Skip to main content
MycoKeys logoLink to MycoKeys
. 2024 May 31;105:295–316. doi: 10.3897/mycokeys.105.122583

Three new endophytic Apiospora species (Apiosporaceae, Amphisphaeriales) from China

Xiao-Ni Yan 1, Chu-Long Zhang 1,
PMCID: PMC11161679  PMID: 38855320

Abstract

Apiospora species are widely distributed fungi with diverse lifestyles, primarily functioning as plant pathogens, as well as exhibiting saprophytic and endophytic behaviors. This study reports the discovery of three new species of Apiospora, namely A.gongcheniae, A.paragongcheniae, and A.neogongcheniae, isolated from healthy Poaceae plants in China. These novel species were identified through a multi-gene phylogenetic analysis. The phylogenetic analysis of the combined ITS, LSU, tef1, and tub2 sequence data revealed that the three new species formed a robustly supported clade with A.garethjonesii, A.neogarethjonesii, A.setostroma, A.subrosea, A.mytilomorpha, and A.neobambusae. Detailed descriptions of the newly discovered species are provided and compared with closely related species to enhance our understanding of the genus Apiospora.

Key words: Apiospora , Ascomycota, endophyte, phylogeny, taxonomy

Introduction

Apiospora is an important genus of fungal Sordariomycetes, that produces a basauxic, arthrinium-like conidiogenesis (Hyde et al. 2020). The family Apiosporaceae was established to accommodate the genus Apiospora with the special conidiogenesis (Hyde et al. 1998). Over time, the membership of Apiosporaceae has undergone several revisions. It presently comprises several genera of fungi with similar morphology, including Apiospora, Arthrinium, Nigrospora, and Neoarthrinium (Wang et al. 2017; Pintos and Alvarado 2021; Jiang et al. 2022).

Within the family Apiosporaceae, Apiospora is closely related to Arthrinium and they were once considered as two life stages of a single taxon (Ellis 1965; Crous and Groenewald 2013; Réblová et al. 2016; Jiang et al. 2019). Morphologically, Apiospora and Arthrinium lack clear diagnostic features, although species of Arthrinium often produce conidia of various shapes (Minter and Cannon 2018; Pintos and Alvarado 2021), while most species of Apiospora have rounded lenticular conidia (Li et al. 2023; Liao et al. 2023). Ecologically, most sequenced collections of Arthrinium were found on Cyperaceae or Juncaceae in temperate, cold, or alpine habitats, while those of Apiospora were mainly collected on Poaceae, as well as various other plant host families, in a wide range of habitats, including tropical and subtropical regions (Dai et al. 2016; Jiang et al. 2018; Wang et al. 2018; Feng et al. 2021; Tian et al. 2021; Kwon et al. 2022; Monkai et al. 2022). With the addition of molecular evidence and the expansion of the sample, the latest phylogenetic analysis suggests that Arthrinium s. str. and Apiospora represent independent lineages within Apiosporaceae (Pintos and Alvarado 2021). Consequently, most species of Arthrinium have been reclassified under Apiospora. Furthermore, Pintos and Alvarado defined the exact identity of Apiosporamontagnei (the type species of Apiospora) and delineated the phylogenetic boundaries of Apiospora (Pintos and Alvarado 2022).

Currently, there are 176 records in Apiospora (Index Fungorum; http://www.indexfungorum.org/; accessed on 8 Mar 2024). These fungi primarily act as plant pathogens, causing diseases in a wide range of host plants. For example, A.arundinis is the causal agent for several important plant diseases, such as kernel blight of barley (Martínez-Cano et al. 1992), brown culm streak of Phyllostachyspraecox (Chen et al. 2014), moldy sugarcane (Liao et al. 2022), and leaf spot on Polygonatumcyrtonema (Gong et al. 2023). A.marii causes dieback of olive trees (Gerin et al. 2020), while A.kogelbergense leads to blight of Bambusaintermedi (Yin et al. 2020). Whereas, many Apiospora species are saprophytes, such as A.acutiapica (Senanayake et al. 2020), A.garethjonesii (Dai et al. 2016), A.magnispora (Zhao et al. 2023), A.sasae (Crous et al. 2021), and A.thailandicum (Dai et al. 2017). In addition, certain Apiospora species are reported as endophytes with wide host range, including bamboo (Wang et al. 2018), Camelliasinensis (Wang et al. 2018), Wurfbainiavillosa (Liao et al. 2023), and even hive-stored pollen (Zhao et al. 2018).

Endophytic fungi exhibit rich diversity and play a significant role in the ecosystem. In a previous study, we collected and isolated endophytic fungi from healthy Poaceae plants in China (Liu et al. 2021). In this study, three new endophytic species of Apiospora were identified and described based on morphological characteristics and a multi-gene phylogenetic analysis, utilizing a dataset comprising the combined nuclear ribosomal DNA internal transcribed spacer (ITS), nuclear ribosomal DNA large subunit (LSU), the translation elongation factor 1-alpha (tef1), and β-tubulin (tub2) sequences.

Materials and methods

Fungal isolation

In the present work, Poaceae plant samples were collected from three locations in China: Xilingol Grassland National Nature Reserve in Inner Mongolia, Xishuangbanna, Naban River Watershed National Nature Reserve in Yunnan province, and Baishanzu National Nature Reserve in Zhejiang province (Liu et al. 2021). To isolate endophytic Apiospora strains, healthy tissues of asymptomatic plants were first disinfected for 3 min in 75% ethanol and 10 min in 1% sodium hypochlorite, followed by three washes in sterile distilled water. The disinfected tissues were excised, and then incubated on malt extract agar (MEA) medium at 25 °C. Subsequently, the growing hyphae were transferred to potato dextrose agar (PDA) medium to obtain pure cultures.

