Skip to main content
Cancer Science logoLink to Cancer Science
. 2005 Aug 19;94(10):906–913. doi: 10.1111/j.1349-7006.2003.tb01374.x

Multiple fuzzy neural network system for outcome prediction and classification of 220 lymphoma patients on the basis of molecular profiling

Tatsuya Ando 1, Miyuki Suguro 2, Takeshi Kobayashi 1, Masao Seto 2, Hiroyuki Honda 1,
PMCID: PMC11160167  PMID: 14556665

Abstract

A fuzzy neural network (FNN) using gene expression profile data can select combinations of genes from thousands of genes, and is applicable to predict outcome for cancer patients after chemotherapy. However, wide clinical heterogeneity reduces the accuracy of prediction. To overcome this problem, we have proposed an FNN system based on majoritarian decision using multiple noninferior models. We used transcriptional profiling data, which were obtained from “Lymphochip” DNA microarrays (http://llmpp.nih.gov/DLBCL), reported by Rosenwald (N Engl J Med 2002; 346: 1937–47). When the data were analyzed by our FNN system, accuracy (73.4%) of outcome prediction using only 1 FNN model with 4 genes was higher than that (68.5%) of the Cox model using 17 genes. Higher accuracy (91%) was obtained when an FNN system with 9 noninferior models, consisting of 35 independent genes, was used. The genes selected by the system included genes that are informative in the prognosis of Diffuse large B‐cell lymphoma (DLBCL), such as genes showing an expression pattern similar to that of CD10 and BCL‐6 or similar to that of IRF‐4 and BCL‐4. We classified 220 DLBCL patients into 5 groups using the prediction results of 9 FNN models. These groups may correspond to DLBCL subtypes. In group A containing half of the 220 patients, patients with poor outcome were found to satisfy 2 rules, i.e., high expression of MAX dimerization with high expression of unknown A (LC_26146), or high expression of MAX dimerization with low expression of unknown B (LC_33144). The present paper is the first to describe the multiple noninferior FNN modeling system. This system is a powerful tool for predicting outcome and classifying patients, and is applicable to other heterogeneous diseases.

