds. graphic file with name x-09-x240360-scheme1-3D1.jpg

Structure description

N-Heterocyclic carbenes (NHCs) have been widely used as ancillary ligands in coord­ination chemistry and organic catalysis due to their characteristic electronic properties and easy structural modification (Hopkinson et al., 2014; Gardiner et al., 2018). Introduction of a coordinating heteroatom functional group to the N-atom substituents of the NHCs leads to the formation of a potentially chelating ligand, and facilitates the formation of stable pincer NHC–metal complexes that can possess catalytic activities. Metal complexes containing heteroatom donors, such as P, N, O and S, have been synthesized, characterized and employed extensively as catalysts for a variety of organic transformations (Ahrens et al., 2006; Bierenstiel & Cross, 2011; Meyer et al., 2012; Peris & Crabtree, 2004). Our group has investigated the synthesis and catalytic performance of a series of chelating NHC–palladium complexes derived from natural amino alcohols (Yang et al., 2015, 2023; Yang, Zhang, Xiao & Mao, 2016; Yang, Zhang, Yuan et al., 2016; Meng et al., 2022). As part of our work on the study of NHC–metal complexes containing heteroatom-functionalized N-atom substituents, we present here the crystal structure of the title NCNHCS pincer NHC palladium(II) complex (Fig. 1).

Figure 1.

Figure 1

The mol­ecular structure of the title complex, shown with 50% probability displacement ellipsoids.

In the title complex, the palladium(II) atom is coordinated to C8, N1, Br1, and S1, resulting in a slightly distorted square-planar coordination. The Pd1—C8, Pd1—N1, Pd1—Br1 and Pd1—S1 bond lengths are 1.946 (8), 2.093 (6), 2.4663 (10), and 2.2603 (17) Å, respectively. The five-membered chelate ring (C8/Pd1/N1/C5/N2) is almost planar, with Pd1—N1—C5—N2 and C5—N2—C8—Pd1 torsion angles of −0.3 (8) and 2.0 (8)°, respectively. The six-membered chelate ring (C8/Pd1/S1/C9/C10/N3) adopts an envelope conformation with puckering parameters of θ = 51.6 (6)° and φ= 125.4 (8)°, which are close to the expected values for this conformation (Boeyens, 1978).

Upon chelation, the sulfur atom becomes a stereogenic centre, resulting in the formation of mol­ecules with an RS configuration. This can be attributed to the chiral induction of the chiral carbon C(5), which retains the same S configuration as in the precursor imidazolium salt. The environment of the sulfur atoms of the mol­ecule is approximately triangular pyramidal. This is indicated by the bond angles C9—S1—Pd1, C15—S1—Pd1 and C9—S1–15, which were found to be 106.2 (2), 111.0 (2), and 97.2 (3)°, respectively, with an average of 105.0°. In the crystal, intra- and inter­molecular C—H⋯Br hydrogen bonds occur (Table 1, Fig. 2).

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯Br1 0.93 2.90 3.510 (10) 124
C6—H6⋯Br2i 0.93 2.74 3.661 (9) 173
C10—H10⋯Br3 0.98 2.78 3.624 (7) 144
C16—H16⋯Br3ii 0.93 3.11 3.742 (7) 127

Symmetry codes: (i) Inline graphic ; (ii) Inline graphic .

Figure 2.

Figure 2

The C—H⋯Br inter­actions in the structure.