All strains of Apiospora were stored in the Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China. In addition, the holotype and ex-type culture were deposited in the Guangdong Microbial Culture Collection Center (GDMCC). Fungal names were registered in the Fungal Names, one of the recognised repositories of fungal taxonomy (https://nmdc.cn/fungalnames/).

Morphological study

Morphological descriptions were recorded on PDA and MEA. The morphological characteristics of the colonies were captured with a digital camera (Canon EOS700D). The fungal structures were observed and photographed using a stereomicroscope (Leica S9D) and a Leica DM2500 microscope equipped with differential interference contrast (DIC). Measurements of conidiogenous cells and conidia were reported as follows: a-b × c-d (mean, n), where “a” and “c” represent the minimum values, “b” and “d” represent the maximum values, and the mean value and number of measurements (n) are shown in parentheses (Wang et al. 2018).

DNA extraction, PCR amplification and sequencing

Fresh fungal mycelia from pure cultures grown on PDA at 25 °C for 5–7 d were used for DNA extraction. Genomic DNA was extracted following the method as described in Chi et al. (2009).

Polymerase chain reaction (PCR) amplification was applied to amplify four gene fragments, including ITS, LSU, tef1, and tub2. The primer pairs were used: ITS1/ITS4 for ITS (White et al. 1990), LR0R/LR5 for LSU (Rehner and Samuels 1995), EF1-728F/EF2 for tef1 (O’Donnell et al, 1998; Carbone and Kohn 1999), and T1/Bt2b for tub2 (Glass and Donaldson 1995; O’Donnell and Cigelnik 1997). PCR program for ITS amplification was conducted with an initial denaturation at 95 °C for 3 min, followed by 35 cycles of 95 °C for 30 s, annealing at 58 °C for 30 s, extension at 72 °C for 1 min, and a final extension at 72 °C for 7 min. The annealing temperatures were adjusted to 56 °C for LSU, tef1, and tub2.

PCR was performed using a Veriti Thermal Cycler (Waltham, MA, USA). Amplification reactions contained 10 μL of 2× Taq Plus Master Mix II (Vazyme, Nanjing, China), 0.8 μL of each primer (10 μM) (Sunya, Hangzhou, China), 0.8 μL of DNA template, and double-distilled water to reach a total volume of 20 μL. Purification and sequencing of PCR products were performed by Sunya Biotechnology Company (Hangzhou, China). All sequences generated in this study were deposited in GenBank (Table 1).

Table 1.

Species of Apiosporaceae used in the phylogenetic analyses. Notes: Strains in this study are marked in bold. “T” indicates a type culture. NA = not available.

