Skip to main content
Cancer Science logoLink to Cancer Science
. 2005 Aug 19;95(10):815–821. doi: 10.1111/j.1349-7006.2004.tb02187.x

Identification of a mouse cytoskeleton‐associated protein, CKAP2, with microtubule‐stabilizing properties

Yi Jin 1, Yoshiki Murakumo 1,, Kaoru Ueno 1, Mizuo Hashimoto 1, Tsuyoshi Watanabe 1, Yoshie Shimoyama 1, Masatoshi Ichihara 1, Masahide Takahashi 1,2
PMCID: PMC11159279  PMID: 15504249

Abstract

Microtubule dynamics is an important factor in cell proliferation and one of the main targets of cancer chemotherapy. Since microtubule‐associated proteins (MAPs) are known to influence microtubule stability, study of MAPs may contribute both to knowledge of cancer cell biology and to the production of new anti‐cancer drugs. In this study, we identified a new mouse gene which is a homolog of human cytoskeleton‐associated protein, CKAP2 gene, by differential display analysis. The level of expression of mouse CKAP2 (mCKAP2) was significantly higher in NIH3T3 cells expressing RET with a multiple endocrine neoplasia (MEN) 2A or MEN2B mutation than in parental NIH3T3 cells. Immunocytochemical analysis showed that mCKAP2 protein is localized in cytoplasm with a fibrillar appearance, and is co‐localized with microtubules throughout the cell cycle. Furthermore, overexpression of mCKAP2 in cells appeared to stabilize microtubules against treatment with nocodazole, a microtubule‐depolymerizing agent. In addition, levels of human CKAP2 were increased in some human tumor cell lines examined. These findings suggest that CKAP2 is a new MAP with microtubule‐stabilizing properties and may represent a new molecular target for cancer chemotherapy.


Abbreviations:

CKAP2

cytoskeleton‐associated protein 2

MAP

microtubule‐associated protein

MEN

multiple endocrine neoplasia

GDNF

glial cell line‐derived neurotrophic factor

DD‐PCR

differential display‐polymerase chain reaction

RT

reverse transcriptase

GFP

green fluorescent protein

RACE

rapid amplification of cDNA ends

FITC

fluorescein isothiocyanate

The nucleotide sequence for the mouse CKAP2 gene has been deposited in the GenBank database under GenBank Accession Number AY692438.