Synthesis and crystallization

A mixture of (S)-N-(4-methyl-1-(p-tolyl­thio)­pentan-2-yl)-N′-(pyridin-2-yl)-1H-imidazolium bromide (1.0 mmol, 0.43 g), PdCl2 (1.0 mmol, 0.18 g), NaOAc (1.0 mmol, 0.10 g), and NaBr (4 mmol, 0.41 g) in CH3CN (10 ml) was heated at 80°C for 24 h, and then the volatiles were evaporated. Purification of the residue by column chromatography (silica gel, CH2Cl2/MeOH 15/1 ∼1:1, v/v) produced the title complex as a yellow solid (0.32 g, 60%). Crystallization of the solid from CH3CN afforded the title complex as yellow crystals, m.p. 269–277°C. HR—MS (ESI) m/z calculated for C21H25BrN3PdS+ (M – Br)+ 535.9987, found 535.9998. F T–IR (ATR mode): ν = 3388, 3012, 2910, 1681, 1496, 1376, 1316, 1144, 1014, 914, 806, 780, 738, 666, 448 cm−1. [α]15 589: 8.3 (1.00, CH2Cl2).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Table 2. Experimental details.

Crystal data
Chemical formula [PdBr(C21H25N3S)]Br
M r 617.72
Crystal system, space group Monoclinic, C2
Temperature (K) 293
a, b, c (Å) 25.8993 (7), 6.6206 (2), 13.4938 (3)
β (°) 96.425 (2)
V3) 2299.23 (12)
Z 4
Radiation type Cu Kα
μ (mm−1) 11.52
Crystal size (mm) 0.14 × 0.1 × 0.03
 
Data collection
Diffractometer Xcalibur, Eos, Gemini
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2023)
T min, T max 0.419, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 20069, 3950, 3693
R int 0.050
(sin θ/λ)max−1) 0.611
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.030, 0.072, 1.04
No. of reflections 3950
No. of parameters 258
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.36, −0.38
Absolute structure Flack x determined using 1371 quotients [(I +)−(I )]/[(I +)+(I )] (Parsons et al., 2013)
Absolute structure parameter −0.030 (7)

Computer programs: CrysAlis PRO (Rigaku OD, 2023), SHELXS (Sheldrick, 2008), SHELXL (Sheldrick, 2015) and OLEX2 (Dolomanov et al., 2009).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2414314624003602/zl4070sup1.cif

x-09-x240360-sup1.cif (686KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314624003602/zl4070Isup3.hkl

x-09-x240360-Isup3.hkl (314.9KB, hkl)

CCDC reference: 2312031

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank Ms Y. Zhu for technical assistance.

full crystallographic data

Crystal data

[PdBr(C21H25N3S)]Br F(000) = 1216
Mr = 617.72 Dx = 1.785 Mg m3
Monoclinic, C2 Cu Kα radiation, λ = 1.54184 Å
a = 25.8993 (7) Å Cell parameters from 8595 reflections
b = 6.6206 (2) Å θ = 4.5–70.1°
c = 13.4938 (3) Å µ = 11.52 mm1
β = 96.425 (2)° T = 293 K
V = 2299.23 (12) Å3 Plate, colourless
Z = 4 0.14 × 0.1 × 0.03 mm

Data collection

Xcalibur, Eos, Gemini diffractometer 3950 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Cu) X-ray Source 3693 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.050
Detector resolution: 16.2312 pixels mm-1 θmax = 70.5°, θmin = 3.4°
ω scans h = −31→31
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2023) k = −8→6
Tmin = 0.419, Tmax = 1.000 l = −16→16
20069 measured reflections

Refinement

Refinement on F2 H-atom parameters constrained
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.033P)2 + 2.7656P] where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.030 (Δ/σ)max < 0.001
wR(F2) = 0.072 Δρmax = 0.36 e Å3
S = 1.04 Δρmin = −0.38 e Å3
3950 reflections Extinction correction: SHELXL-2014/7 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
258 parameters Extinction coefficient: 0.00034 (4)
1 restraint Absolute structure: Flack x determined using 1371 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: structure-invariant direct methods Absolute structure parameter: −0.030 (7)
Hydrogen site location: inferred from neighbouring sites