Species Strain Numbers Host and Substrates Locality GenBank accession numbers
ITS LSU tef1 tub2
Apiosporaacutiapica KUMCC 20-0209 Bambusabambos China MT946342 MT946338 MT947359 MT947365
Apiosporaacutiapica KUMCC 20-0210 T Bambusabambos China MT946343 MT946339 MT947360 MT947366
Apiosporaadinandrae SAUCC 1282B-1 T Diseased leaves of Adinandraglischroloma China OR739431 OR739572 OR753448 OR757128
Apiosporaadinandrae SAUCC 1282B-2 Diseased leaves of Adinandraglischroloma China OR739432 OR739573 OR753449 OR757129
Apiosporaagari KUC21333, SFC20161014-M18 T Agarumcribrosum South Korea MH498520 MH498440 MH544663 MH498478
Apiosporaaquatic MFLU 18-1628, S-642 T Submerged wood China MK828608 MK835806 NA NA
Apiosporaarctoscopi KUC21331, SFC20200506-M05 T Eggs of Arctoscopusjaponicus South Korea MH498529 MH498449 MN868918 MH498487
Apiosporaarundinis CBS 124788 Living leaves of Fagussylvatica Switzerland KF144885 KF144929 KF145017 KF144975
Apiosporaarundinis LC4951 Dichotomanthestristaniicarpa China KY494698 KY494774 KY705097 KY705168
Apiosporaaseptata KUNCC 23-14169 T Living roots of Dicranopterispedata China OR590341 OR590335 OR634949 OR634943
Apiosporaaurea CBS 244.83 T Air Spain AB220251 KF144935 KF145023 KF144981
Apiosporabalearica CBS 145129, AP24118 T Poaceae plant Spain MK014869 MK014836 MK017946 MK017975
Apiosporabambusicola MFLUCC 20-0144 T Schizostachyumbrachycladum Thailand MW173030 MW173087 MW183262 NA
Apiosporabawanglingensis SAUCC BW0444 T Leaves of Indocalamuslongiauritus China OR739429 OR739570 OR753446 OR757126
Apiosporabiserialis CGMCC 3.20135 T Bamboo China MW481708 MW478885 MW522938 MW522955
Apiosporacamelliae-sinensis CGMCC 3.18333, LC5007 T Camelliasinensis China KY494704 KY494780 KY705103 KY705173
Apiosporacamelliae-sinensis LC8181 Brassicarapa China KY494761 KY494837 KY705157 KY705229
Apiosporacannae ZHKUCC 22-0139 Leaves of Canna sp. China OR164902 OR164949 OR166286 OR166322
Apiosporacannae ZHKUCC 22-0127 T Leaves of Canna sp. China OR164901 OR164948 OR166285 OR166321
Apiosporachiangraiense MFLUCC 21-0053 T Dead culms of bamboo Thailand MZ542520 MZ542524 NA MZ546409
Apiosporachromolaenae MFLUCC 17-1505 T Chromolaenaodorata Thailand MT214342 MT214436 MT235802 NA
Apiosporacordylinae GUCC 10026 Cordylinefruticosa China MT040105 NA MT040126 MT040147
Apiosporacordylinae GUCC 10027 T Cordylinefruticosa China MT040106 NA MT040127 MT040148
Apiosporacoryli CFCC 58978 T Dead plant culms of Corylusyunnanensis China OR125564 OR133586 OR139974 OR139978
Apiosporacoryli CFCC 58979 T Dead plant culms of Corylusyunnanensis China OR125565 OR133587 OR139975 OR139979
Apiosporacyclobalanopsidis CGMCC 3.20136 T Cyclobalanopsidisglauca China MW481713 MW478892 MW522945 MW522962
Apiosporacyclobalanopsidis GZCC 20-0103 Cyclobalanopsidisglauca China MW481714 MW478893 MW522946 MW522963
Apiosporadendrobii MFLUCC 14-0152 T Roots of Dendrobiumharveyanum Thailand MZ463151 MZ463192 NA NA
Apiosporadematiacea KUNCC 23-14202 T Living stems of Dicranopterisampla China OR590346 OR590339 OR634953 OR634948
Apiosporadescalsii CBS 145130 T Ampelodesmosmauritanicus Spain MK014870 MK014837 MK017947 MK017976
Apiosporadichotomanthi CGMCC 3.18332, LC4950 T Dichotomanthestristaniicarpa China KY494697 KY494773 KY705096 KY705167
Apiosporadichotomanthi LC8175 Dichotomanthestristaniicarpa China KY494755 KY494831 KY705151 KY705223
Apiosporadicranopteridis KUNCC23-14171 T Living stems of Dicranopterispedata China OR590342 OR590336 OR634950 OR634944
Apiosporadicranopteridis KUNCC23-14177 Roots of Dicranopterispedata China OR590343 OR590337 OR634951 OR634945
Apiosporadongyingensis SAUCC 0302 T Leaves of bamboo China OP563375 OP572424 OP573264 OP573270
Apiosporadongyingensis SAUCC 0303 Leaves of bamboo China OP563374 OP572423 OP573263 OP573269
Apiosporaelliptica ZHKUCC 22-0131 T Dead stems of unknown plant China OR164905 OR164952 OR166284 OR166323
Apiosporaelliptica ZHKUCC 22-0140 Dead stems of unknown plant China OR164906 OR164953 NA OR166324
Apiosporaendophytica ZHKUCC 23-0006 T Living leaves of Wurfbainiavillosa China OQ587996 OQ587984 OQ586062 OQ586075
Apiosporaendophytica ZHKUCC 23-0007 Living leaves of Wurfbainiavillosa China OQ587997 OQ587985 OQ586063 OQ586076
Apiosporaesporlensis CBS 145136 T Phyllostachysaurea Spain MK014878 MK014845 MK017954 MK017983
Apiosporaesporlensis UNIPAMPA010 Living leaves of the Antarctic Hairgrass Deschampsiaantarctica Antarctica MN947641 genome genome genome
Apiosporaeuphorbiae IMI 285638b Bambusa sp. Bangladesh AB220241 AB220335 NA AB220288
Apiosporafermenti KUC21288, SFC20140423-M86 Seaweeds South Korea MF615230 NA MH544668 MF615235
Apiosporafermenti KUC21289 T Seaweeds South Korea MF615226 MF615213 MH544667 MF615231
Apiosporagaoyouensis CFCC 52301T Phragmitesaustralis China MH197124 NA MH236793 MH236789
Apiosporagaoyouensis CFCC 52302 Phragmitesaustralis China MH197125 NA MH236794 MH236790
Apiosporagarethjonesii GZCC 20-0115 Dead culms of bamboo China MW481715 MW478894 MW522947 NA
Apiosporagarethjonesii KUMCC 16-0202, JHB004, HKAS 96289 T Dead culms of bamboo China KY356086 KY356091 NA NA
Apiosporagarethjonesii SICAUCC 22-0027 Bamboo China ON228603 ON228659 NA ON237651
Apiosporagarethjonesii SICAUCC 22-0028 Bamboo China ON228606 ON228662 NA ON237654