References

  • 1. Horwitz AR, Parsons JT. Cell migration‐movin' on. Science 1999; 286: 1102–3. [DOI] [PubMed] [Google Scholar]
  • 2. Rogers SL, Gelfand VI. Membrane trafficking, organelle transport, and the cytoskeleton. Curr Opin Cell Biol 2000; 12: 57–62. [DOI] [PubMed] [Google Scholar]
  • 3. Valiron O, Caudron N, Job D. Microtubule dynamics. Cell Mol Life Sci 2001; 58: 2069–84. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4. Downing KH. Structural basis for the interaction of tubulin with proteins and drugs that affect microtubule dynamics. Annu Rev Cell Dev Biol 2000; 16: 89–111. [DOI] [PubMed] [Google Scholar]
  • 5. Checchi PM, Nettles JH, Zhou J, Snyder JP, Joshi HC. Microtubule‐interacting drugs for cancer treatment. Trends Pharmacol Sci 2003; 24: 361–5. [DOI] [PubMed] [Google Scholar]
  • 6. Drewes G, Ebneth A, Mandelkow EM. MAPs, MARKs and microtubule dynamics. Trends Biochem Sci 1998; 23: 307–11. [DOI] [PubMed] [Google Scholar]
  • 7. Cassimeris L. Accessory protein regulation of microtubule dynamics throughout the cell cycle. Curr Opin Cell Biol 1999; 11: 134–41. [DOI] [PubMed] [Google Scholar]
  • 8. Drechsel DN, Hyman AA, Cobb MH, Kirschner MW. Modulation of the dynamic instability of tubulin assembly by the microtubule‐associated protein tau. Mol Biol Cell 1992; 3: 1141–54. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9. Takemura R, Okabe S, Umeyama T, Kanai Y, Cowan NJ, Hirokawa N. Increased microtubule stability and alpha tubulin acetylation in cells transfected with microtubule‐associated proteins MAP1B, MAP2 or tau. J Cell Sci 1992; 103: 953–64. [DOI] [PubMed] [Google Scholar]
  • 10. Belmont LD, Mitchison TJ. Identification of a protein that interacts with tubulin dimers and increases the catastrophe rate of microtubules. Cell 1996; 84: 623–31. [DOI] [PubMed] [Google Scholar]
  • 11. Marklund U, Larsson N, Gradin HM, Brattsand G, Gullberg M. Oncoprotein 18 is a phosphorylation‐responsive regulator of microtubule dynamics. EMBO J 1996; 15: 5290–8. [PMC free article] [PubMed] [Google Scholar]
  • 12. Nguyen HL, Chari S, Gruber D, Lue CM, Chapin SJ, Bulinski JC. Overexpression of full‐ or partial‐length MAP4 stabilizes microtubules and alters cell growth. J Cell Sci 1997; 110: 281–94. [DOI] [PubMed] [Google Scholar]
  • 13. Garnier C, Barbier P, Gilli R, Lopez C, Peyrot V, Briand C. Heat‐shock protein 90 (hsp90) binds in vitro to tubulin dimer and inhibits microtubule formation. Biochem Biophys Res Commun 1998; 250: 414–9. [DOI] [PubMed] [Google Scholar]
  • 14. Varmus HE. Viruses, genes, and cancer. I. The discovery of cellular oncogenes and their role in neoplasia Cancer 1985; 55: 2324–8. [DOI] [PubMed] [Google Scholar]
  • 15. Polsky D, Cordon‐Cardo C. Oncogenes in melanoma. Oncogene 2003; 22: 3087–91. [DOI] [PubMed] [Google Scholar]
  • 16. Takahashi M, Ritz J, Cooper GM. Activation of a novel human transforming gene, ret, by DNA rearrangement. Cell 1985; 42: 581–8. [DOI] [PubMed] [Google Scholar]
  • 17. Pachnis V, Mankoo B, Costantini F. Expression of the c‐ret proto‐oncogene during mouse embryogenesis. Development 1993; 119: 1005–17. [DOI] [PubMed] [Google Scholar]
  • 18. Tsuzuki T, Takahashi M, Asai N, Iwashita T, Matsuyama M, Asai J. Spatial and temporal expression of the ret proto‐oncogene product in embryonic, infant and adult rat tissues. Oncogene 1995; 10: 191–8. [PubMed] [Google Scholar]
  • 19. Schuchardt A, ĎAgati V, Larsson‐Blomberg L, Costantini F, Pachnis V. Defects in the kidney and enteric nervous system of mice lacking the tyrosine kinase receptor Ret. Nature 1994; 367: 380–3. [DOI] [PubMed] [Google Scholar]