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. The H atoms on the carbons were positioned geometrically and constrained to ride on their parent atoms. C—H bond distances were constrained to 0.93 Å for aromatic and alkene C—H moieties, and to 0.98, 0.91 and 0.96 Å for aliphatic C—H, CH2 and CH3 moieties, respectively. Methyl CH3 H atoms were allowed to rotate but not to tip to best fit the experimental electron density. Uiso(H) values were set to a multiple of Ueq(C) with 1.5 for CH3, and 1.2 for C—H and CH2 units, respectively.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Pd1 0.37598 (2) 0.06095 (8) 0.28758 (3) 0.03701 (15)
S1 0.40637 (6) −0.0902 (3) 0.15555 (12) 0.0381 (4)
N1 0.3574 (2) 0.2356 (11) 0.4079 (4) 0.0443 (16)
N2 0.4255 (2) 0.4165 (10) 0.3607 (4) 0.0413 (14)
N3 0.4680 (2) 0.3203 (10) 0.2419 (4) 0.0381 (13)
C1 0.3187 (3) 0.2026 (16) 0.4635 (6) 0.057 (2)
H1 0.2972 0.0912 0.4501 0.069*
C2 0.3100 (4) 0.3329 (18) 0.5414 (7) 0.069 (3)
H2 0.2832 0.3085 0.5804 0.083*
C3 0.3414 (4) 0.4954 (18) 0.5587 (7) 0.074 (3)
H3 0.3359 0.5840 0.6099 0.089*
C4 0.3813 (3) 0.5318 (18) 0.5021 (6) 0.061 (2)
H4 0.4033 0.6422 0.5144 0.073*
C5 0.3873 (3) 0.3975 (13) 0.4263 (5) 0.0450 (18)
C6 0.4650 (3) 0.5562 (15) 0.3556 (5) 0.0478 (16)
H6 0.4719 0.6686 0.3963 0.057*
C7 0.4911 (3) 0.4978 (13) 0.2812 (6) 0.049 (2)
H7 0.5195 0.5632 0.2593 0.059*
C8 0.4280 (2) 0.2737 (13) 0.2911 (5) 0.0393 (16)
C9 0.4434 (2) 0.1033 (12) 0.0964 (5) 0.0415 (18)
H9A 0.4574 0.0439 0.0394 0.050*
H9B 0.4199 0.2108 0.0720 0.050*
C10 0.4877 (3) 0.1938 (11) 0.1649 (5) 0.0366 (15)
H10 0.5072 0.2821 0.1242 0.044*
C11 0.5255 (2) 0.0360 (13) 0.2122 (5) 0.0397 (16)
H11A 0.5325 −0.0599 0.1610 0.048*
H11B 0.5085 −0.0373 0.2617 0.048*
C12 0.5777 (3) 0.1161 (12) 0.2623 (5) 0.0441 (19)
H12 0.5707 0.2109 0.3150 0.053*
C13 0.6081 (3) −0.0612 (16) 0.3099 (7) 0.065 (3)
H13A 0.5892 −0.1208 0.3598 0.097*
H13B 0.6413 −0.0150 0.3404 0.097*
H13C 0.6132 −0.1599 0.2598 0.097*
C14 0.6090 (3) 0.2258 (18) 0.1894 (7) 0.072 (3)
H14A 0.6092 0.1467 0.1298 0.108*
H14B 0.6440 0.2448 0.2196 0.108*
H14C 0.5935 0.3549 0.1729 0.108*
C15 0.3558 (3) −0.1214 (13) 0.0549 (5) 0.0428 (18)
C16 0.3572 (3) −0.2944 (13) −0.0012 (6) 0.0494 (19)
H16 0.3814 −0.3949 0.0174 0.059*
C17 0.3221 (3) −0.3171 (14) −0.0853 (6) 0.054 (2)
H17 0.3225 −0.4353 −0.1224 0.064*
C18 0.2862 (3) −0.1665 (14) −0.1157 (5) 0.048 (2)