Apiosporagelatinosa GZAAS 20-0107 Bamboo China MW481707 MW478889 MW522942 MW522959
Apiosporagelatinosa HKAS 11962 T Bamboo China MW481706 MW478888 MW522941 MW522958
Apiosporaglobosa KUNCC 23-14210 T Living stems of Dicranopterislinearis China OR590347 OR590340 OR634954 NA
Apiosporagongcheniae GDMCC 3.1045, YNE00465 T Living stems of Oryzameyerianasubsp.granulata China PP033259 PP033102 PP034683 PP034691
Apiosporagongcheniae YNE00565 Living stems of Oryzameyerianasubsp.granulata China PP033260 PP033103 PP034684 PP034692
Apiosporaguangdongensis ZHKUCC 23-0004 T Living leaves of Wurfbainiavillosa China OQ587994 OQ587982 OQ586060 OQ586073
Apiosporaguangdongensis ZHKUCC 23-0005 Living leaves of Wurfbainiavillosa China OQ587995 OQ587983 OQ586061 OQ586074
Apiosporaguiyangensis HKAS 102403 T Dead culms of Poaceae China MW240647 MW240577 MW759535 MW775604
Apiosporaguiyangensis KUNCC 22-12539 Poaceae plant China OQ029540 OQ029613 OQ186444 OQ186446
Apiosporaguizhouensis CGMCC 3.18334, LC5322 T Air in karst cave China KY494709 KY494785 KY705108 KY705178
Apiosporaguizhouensis LC5318 Air in karst cave China KY494708 KY494784 KY705107 KY705177
Apiosporahainanensis SAUCC 1681 T Leaves of bamboo China OP563373 OP572422 OP573262 OP573268
Apiosporahainanensis SAUCC 1682 Leaves of bamboo China OP563372 OP572421 OP573261 OP573267
Apiosporahispanica IMI 326877 T Beach sands Spain AB220242 AB220336 NA AB220289
Apiosporahydei CBS 114990 T Culms of Bambusatuldoides China KF144890 KF144936 KF145024 KF144982
Apiosporahydei LC7103 Leaves of bamboo China KY494715 KY494791 KY705114 KY705183
Apiosporahyphopodii JHB003, HKAS 96288 Bamboo China KY356088 KY356093 NA NA
Apiosporahyphopodii MFLUCC 15-003 T Bambusatuldoides Thailand KR069110 NA NA NA
Apiosporahyphopodii SICAUCC 22-0034 Bamboo China ON228605 ON228661 NA ON237653
Apiosporahysterina AP12118 Phyllostachysaurea Spain MK014877 KM014844 MK017953 MK017982
Apiosporahysterina AP29717 Phyllostachysaurea Spain MK014875 MK014842 MK017952 MK017981
Apiosporahysterina ICPM 6889 T Bamboo New Zealand MK014874 MK014841 MK017951 MK017980
Apiosporaiberica CBS 145137, AP10118 T Arundodonax Portugal MK014879 MK014846 MK017955 MK017984
Apiosporaintestine CBS 135835 Gut of grasshopper India KR011352 MH877577 KR011351 KR011350
Apiosporaintestine MFLUCC 21-0052 T Dead culms of bamboo Thailand MZ542521 MZ542525 MZ546406 MZ546410
Apiosporaitalic CBS 145138, AP221017 T Arundodonax Italy MK014880 MK014847 MK017956 MK017985
Apiosporaitalic CBS 145139 Phragmitesaustralis Spain MK014881 MK014848 NA MK017986
Apiosporajatrophae CBS 134262, MMI00052 T Living Jatrophapodagrica India JQ246355 NA NA NA
Apiosporajiangxiensis CGMCC 3.18381, LC4577 T Maesa sp. China KY494693 KY494769 KY705092 KY705163
Apiosporajiangxiensis LC4578 Camelliasinensis China KY494694 KY494770 KY705093 KY705164
Apiosporakogelbergensis CBS 113332 Cannomoisvirgata South Africa KF144891 KF144937 KF145025 KF144983
Apiosporakogelbergensis CBS 113333 T Dead culms of Restionaceae South Africa KF144892 KF144938 KF145026 KF144984
Apiosporakoreanum KUC21332, SFC20200506-M06 T Eggs of Arctoscopusjaponicus South Korea MH498524 MH498444 MH544664 MH498482
Apiosporakoreanum KUC21348 Eggs of Arctoscopusjaponicus South Korea MH498523 NA MN868927 MH498481
Apiosporalageniformis KUC21686 T Culms of Phyllostachysnigra Korea ON764022 ON787761 ON806626 ON806636
Apiosporalageniformis KUC21687 Culms of Phyllostachysnigra Korea ON764023 ON787764 ON806627 ON806637
Apiosporalocuta-pollinis LC11683 T Brassicacampestris China MF939595 NA MF939616 MF939622
Apiosporalongistroma MFLUCC 11-0479 Dead culms of bamboo Thailand KU940142 KU863130 NA NA
Apiosporalongistroma MFLUCC11-0481 T Dead culms of bamboo Thailand KU940141 KU863129 NA NA
Apiosporalophatheri CFCC 58975 T Diseased leaves of Lophatherumgracile China OR125566 OR133588 OR139970 OR139980
Apiosporalophatheri CFCC 58976 T Diseased leaves of Lophatherumgracile China OR125567 OR133589 OR139971 OR139981
Apiosporamachili SAUCC 1175A-4 T Diseased leaves of Machilusnanmu
of Machilusnanmu
China OR739433 OR739574 OR753450 OR757130
Apiosporamachili SAUCC 1175 Diseased leaves of Machilusnanmu
of Machilusnanmu
China OQ592560 OQ615289 OQ613333 OQ613307
Apiosporamagnispora ZHKUCC 22-0001 T Dead stems of Bambusatextilis China OM728647 OM486971 OM543543 OM543544
Apiosporamalaysiana CBS 102053 T Macarangahullettii Malaysia KF144896 KF144942 KF145030 KF144988
Apiosporamarianiae AP18219 T Dead stems of Phleumpratense Spain ON692406 ON692422 ON677180 ON677186
Apiosporamarii CBS 497.90 T Beach sands Spain AB220252 KF144947 KF145035 KF144993
Apiosporamarinum KUC21328, SFC20140423-M02 T Seaweeds South Korea MH498538 MH498458 MH544669 MH498496
Apiosporamediterranea IMI 326875 T Air Spain AB220243 AB220337 NA AB220290
Apiosporaminutispora 1.70E-042 T Mountain soils South Korea LC517882 NA LC518889 LC518888
Apiosporamontagnei AP19421 Arundomicrantha Spain ON692418 ON692425 ON677183 ON677189
Apiosporamontagnei AP301120, CBS 148707, PC:0125164 T Arundomicrantha Spain ON692408 ON692424 ON677182 ON677188
Apiosporamori MFLUCC 20-0181 T Dead leaves of Morusaustralis China MW114313 MW114393 NA NA
Apiosporamori NCYUCC 19-0340 Dead leaves of Morusaustralis China MW114314 MW114394 NA NA