  • 20. Treanor JJ, Goodman L, de Sauvage F, Stone DM, Poulsen KT, Beck CD, Gray C, Armanini MP, Pollock RA, Hefti F, Phillips HS, Goddard A, Moore MW, Buj‐Bello A, Davies AM, Asai N, Takahashi M, Vandlen R, Henderson CE, Rosenthal A. Characterization of a multicomponent receptor for GDNF. Nature 1996; 382: 80–3. [DOI] [PubMed] [Google Scholar]
  • 21. Jing S, Wen D, Yu Y, Hoist PL, Luo Y, Fang M, Tamir R, Antonio L, Hu Z, Cupples R, Louis JC, Hu S, Altrock BW, Fox GM. GDNF‐induced activation of the ret protein tyrosine kinase is mediated by GDNFR‐alpha, a novel receptor for GDNF. Cell 1996; 85: 1113–24. [DOI] [PubMed] [Google Scholar]
  • 22. Takahashi M. The GDNF/RET signaling pathway and human diseases. Cytokine Growth Factor Rev 2001; 12: 361–73. [DOI] [PubMed] [Google Scholar]
  • 23. Mulligan LM, Kwok JBJ, Healey CS, Elsdon MJ, Eng C, Gardner E, Love DR, Mole SE, Moore JK, Papi L, Ponder MA, Telenius H, Tunnacliffe A, Ponder BAJ. Germ‐line mutations of the RET proto‐oncogene in multiple endocrine neoplasia type 2A. Nature 1993; 363: 458–60. [DOI] [PubMed] [Google Scholar]
  • 24. Donis‐Keller H, Dou S, Chi D, Carlson KM, Toshima K, Lairmore TC, Howe JR, Moley JF, Goodfellow P, Wells SA Jr. Mutations in the RET proto‐oncogene are associated with MEN 2A and FMTC. Hum Mol Genet 1993; 2: 851–6. [DOI] [PubMed] [Google Scholar]
  • 25. Carlson KM, Dou S, Chi D, Scavarda N, Toshima K, Jackson CE, Wells SA Jr, Goodfellow PJ, Donis‐Keller H. Single missense mutation in the tyrosine kinase catalytic domain of the RET protooncogene is associated with multiple endocrine neoplasia type 2B. Proc Natl Acad Sci USA 1994; 91: 1579–83. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26. Hofstra RMW, Landsvater RM, Ceccherini I, Stulp RP, Stelwagen T, Luo Y, Pasini B, Hoppener JWM, Amstel HKPV, Romeo G, Lips CJM, Buys CHCM. A mutation in the RET proto‐oncogene associated with multiple endocrine neoplasia type 2B and sporadic medullary thyroid carcinoma. Nature 1994; 367: 375–6. [DOI] [PubMed] [Google Scholar]
  • 27. Santoro M, Carlomagno F, Romano A, Bottaro DP, Dathan NA, Grieco M, Fusco A, Vecchio G, Matoskova B, Kraus MH, Fiore PPD. Activation of RET as a dominant transforming gene by germline mutations of MEN2A and MEN2B. Science 1995; 267: 381–3. [DOI] [PubMed] [Google Scholar]
  • 28. Asai N, Iwashita T, Matsuyama M, Takahashi M. Mechanism of activation of the ret proto‐oncogene by multiple endocrine neoplasia 2A mutations. Mol Cell Biol 1995; 15: 1613–9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29. Borrello MG, Smith DP, Pasini B, Bongarzone I, Greco A, Lorenzo MJ, Arighi E, Miranda C, Eng C, Alberti L, Bocciardi R, Mondellini P, Scopsi L, Romeo G, Ponder BAJ, Pierotti MA. RET activation by germline MEN2A and MEN2B mutations. Oncogene 1995; 11: 2419–27. [PubMed] [Google Scholar]
  • 30. Watanabe T, Ichihara M, Hashimoto M, Shimono K, Shimoyama Y, Nagasaka T, Murakumo Y, Murakami H, Sugiura H, Iwata H, Ishiguro N, Takahashi M. Characterization of gene expression induced by RET with MEN2A or MEN2B mutation. Am. J Pathol 2002; 161: 249–56. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31. Maouche‐Chretien L, Deleu N, Badoual C, Fraissignes P, Berger R, Gaulard P, Romeo PH, Leroy‐Viard K. Identification of a novel cDNA, encoding a cytoskeletal associated protein, differentially expressed in diffuse large B cell lymphomas. Oncogene 1998; 17: 1245–51. [DOI] [PubMed] [Google Scholar]