C19 0.2848 (3) 0.0021 (14) −0.0560 (5) 0.051 (2)
H19 0.2601 0.1015 −0.0734 0.061*
C20 0.3190 (3) 0.0263 (14) 0.0282 (5) 0.049 (2)
H20 0.3176 0.1415 0.0672 0.059*
C21 0.2512 (3) −0.1845 (17) −0.2126 (6) 0.067 (3)
H21A 0.2684 −0.1290 −0.2659 0.101*
H21B 0.2195 −0.1116 −0.2075 0.101*
H21C 0.2433 −0.3242 −0.2261 0.101*
Br1 0.30979 (4) −0.20451 (15) 0.29589 (7) 0.0603 (3)
Br2 0.5000 0.0140 (2) 0.5000 0.0609 (4)
Br3 0.5000 0.61892 (17) 0.0000 0.0480 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Pd1 0.0397 (2) 0.0390 (3) 0.0327 (2) −0.0004 (2) 0.00594 (15) −0.0005 (2)
S1 0.0391 (8) 0.0388 (11) 0.0362 (8) 0.0001 (7) 0.0032 (6) −0.0042 (8)
N1 0.050 (3) 0.054 (5) 0.030 (3) 0.012 (3) 0.009 (2) −0.007 (3)
N2 0.050 (3) 0.036 (4) 0.038 (3) 0.007 (3) 0.003 (2) −0.007 (3)
N3 0.042 (3) 0.031 (4) 0.042 (3) −0.003 (3) 0.006 (2) 0.002 (3)
C1 0.054 (4) 0.073 (7) 0.047 (4) 0.009 (4) 0.015 (3) −0.002 (4)
C2 0.063 (5) 0.091 (9) 0.055 (5) 0.018 (5) 0.019 (4) 0.003 (5)
C3 0.089 (7) 0.087 (9) 0.050 (4) 0.020 (6) 0.019 (4) −0.017 (5)
C4 0.071 (5) 0.058 (7) 0.054 (4) 0.012 (5) 0.010 (3) −0.019 (5)
C5 0.051 (4) 0.043 (5) 0.038 (4) 0.010 (4) −0.006 (3) −0.007 (4)
C6 0.061 (4) 0.030 (4) 0.050 (4) −0.001 (4) −0.001 (3) −0.008 (4)
C7 0.052 (4) 0.038 (5) 0.055 (4) −0.011 (3) 0.003 (3) 0.000 (4)
C8 0.042 (3) 0.037 (5) 0.036 (3) 0.005 (3) −0.003 (3) −0.002 (3)
C9 0.042 (3) 0.047 (6) 0.035 (3) 0.001 (3) 0.003 (2) −0.001 (3)
C10 0.045 (3) 0.031 (4) 0.034 (3) −0.002 (3) 0.008 (3) −0.001 (3)
C11 0.049 (3) 0.032 (4) 0.039 (3) 0.002 (3) 0.009 (2) 0.000 (4)
C12 0.043 (3) 0.048 (6) 0.041 (3) −0.005 (3) 0.004 (3) −0.001 (3)
C13 0.051 (4) 0.073 (7) 0.068 (5) 0.007 (4) −0.005 (4) 0.010 (5)
C14 0.051 (5) 0.096 (9) 0.069 (6) −0.019 (5) 0.006 (4) 0.022 (6)
C15 0.038 (3) 0.051 (5) 0.039 (3) −0.001 (3) 0.003 (3) −0.009 (4)
C16 0.047 (4) 0.038 (5) 0.062 (5) 0.003 (3) 0.001 (3) −0.009 (4)
C17 0.056 (4) 0.051 (6) 0.051 (4) −0.001 (4) −0.006 (3) −0.020 (4)
C18 0.036 (3) 0.058 (6) 0.048 (4) −0.011 (3) 0.004 (3) −0.006 (4)
C19 0.042 (4) 0.060 (7) 0.050 (4) 0.007 (3) 0.002 (3) 0.000 (4)
C20 0.051 (4) 0.046 (6) 0.051 (4) 0.014 (4) 0.004 (3) −0.011 (4)
C21 0.058 (5) 0.079 (8) 0.061 (5) −0.003 (5) −0.014 (4) −0.006 (5)
Br1 0.0612 (5) 0.0547 (7) 0.0674 (5) −0.0142 (4) 0.0173 (4) 0.0042 (5)
Br2 0.0953 (9) 0.0421 (9) 0.0444 (5) 0.000 0.0037 (5) 0.000
Br3 0.0607 (6) 0.0392 (8) 0.0460 (5) 0.000 0.0141 (4) 0.000