Apiosporamukdahanensis MFLUCC 22-0056 T Dead leaves of bamboo Thailand OP377735 OP377742 NA NA
Apiosporamultiloculata MFLUCC 21-0023 T Dead culms of Bambusae Thailand OL873137 OL873138 NA OL874718
Apiosporamytilomorpha DAOM 214595 T Dead blades of Andropogon sp. India KY494685 NA NA NA
Apiosporaneobambusae CGMCC 3.18335, LC7106 T Leaves of bamboo China KY494718 KY494794 KY806204 KY705186
Apiosporaneobambusae LC7107 Leaves of bamboo China KY494719 KY494795 KY705117 KY705187
Apiosporaneobambusae LC7124 Leaves of bamboo China KY494727 KY494803 KY806206 KY705195
Apiosporaneochinensis CFCC 53036 T Fargesiaqinlingensis China MK819291 NA MK818545 MK818547
Apiosporaneochinensis CFCC 53037 Fargesiaqinlingensis China MK819292 NA MK818546 MK818548
Apiosporaneogarethjonesii KUMCC 18-0192, HKAS 102408 T Dead culms of Bambusae China MK070897 MK070898 NA NA
Apiosporaneogongcheniae GDMCC 3.1047, YNE01248 T Living stems of Poaceae plant China PP033263 PP033106 PP034687 PP034695
Apiosporaneogongcheniae YNE01260 Living stems of Poaceae plant China PP033264 PP033107 PP034688 PP034696
Apiosporaneosubglobosa JHB 006 Bamboo China KY356089 KY356094 NA NA
Apiosporaneosubglobosa JHB 007 T Bamboo China KY356090 KY356095 NA NA
Apiosporaobovata CGMCC 3.18331, LC4940 T Lithocarpus sp. China KY494696 KY494772 KY705095 KY705166
Apiosporaobovata LC8177 Lithocarpus sp. China KY494757 KY494833 KY705153 KY705225
Apiosporaoenotherae CFCC 58972 Diseased leaves of Oenotherabiennis China OR125568 OR133590 OR139972 OR139982
Apiosporaoenotherae LS 395 Diseased leaves of Oenotherabiennis China OR125569 OR133591 OR139973 OR139983
Apiosporaovate CBS 115042 T Arundinariahindsii China KF144903 KF144950 KF145037 KF144995
Apiosporapallidesporae ZHKUCC 22-0129 T Dead wood of unknown host China OR164903 OR164950 NA NA
Apiosporapallidesporae ZHKUCC 22-0142 Dead wood of unknown host China OR164904 OR164951 NA NA
Apiosporaparagongcheniae GDMCC 3.1046, YNE00992 T Living stems of Poaceae plant China PP033261 PP033104 PP034685 PP034693
Apiosporaparagongcheniae YNE01259 Living stems of Poaceae plant China PP033262 PP033105 PP034686 PP034694
Apiosporaparaphaeosperma MFLUCC 13-0644 T Dead culms of bamboo Thailand KX822128 KX822124 NA NA
Apiosporaparaphaeosperma KUC21488 Culms of bamboo Korea ON764024 ON787763 ON806628 ON806638
Apiosporaphragmitis CPC 18900 T Phragmitesaustralis Italy KF144909 KF144956 KF145043 KF145001
Apiosporaphyllostachydis MFLUCC 18-1101 T Phyllostachysheteroclada China MK351842 MH368077 MK340918 MK291949
Apiosporapiptatheri CBS 145149, AP4817A T Piptatherummiliaceum Spain MK014893 MK014860 MK017969 NA
Apiosporapiptatheri SAUCC BW0455 Diseased leaves of Indocalamuslongiauritus China OR739430 OR739571 OR753447 OR757127
Apiosporapseudomarii GUCC 10228 T Leaves of Aristolochiadebilis China MT040124 NA MT040145 MT040166
Apiosporapseudohyphopodii KUC21680 T Culms of Phyllostachyspubescens Korea ON764026 ON787765 ON806630 ON806640
Apiosporapseudohyphopodii KUC21684 Culms of Phyllostachyspubescens Korea ON764027 ON787766 ON806631 ON806641
Apiosporapseudoparenchymatica CGMCC 3.18336, LC7234 T Leaves of bamboo China KY494743 KY494819 KY705139 KY705211
Apiosporapseudoparenchymatica LC8173 Leaves of bamboo China KY494753 KY494829 KY705149 KY705221
Apiosporapseudorasikravindrae KUMCC 20-0208 T Bambusadolichoclada China MT946344 NA MT947361 MT947367
Apiosporapseudosinensis CPC 21546 T Leaves of bamboo Netherlands KF144910 KF144957 KF145044 MN868936
Apiosporapseudosinensis SAUCC 0221 Leaves of bamboo China OP563377 OP572426 OP573266 OP573272
Apiosporapseudospegazzinii CBS 102052 T Macarangahullettii Malaysia KF144911 KF144958 KF145045 KF145002
Apiosporapterosperma CBS 123185 Machaerinasinclairii New Zealand KF144912 KF144959 NA KF145003
Apiosporapterosperma CPC 20193, CBS 134000 T Lepidospermagladiatum Australia KF144913 KF144960 KF145046 KF145004
Apiosporapusillispermum KUC21321 T Seaweeds South Korea MH498533 MH498453 MN868930 MH498491
Apiosporapusillispermum KUC21357 Seaweeds South Korea MH498532 NA MN868931 MH498490
Apiosporaqinlingensis CFCC 52303 T Fargesiaqinlingensis China MH197120 NA MH236795 MH236791
Apiosporaqinlingensis CFCC 52304 Fargesiaqinlingensis China MH197121 NA MH236796 MH236792
Apiosporarasikravindrae LC8179 Brassicarapa China KY494759 KY494835 KY705155 KY705227
Apiosporarasikravindrae MFLUCC 21-0051 Dead culms of bamboo Thailand MZ542523 MZ542527 MZ546408 MZ546412
Apiosporasacchari CBS 372.67 Air Not mentioned KF144918 KF144964 KF145049 KF145007
Apiosporasacchari CBS 664.74 Soils under Callunavulgaris Netherlands KF144919 KF144965 KF145050 KF145008
Apiosporasaccharicola CBS 191.73 Air Netherlands KF144920 KF144966 KF145051 KF145009
Apiosporasaccharicola CBS 831.71 Not mentioned Netherlands KF144922 KF144969 KF145054 KF145012
Apiosporasargassi KUC21228 T Sargassumfulvellum South Korea KT207746 KT207696 MH544677 KT207644
Apiosporasargassi KUC21232 Seaweeds South Korea KT207750 NA MH544676 KT207648
Apiosporasasae CPC 38165, CBS 146808 T Dead culms of Sasaveitchii Netherlands MW883402 MW883797 MW890104 MW890120
Apiosporaseptata CGMCC 3.20134, CS19-8 T Bamboo China MW481711 MW478890 MW522943 MW522960