  • 32. Eichmuller S, Usener D, Dummer R, Stein A, Thiel D, Schadendorf D. Serological detection of cutaneous T‐cell lymphoma‐associated antigens. Proc Natl Acad Sci USA 2001; 98: 629–34. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33. Bae CD, Sung YS, Jeon SM, Suh Y, Yang HK, Kim YI, Park KH, Choi J, Ahn G, Park J. Up‐regulation of cytoskeletal‐associated protein 2 in primary human gastric adenocarcinomas. J Cancer Res Clin Oncol 2003; 129: 621–30. [DOI] [PubMed] [Google Scholar]
  • 34. Asai N, Murakami H, Iwashita T, Takahashi M. A mutation at tyrosine 1062 in MEN2A‐Ret and MEN2B‐Ret impairs their transforming activity and association with she adaptor proteins. J Biol Chem 1996; 271: 17644–9. [DOI] [PubMed] [Google Scholar]
  • 35. Fang D, Hallman J, Sangha N, Kute TE, Hammarback JA, White WL, Setaluri V. Expression of microtubule‐associated protein 2 in benign and malignant melanocytes: implications for differentiation and progression of cutaneous melanoma. Am. J Pathol 2001; 158: 2107–15. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36. Liu Y, Sturgis CD, Grzybicki DM, Jasnosz KM, Olson PR, Tong M, Dabbs DD, Raab SS, Silverman JF. Microtubule‐associated protein‐2: a new sensitive and specific marker for pulmonary carcinoid tumor and small cell carcinoma. Mod Pathol 2001; 14: 880–5. [DOI] [PubMed] [Google Scholar]
  • 37. Blumcke I, Becker AJ, Normann S, Hans V, Riederer BM, Krajewski S, Wiestler OD, Reifenberger G. Distinct expression pattern of microtubule‐associated protein‐2 in human oligodendrogliomas and glial precursor cells. J Neuropathol Exp Neurol 2001; 60: 984–93. [DOI] [PubMed] [Google Scholar]
  • 38. Wharton SB, Chan KK, Whittle IR. Microtubule‐associated protein 2 (MAP‐2) is expressed in low and high grade diffuse astrocytomas, J Clin Neurosci 2002; 9: 165–9. [DOI] [PubMed] [Google Scholar]
  • 39. Miyazono M, Iwaki T, Kitamoto T, Shin RW, Fukui M, Tateishi J. Widespread distribution of tau in the astrocytic elements of glial tumors. Acta Neuropathol 1993; 86: 236–41. [DOI] [PubMed] [Google Scholar]
  • 40. Hu B, McPhaul L, Cornford M, Gaal K, Mirra J, French SW Expression of tau proteins and tubulin in extraskeletal myxoid chondrosarcoma, chordoma, and other chondroid tumors. Am. J Clin Pathol 1999; 112: 189–93. [DOI] [PubMed] [Google Scholar]
  • 41. Chambonniere ML, Mosnier‐Damet M, Mosnier JF. Expression of microtubule‐associated protein tau by gastrointestinal stromal tumors. Hum. Pathol 2001; 32: 1166–73. [DOI] [PubMed] [Google Scholar]
  • 42. Sangrajrang S, Denoulet P, Millot G, Tatoud R, Podgorniak MP, Tew KD, Calvo F, Fellous A. Estramustine resistance correlates with tau over‐expression in human prostatic carcinoma cells. Int J Cancer 1998; 77: 626–31. [DOI] [PubMed] [Google Scholar]
  • 43. Veitia R, Bissery MC, Martinez C, Fellous A. Tau expression in model adenocarcinomas correlates with docetaxel sensitivity in tumour‐bearing mice. Br J Cancer 1998; 78: 871–7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 44. Sangrajrang S, Calvo F, Fellous A. Estramustine resistance. Gen Pharmacol 1999; 33: 107–13. [DOI] [PubMed] [Google Scholar]
  • 45. Guise S, Braguer D, Carles G, Delacourte A, Briand C. Hyperphosphorylation of tau is mediated by ERK activation during anticancer drug‐induced apoptosis in neuroblastoma cells. J Neurosci Res 2001; 63: 257–67. [DOI] [PubMed] [Google Scholar]

Articles from Cancer Science are provided here courtesy of Wiley

RESOURCES