Geometric parameters (Å, º)

Pd1—S1 2.2603 (17) C10—H10 0.9800
Pd1—N1 2.093 (6) C10—C11 1.522 (10)
Pd1—C8 1.946 (8) C11—H11A 0.9700
Pd1—Br1 2.4663 (10) C11—H11B 0.9700
S1—C9 1.836 (7) C11—C12 1.537 (9)
S1—C15 1.789 (7) C12—H12 0.9800
N1—C1 1.335 (9) C12—C13 1.517 (11)
N1—C5 1.330 (10) C12—C14 1.527 (10)
N2—C5 1.405 (9) C13—H13A 0.9600
N2—C6 1.387 (10) C13—H13B 0.9600
N2—C8 1.340 (9) C13—H13C 0.9600
N3—C7 1.396 (10) C14—H14A 0.9600
N3—C8 1.328 (9) C14—H14B 0.9600
N3—C10 1.470 (9) C14—H14C 0.9600
C1—H1 0.9300 C15—C16 1.376 (11)
C1—C2 1.397 (13) C15—C20 1.384 (11)
C2—H2 0.9300 C16—H16 0.9300
C2—C3 1.354 (15) C16—C17 1.380 (11)
C3—H3 0.9300 C17—H17 0.9300
C3—C4 1.373 (12) C17—C18 1.393 (12)
C4—H4 0.9300 C18—C19 1.379 (11)
C4—C5 1.376 (11) C18—C21 1.511 (10)
C6—H6 0.9300 C19—H19 0.9300
C6—C7 1.329 (10) C19—C20 1.370 (10)
C7—H7 0.9300 C20—H20 0.9300
C9—H9A 0.9700 C21—H21A 0.9600
C9—H9B 0.9700 C21—H21B 0.9600
C9—C10 1.513 (9) C21—H21C 0.9600
S1—Pd1—Br1 91.46 (5) C9—C10—H10 107.3
N1—Pd1—S1 170.64 (19) C9—C10—C11 113.1 (6)
N1—Pd1—Br1 97.90 (19) C11—C10—H10 107.3
C8—Pd1—S1 92.2 (2) C10—C11—H11A 108.3
C8—Pd1—N1 78.4 (3) C10—C11—H11B 108.3
C8—Pd1—Br1 175.9 (2) C10—C11—C12 116.1 (7)
C9—S1—Pd1 106.2 (2) H11A—C11—H11B 107.4
C15—S1—Pd1 111.0 (2) C12—C11—H11A 108.3
C15—S1—C9 97.2 (3) C12—C11—H11B 108.3
C1—N1—Pd1 126.7 (6) C11—C12—H12 108.5
C5—N1—Pd1 114.3 (5) C13—C12—C11 108.0 (7)
C5—N1—C1 119.0 (7) C13—C12—H12 108.5
C6—N2—C5 131.8 (6) C13—C12—C14 110.6 (7)
C8—N2—C5 118.1 (7) C14—C12—C11 112.7 (6)
C8—N2—C6 110.0 (6) C14—C12—H12 108.5
C7—N3—C10 125.5 (6) C12—C13—H13A 109.5
C8—N3—C7 109.3 (6) C12—C13—H13B 109.5
C8—N3—C10 124.9 (6) C12—C13—H13C 109.5
N1—C1—H1 119.5 H13A—C13—H13B 109.5
N1—C1—C2 121.1 (9) H13A—C13—H13C 109.5
C2—C1—H1 119.5 H13B—C13—H13C 109.5
C1—C2—H2 120.8 C12—C14—H14A 109.5
C3—C2—C1 118.4 (8) C12—C14—H14B 109.5
C3—C2—H2 120.8 C12—C14—H14C 109.5
C2—C3—H3 119.4 H14A—C14—H14B 109.5
C2—C3—C4 121.3 (9) H14A—C14—H14C 109.5
C4—C3—H3 119.4 H14B—C14—H14C 109.5
C3—C4—H4 121.5 C16—C15—S1 116.9 (6)
C3—C4—C5 117.0 (10) C16—C15—C20 120.2 (7)
C5—C4—H4 121.5 C20—C15—S1 122.7 (6)
N1—C5—N2 113.0 (6) C15—C16—H16 120.4
N1—C5—C4 123.2 (8) C15—C16—C17 119.2 (8)