Apiosporaseptata GZCC 20-0109 Bamboo Food China MW481712 MW478891 MW522944 MW522961
Apiosporaserenensis IMI 326869 T Excipients, atmosphere and home dust Spain AB220250 AB220344 NA AB220297
Apiosporasetariae CFCC 54041 T Decaying culms of Setariaviridis China MT492004 NA MW118456 MT497466
Apiosporasetariae MT492005 Setariaviridis China MT492005 NA MW118457 MT497467
Apiosporasetostroma KUMCC 19-0217 Dead branches of bamboo China MN528012 MN528011 MN527357 NA
Apiosporasichuanensis HKAS 107008 T Dead culms of Poaceae China MW240648 MW240578 MW759536 MW775605
Apiosporasorghi URM 93000, URM 7417 T Sorghumbicolor Brazil MK371706 NA NA MK348526
Apiosporasphaerosperma CBS 114314 Leaves of Hordeumvulgare Iran KF144904 KF144951 KF145038 KF144996
Apiosporasphaerosperma CBS 114315 Leaves of Hordeumvulgare Iran KF144905 KF144952 KF145039 KF144997
Apiosporastipae CPC 38101, CBS 146804 T Dead culms of Stipagigantea Spain MW883403 MW883798 MW890082 MW890121
Apiosporasubglobosa MFLUCC 11-0397 T Dead culms of bamboo Thailand KR069112 KR069113 NA NA
Apiosporasubrosea CGMCC 3.18337, LC7292 T Leaves of bamboo China KY494752 KY494828 KY705148 KY705220
Apiosporasubrosea LC7291 Leaves of bamboo China KY494751 KY494827 KY705147 KY705219
Apiosporataeanense KUC21322T Seaweeds South Korea MH498515 NA MH544662 MH498473
Apiosporataeanense KUC21359 Seaweeds South Korea MH498513 NA MN868935 MH498471
Apiosporathailandica MFLUCC 15-0199 Dead culms of bamboo Thailand KU940146 KU863134 NA NA
Apiosporathailandica MFLUCC 15-0202 T Dead culms of bamboo Thailand KU940145 KU863133 NA NA
Apiosporatropica MFLUCC 21-0056 Dead culms of Bambusoideae Thailand OK491657 OK491653 NA OK560922
Apiosporawurfbainiae ZHKUCC 23-0008 T Wurfbainiavillosa China OQ587998 OQ587986 OQ586064 OQ586077
Apiosporawurfbainiae ZHKUCC 23-0009 Wurfbainiavillosa China OQ587999 OQ587987 OQ586065 OQ586078
Apiosporavietnamensis IMI 99670 T Citrussinensis Vietnam KX986096 KX986111 NA KY019466
Apiosporaxenocordella CBS 478.86 T Soils from roadway Zimbabwe KF144925 KF144970 KF145055 KF145013
Apiosporaxenocordella CBS 595.66 Soils Austria KF144926 KF144971 NA NA
Apiosporaxishuangbannaensis KUMCC 21-0695 T Rhinolophuspusillus China ON426832 OP363248 OR025969 OR025930
Apiosporaxishuangbannaensis KUMCC 21-0696 Rhinolophuspusillus China ON426833 OP363249 OR025970 OR025931
Apiosporayunnana DDQ 00281 Phyllostachysnigra China KU940148 KU863136 NA NA
Apiosporayunnana MFLUCC 15-1002 T Phyllostachysnigra China KU940147 KU863135 NA NA
Apiosporayunnanensis ZHKUCC 23-0014 T Dead stems of grass China OQ588004 OQ587992 OQ586070 OQ586083
Apiosporayunnanensis ZHKUCC 23-0015 Dead stems of grass China OQ588005 OQ587993 OQ586071 OQ586084
Arthriniumaustriacum GZU 345004 Carexpendula Austria MW208928 NA NA NA
Arthriniumaustriacum GZU 345006 Carexpendula Austria MW208929 MW208860 NA NA
Arthriniumcaricicola CBS 145127, AP23518 Carexericetorum China MK014871 MK014838 MK017948 MK017977
Arthriniumcaricicola CBS 145903, CPC33297 T Dead and attached leaves Germany MN313782 MN317266 NA MN313861
Arthriniumcrenatum AG19066, CBS 146353 T Carex sp. France MW208931 MW208861 MW221917 MW221923
Arthriniumcurvatum AP25418 Leaves of Carex sp. China MK014872 MK014839 MK017949 NA
Arthriniumjaponicum IFO 30500 Carexdespalata Japan AB220262 AB220356 NA AB220309
Arthriniumjaponicum IFO 31098 Leaves of Carexdespalata Japan AB220264 AB220358 NA AB220311
Arthriniumluzulae AP7619-3 Luzulasylvatica Spain MW208937 MW208863 MW221919 MW221925
Arthriniummorthieri GZU 345043 Cyperaceaecarex Austria MW208938 MW208864 MW221920 MW221926
Arthriniumphaeospermum AP25619, CBS 146355 Poaceae plant Norway MW208943 MW208865 NA NA
Arthriniumpuccinioides CBS 549.86 Lepidospermagladiatum Germany AB220253 AB220347 NA AB220300
Arthriniumsporophleoides GZU 345102 Carex firma Austria MW208944 MW208866 NA MW221927
Arthriniumsporophleum AP21118, CBS 145154 Dead leaves of Juncus sp. Spain MK014898 MK014865 MK017973 MK018001
Nigrosporaguilinensis CGMCC 3.18124, LC 3481 T Camelliasinensis China KX985983 KX986113 KY019292 KY019459
Nigrosporaguilinensis LC 7301 Stems of Nelumbo sp. China KX986063 NA KY019404 KY019608
Nigrosporahainanensis CGMCC 3.18129, LC 7030 T Leaves of Musaparadisiaca China KX986091 KX986112 KY019415 KY019464
Nigrosporahainanensis LC 6979 Leaves of Musaparadisiaca China KX986079 NA KY019416 KY019586
Nigrosporapyriformis CGMCC 3.18122, LC 2045 T Citrussinensis China KX985940 KX986100 KY019290 KY019457
Nigrosporapyriformis LC 2688 Linderaaggregata China KX985941 NA KY019297 KY019468
Nigrosporavesicularis CGMCC 3.18128, LC 7010 T Leaves of Musaparadisiaca China KX986088 KX986099 KY019294 KY019463
Nigrosporavesicularis LC 0322 Unknown host plant Thailand KX985939 NA KY019296 KY019467
Neoarthriniumlithocarpicola CFCC 54456 T Lithocarpusglaber China ON427580 ON427582 NA ON456914
Neoarthriniumlithocarpicola CFCC 55883 Lithocarpusglaber China ON427581 ON427583 NA ON456915
Neoarthriniumtrachycarpi CFCC 53038 Trachycarpusfortune China MK301098 NA MK303396 MK303394
Neoarthriniumtrachycarpi CFCC 53039 Trachycarpusfortune China MK301099 NA MK303397 MK303395
Sporocadustrimorphus CFCC 55171 Rose China OK655798 OK560389 OL814555 OM401677
Sporocadustrimorphus ROC 113 Rose China OK655799 OK560390 OL814556 OM401678