References

  • 1. A clinical evaluation of the International Lymphoma Study Group classification of non‐Hodgkin's lymphoma. The Non‐Hodgkin's Lymphoma Classification Project. Blood 1997; 89: 3909–18. [PubMed] [Google Scholar]
  • 2. The International Non‐Hodgkin's Lymphoma Prognostic Factors Project. A predictive model for aggressive non‐Hodgkin's lymphoma. N Engl J Med 1993; 329: 987–94. [DOI] [PubMed] [Google Scholar]
  • 3. Fisher RI, Gaynor ER, Dahlberg S, Oken MM, Grogan TM, Mize EM, Glick JH, Coltman CA Jr, Miller TP. Comparison of a standard regimen (CHOP) with three intensive chemotherapy regimens for advanced non‐Hodgkin's lymphoma. N Engl J Med 1993; 328: 1002–6. [DOI] [PubMed] [Google Scholar]
  • 4. Cerny T, Betticher D. Role of high‐dose therapy in diffuse large B‐cell lymphoma. Ann Oncol 2000; 11 Suppl 3: 117–21. [DOI] [PubMed] [Google Scholar]
  • 5. Popat U, Przepiork D, Champlin R, Pugh W, Amin K, Mehra R, Rodriguez J, Giralt S, Romaguera J, Rodriguez A, Preti A, Andersson B, Khouri I, Claxton D, De Lima M, Donato M, Anderlini P, Gajewski J, Cabanillas F, van Besien K. High‐dose chemotherapy for relapsed and refractory diffuse large B‐cell lymphoma: mediastinal localization predicts for a favorable outcome. J Clin Oncol 1998; 16: 63–9. [DOI] [PubMed] [Google Scholar]
  • 6. Gatter CK, Warnke AR. Diffuse large B‐cell lymphoma. In: Jaffe ES, Harris NL, Stein H, Vardiman JW, editors. World Health Organization classification of tumors. Pathology and genetics of tumors of haematopoietic and lymphoid tissues. Lyon : IARC Press; 2001. p. 157–60. [Google Scholar]
  • 7. Armitage JO, Weisenburger DD. New approach to classifying non‐Hodgkin's lymphomas: clinical features of the major histologic subtypes. Non‐Hodgkin's Lymphoma Classification Project. J Clin Oncol 1998; 16: 2780–95. [DOI] [PubMed] [Google Scholar]
  • 8. Engelhard M, Brittinger G, Huhn D, Gerhartz HH, Meusers P, Siegert W, Thiel E, Wilmanns W, Aydemir U, Bierwolf S, Griesser H, Tiemann M, Lennert K. Subclassification of diffuse large B‐cell lymphomas according to the Kiel classification: distinction of centroblastic and immunoblastic lymphomas is a significant prognostic risk factor. Blood 1997; 89: 2291–7. [PubMed] [Google Scholar]
  • 9. Harada S, Suzuki R, Uehira K, Yatabe Y, Kagami Y, Ogura M, Suzuki H, Oyama A, Kodera Y, Ueda R, Morishima Y, Nakamura S, Seto M. Molecular and immunological dissection of diffuse large B cell lymphoma: CD5+, and CD5‐ with CD10+ groups may constitute clinically relevant subtypes. Leukemia 1999; 13: 1441–7. [DOI] [PubMed] [Google Scholar]
  • 10. Yamaguchi M, Seto M, Okamoto M, Ichinohasama R, Nakamura N, Yoshino T, Suzumiya J, Murase T, Miura I, Akasaka T, Tamaru J, Suzuki R, Kagami Y, Hirano M, Morishima Y, Ueda R, Shiku H, Nakamura S. De novo CD5+ diffuse large B‐cell lymphoma: a clinicopathologic study of 109 patients. Blood 2002; 99: 815–21. [DOI] [PubMed] [Google Scholar]
  • 11. Alizadeh AA, Eisen MB, Davis RE, Davis RE, Ma C, Lossos IS, Rosenwald A, Boldrick JC, Sabet H, Tran T, Yu X, Powell JI, Yang L, Marti GE, Moore T, Hudson J Jr, Lu L, Lewis DB, Tibshirani R, Sherlock G, Chan WC, Greiner TC, Weisenburger DD, Armitage JO, Warnke R, Levy R, Wilson W, Grever MR, Byrd JC, Botstein D, Brown PO, Staudt LM. Distinct types of diffuse large B‐cell lymphoma identified by gene expression profiling. Nature 2000; 403: 503–11. [DOI] [PubMed] [Google Scholar]
  • 12. Shipp MA, Ross KN, Tamayo P, Weng AP, Kutok JL, Aguiar RC, Gaasenbeek M, Angelo M, Reich M, Pinkus GS, Ray TS, Koval MA, Last KW, Norton A, Lister TA, Mesirov J, Neuberg DS, Lander ES, Aster JC, Golub TR. Diffuse large B‐cell lymphoma outcome prediction by gene‐expression profiling and supervised machine learning. Nat Med 2002; 8: 68–74. [DOI] [PubMed] [Google Scholar]
  • 13. Ando T, Suguro M, Hanai T, Kobayashi T, Honda H, Seto M. Fuzzy neural network applied to gene expression profiling for predicting the prognosis of diffuse large B‐cell lymphoma. Jpn J Cancer Res 2002; 93: 1207–12. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14. Ando T, Suguro M, Kobayashi T, Seto M, Honda H. Selection of causal gene sets for lymphoma prognostication from expression profiling and construction of prognostic fuzzy neural network models. J Biosci Bioeng 2003; 96: 161–167. [DOI] [PubMed] [Google Scholar]
  • 15. Noguchi H, Hanai T, Honda H, Harrison LC, Kobayashi T. Fuzzy neural network‐based prediction of the motif for MHC class II binding peptides. J Biosci Bioeng 2001; 92: 227–31. [DOI] [PubMed] [Google Scholar]
  • 16. Rosenwald A, Wright G, Chan WC, Connors JM, Campo E, Fisher RI, Gascoyne RD, Muller‐Hermelink HK, Smeland EB, Giltnane JM, Hurt EM, Zhao H, Averett L, Yang L, Wilson WH, Jaffe ES, Simon R, Klausner RD, Powell J, Duffey PL, Longo DL, Greiner TC, Weisenburger DD, Sanger WG, Dave BJ, Lynch JC, Vose J, Armitage JO, Montserrat E, Lopez‐Guillermo A, Grogan TM, Miller TP, LeBlanc M, Ott G, Kvaloy S, Delabie J, Holte H, Krajci P, Stokke T, Staudt LM. The use of molecular profiling to predict survival after chemotherapy for diffuse large‐B‐cell lymphoma. N Engl J Med 2002; 346: 1937–47. [DOI] [PubMed] [Google Scholar]
  • 17. Horikawa S, Furuhashi T, Uchikawa Y, Tagawa T. A study on fuzzy modeling using fuzzy neural networks. Proceedings of International Fuzzy Engineering Symposium '91, 562–73 (1991).
  • 18. Goodnight J. A tutorial on the SWEEP operator. Am Stat 1979; 33: 149–58. [Google Scholar]
  • 19. Khan J, Wei JS, Ringner M, Saal LH, Ladanyi M, Westermann F, Berthold F, Schwab M, Antonescu CR, Peterson C, Meltzer PS. Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks. Nat Med 2001; 7: 673–9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20. Eisen MB, Spellman PT, Brown PO, Botstein D. Cluster analysis and display of genome‐wide expression patterns. Proc Natl Acad Sci USA 1998; 95: 14863–8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21. Yau JC, Dabbagh LK, Formenti KS, Coupland RW, Burns BF, Shaw AR. Expression of transmembrane 4 superfamily member, CD9, is related to improved progression‐free survival in patients with diffuse non‐Hodgkin's lymphoma. Oncol Rep 1998; 5: 1507–11. [DOI] [PubMed] [Google Scholar]
  • 22. Barrans SL, Carter I, Owen RG, Davies FE, Patmore RD, Haynes AP, Morgan GJ, Jack AS. Germinal center phenotype and bcl‐2 expression combined with the International Prognostic Index improves patient risk stratification in diffuse large B‐cell lymphoma. Blood 2001; 99: 1136–43. [DOI] [PubMed] [Google Scholar]
  • 23. Lossos IS, Jones CD, Warnke R, Natkunam Y, Kaizer H, Zehnder JL, Tibshirani R, Levy R. Expression of a single gene, BCL‐6, strongly predicts survival in patients with diffuse large B‐cell lymphoma. Blood 2001; 98: 945–51. [DOI] [PubMed] [Google Scholar]

Articles from Cancer Science are provided here courtesy of Wiley

RESOURCES