C4—C5—N2 123.8 (8) C17—C16—H16 120.4
N2—C6—H6 126.8 C16—C17—H17 119.3
C7—C6—N2 106.5 (7) C16—C17—C18 121.4 (8)
C7—C6—H6 126.8 C18—C17—H17 119.3
N3—C7—H7 126.3 C17—C18—C21 121.0 (8)
C6—C7—N3 107.4 (7) C19—C18—C17 117.9 (7)
C6—C7—H7 126.3 C19—C18—C21 121.1 (8)
N2—C8—Pd1 116.1 (5) C18—C19—H19 119.3
N3—C8—Pd1 137.2 (6) C20—C19—C18 121.5 (8)
N3—C8—N2 106.7 (7) C20—C19—H19 119.3
S1—C9—H9A 108.7 C15—C20—H20 120.1
S1—C9—H9B 108.7 C19—C20—C15 119.7 (8)
H9A—C9—H9B 107.6 C19—C20—H20 120.1
C10—C9—S1 114.1 (5) C18—C21—H21A 109.5
C10—C9—H9A 108.7 C18—C21—H21B 109.5
C10—C9—H9B 108.7 C18—C21—H21C 109.5
N3—C10—C9 111.0 (5) H21A—C21—H21B 109.5
N3—C10—H10 107.3 H21A—C21—H21C 109.5
N3—C10—C11 110.6 (5) H21B—C21—H21C 109.5
Pd1—S1—C9—C10 58.1 (5) C7—N3—C8—Pd1 −179.7 (6)
Pd1—S1—C15—C16 −143.9 (5) C7—N3—C8—N2 −0.4 (8)
Pd1—S1—C15—C20 41.2 (7) C7—N3—C10—C9 −144.6 (7)
Pd1—N1—C1—C2 −179.1 (6) C7—N3—C10—C11 89.0 (8)
Pd1—N1—C5—N2 −0.3 (8) C8—N2—C5—N1 −1.1 (9)
Pd1—N1—C5—C4 179.8 (6) C8—N2—C5—C4 178.8 (8)
S1—C9—C10—N3 −69.7 (7) C8—N2—C6—C7 0.8 (9)
S1—C9—C10—C11 55.2 (7) C8—N3—C7—C6 0.9 (9)
S1—C15—C16—C17 −173.9 (6) C8—N3—C10—C9 41.5 (9)
S1—C15—C20—C19 173.0 (6) C8—N3—C10—C11 −84.8 (8)
N1—C1—C2—C3 0.7 (14) C9—S1—C15—C16 105.7 (6)
N2—C6—C7—N3 −1.0 (9) C9—S1—C15—C20 −69.3 (7)
N3—C10—C11—C12 −68.7 (7) C9—C10—C11—C12 166.1 (5)
C1—N1—C5—N2 −178.3 (7) C10—N3—C7—C6 −173.7 (7)
C1—N1—C5—C4 1.8 (12) C10—N3—C8—Pd1 −5.0 (11)
C1—C2—C3—C4 −0.5 (15) C10—N3—C8—N2 174.3 (6)
C2—C3—C4—C5 0.9 (15) C10—C11—C12—C13 176.6 (6)
C3—C4—C5—N1 −1.6 (13) C10—C11—C12—C14 −60.9 (9)
C3—C4—C5—N2 178.6 (8) C15—S1—C9—C10 172.5 (5)
C5—N1—C1—C2 −1.3 (12) C15—C16—C17—C18 1.5 (13)
C5—N2—C6—C7 177.4 (7) C16—C15—C20—C19 −1.8 (12)
C5—N2—C8—Pd1 2.0 (8) C16—C17—C18—C19 −3.5 (12)
C5—N2—C8—N3 −177.4 (6) C16—C17—C18—C21 174.6 (8)
C6—N2—C5—N1 −177.5 (7) C17—C18—C19—C20 2.9 (12)
C6—N2—C5—C4 2.4 (13) C18—C19—C20—C15 −0.3 (12)
C6—N2—C8—Pd1 179.2 (5) C20—C15—C16—C17 1.2 (12)
C6—N2—C8—N3 −0.2 (8) C21—C18—C19—C20 −175.2 (8)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C1—H1···Br1 0.93 2.90 3.510 (10) 124
C6—H6···Br2i 0.93 2.74 3.661 (9) 173
C10—H10···Br3 0.98 2.78 3.624 (7) 144
C16—H16···Br3ii 0.93 3.11 3.742 (7) 127