Phylogenetic analyses

The quality of obtained sequences was assessed using Chromas v.2.6.6 and the sequences were assembled using SeqMan v.7.1.0. The reference sequences were retrieved from GenBank. All sequences, including the reference sequences, were aligned in batches with MAFFT (Katoh and Standley 2013), manually correcting the resulting alignment by MEGA v.11.0.13 where necessary. A single alignment was made using ITS, LSU, tef1 region including partial exon 4 and partial exon 5 (the largest exon), tub2 region including exon 2, exon 3, and partial exon 4. Then phylogenetic analyses were conducted using partial sequences of the above four loci. The sequences were trimmed and concatenated, and subsequent phylogenetic analyses were performed in PhyloSuite platform (Zhang et al. 2020). ModelFinder (Kalyaanamoorthy et al. 2017) was used to select the best-fit partition model (Edge-unlinked) using the BIC criterion. Maximum likelihood (ML) phylogenies were inferred using IQ-TREE (Nguyen et al. 2015) under Edge-linked partition model for 5000 ultrafast (Minh et al. 2013) bootstraps. Bayesian Inference (BI) phylogenies were inferred using MrBayes 3.2.6 (Ronquist et al. 2012) under partition model, in which the initial 27% of sampled data were discarded as burn-in. The resulting phylogenetic tree was visualized in FigTree v1.4.3. (http:/tree.bio.ed.ac.uk/software/figtree/) with maximum likelihood bootstrap proportions (MLBP) greater than 70% and Bayesian inference posterior probabilities (BIPP) greater than 0.90, as shown at the nodes. The phylogram was edited in Adobe Illustrator v.27.5 (Adobe Systems Inc., USA). All GenBank accession numbers of sequences used in this study are provided in Table 1.

Results

Phylogeny

The combined ITS, LSU, tef1, and tub2 dataset encompassed 215 strains, including six newly sequenced strains, with Sporocadustrimorphus CFCC 55171 and ROC 113 serving as the outgroup taxa, and representative species of Arthrinium, Nigrospora, and Neoarthrinium as the sister groups. The multi-locus sequence dataset comprised 2,081 characters, including gaps, with the following character ranges: ITS (1-352), LSU (353-1149), tef1 (1150-1775), and tub2 (1776-2081). The topologies of phylogenetic trees generated by ML and BI analyses were congruent, and the BI tree with MLBP and BIPP is presented in Fig. 1.

Figure 1.

Figure 1.