Symmetry codes: (i) x, y+1, z; (ii) x, y−1, z.

Funding Statement

Funding for this research was provided by: the Natural Science Foundation of Henan Province (grant No. 242300420186).

References

  1. Ahrens, S., Zeller, A., Taige, M. & Strassner, T. (2006). Organometallics, 25, 5409–5415.
  2. Bierenstiel, M. & Cross, E. D. (2011). Coord. Chem. Rev. 255, 574–590.
  3. Boeyens, J. C. A. (1978). J. Cryst. Mol. Struct. 8, 317–320.
  4. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  5. Gardiner, M. G. & Ho, C. C. (2018). Coord. Chem. Rev. 375, 373–388.
  6. Hopkinson, M. N., Richter, C., Schedler, M. & Glorius, F. (2014). Nature, 510, 485–496. [DOI] [PubMed]
  7. Meng, X., Yang, L., Liu, Q., Dong, Z., Yuan, J., Xiao, Y. & Mao, P. (2022). Chin. J. Org. Chem. 42, 3747–3756.
  8. Meyer, D., Zeller, A. & Strassner, T. (2012). J. Organomet. Chem. 701, 56–61.
  9. Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. [DOI] [PMC free article] [PubMed]
  10. Peris, E. & Crabtree, R. H. (2004). Coord. Chem. Rev. 248, 2239–2246.
  11. Rigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  14. Yang, L., Guo, M., Yuan, J., Wangx, J., Xia, Y., Xiao, Y. & Mao, P. (2023). Chin. J. Org. Chem. 43, 2002–2025.
  15. Yang, L., Yuan, J., Mao, P. & Guo, Q. (2015). RSC Adv. 5, 107601–107607.
  16. Yang, L., Zhang, W., Xiao, Y. & Mao, P. (2016). ChemistrySelect, 4, 680–684.
  17. Yang, L., Zhang, X., Yuan, J., Xiao, Y. & Mao, P. (2016). J. Organomet. Chem. 818, 179–184.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2414314624003602/zl4070sup1.cif

x-09-x240360-sup1.cif (686KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314624003602/zl4070Isup3.hkl

x-09-x240360-Isup3.hkl (314.9KB, hkl)

CCDC reference: 2312031

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from IUCrData are provided here courtesy of International Union of Crystallography

RESOURCES