Phylogenetic tree of Apiospora based on the combined ITS, LSU, tef1, and tub2 sequences alignment. Maximum likelihood bootstrap proportions ≥70% (left) and Bayesian inference posterior probability ≥0.90 (right) are indicated at nodes (MLBP/BIPP). Sporocadustrimorphus (CFCC 55171 and ROC 113) are chosen as the outgroup taxa. The novel species from this study are highlighted in red.

The phylogenetic analysis revealed that the species of Apiospora, Arthrinium, Nigrospora, and Neoarthrinium formed four well-supported distinct lineages. Within the genus Apiospora, the 187 strains, encompassing six newly sequenced strains, formed twelve well-supported major clades. The six endophytic strains clustered within one of the major clades H, along with A.garethjonesii, A.neogarethjonesii, A.setostroma, A.subrosea, A.mytilomorpha, and A.neobambusae. Concurrently, the six endophytic strains segregated into three independent clades with robust supported values, indicating the presence of three novel species. These novel taxa are formally described herein and assigned the new names A.gongcheniae, A.paragongcheniae, and A.neogongcheniae.

Taxonomy

. Apiospora gongcheniae

C. L. Zhang sp. nov.

3CB66A0C-DA1A-52F5-B42B-C85EE95BDB90

Fungal Names: FN 571885

Fig. 2

Figure 2.

Figure 2.

Apiosporagongcheniae (YNE00465, ex-type culture) a colonies after 7 d at 25 °C on PDAb colonies after 7 d at 25 °C on MEAc conidiomata on MEAd-g conidiogenous cells giving rise to conidia h–i conidia with pale germ slit. Scale bars: 500 μm (e); 10 μm (f–k).

Etymology.

Named after Prof. Gongchen Wang in recognition of her significant contribution to the fields of mycology and plant pathology in China.

Type.

China, Yunnan Province: Xishuangbanna, Naban River Watershed National Nature Reserve, 22°04'N, 100°32'E, on the stems of Oryzameyerianasubsp.granulata, Aug 2015, J.J. Chen, YNE00465 (holotype GDMCC 3.1045, stored in a metabolically inactive state); ex-type culture YNE00465.

Description.

Asexual morph: Hyphae hyaline, branched, septate, smooth, 1.1–2.6 μm diameter (mean = 1.7 μm, n = 30). Conidiophores reduced to conidiogenous cells. Conidiogenous cells hyaline to pale brown, erect, verrucose, cylindrical with tiny denticles, clustered in groups, sometimes aggregated in clusters on hyphae or sporodochia, 3.5–9.4 × 1.9–5.2 μm (mean = 5.6 × 3.1 μm, n = 30). Conidia pale brown to dark brown, smooth, granular, globose to subglobose in surface view, lenticular to side view with a pale longitudinal germ slit, with obvious central basal scar, 8.0–17.0 × 6.8–16.1 μm (mean = 13.6 × 11.6 μm, n = 50). Sexual morph: Undetermined.

Culture characteristics.

On PDA, colonies flat, cottony, dense, margin circular, greyish, reverse light orange, covering the 90 mm plate after 7 days at 25 °C. On MEA, colonies dusty pink, dense, covering the 90 mm plate after 7 days at 25 °C. Conidiomata black, globose, abundant, attach to surface of substrate, forming on PDA and MEA after 7–10 days.

Additional specimens examined.

China, Yunnan Province: Xishuangbanna, Naban River Watershed National Nature Reserve, 22°04'N, 100°32'E, on the stems of Oryzameyerianasubsp.granulata, Aug 2015, J.J. Chen, YNE00565.

Note.

Phylogenetic analyses confirmed that A.gongcheniae formed an independent clade, exhibiting a close evolutionary relationship with A.garethjonesii, A.neogarethjonesii and A.subrosea. Based on a BLASTN search of the GenBank database, it was found that A.paragongcheniae shares high similarities with the following strains: A.garethjonesii strain HKAS 96289 (93.76% in ITS, 99.81% in LSU), strain GZCC 20-0115 (93.76% in ITS, 99.24% in LSU, 94.06% in tef1), strain SICAUCC 22-0027 (93.76% in ITS, 99.81% in LSU, 94.51% in tub2), strain SICAUCC 22-0028 (93.76% in ITS, 99.81% in LSU, 93.63% in tub2); A.subrosea strain CGMCC 3.18337 (96.94% in ITS, 99.42% in LSU, 93.47% in tef1, 91.87% in tub2), strain LC7291 (90.09% in ITS, 99.41% in LSU, 93.47% in tef1, 91.87% in tub2); and A.neogarethjonesii strain HKAS 102408 (92.86% in ITS, 99.82% in LSU). The tef1 and tub2 sequence data are currently unavailable for A.neogarethjonesii to compare with A.gongcheniae.

As a synopsis of the morphological characteristics presented in Table 2, A.gongcheniae differs from A.garethjonesii and A.neogarethjonesii in having smaller conidia (8.0–17.0 × 6.8–16.1 μm, mean = 13.6 × 11.6 μm) compared to A.garethjonesii (surface view: 16–19 µm diam, side view: 17–22 µm diam) and A.neogarethjonesii (20–35 × 15–30 µm, mean = 28.5 × 25.6 µm). Additionally, A.gongcheniae exhibits shorter conidiogenous cells (3.5–9.4 × 1.9–5.2 μm, mean = 5.6 × 3.1 μm) in contrast to A.garethjonesii (6–19 × 3–5 µm, mean = 11 × 4 µm) and A.neogarethjonesii (10–48 × 4–5.5 µm, mean = 35.4 × 4.3 µm). While A.gongcheniae shares a similar size range for conidia and conidiogenous cells with A.subrosea, it is distinguished by A.gongcheniae having conidia featuring a central basal scar and cylindrical conidiogenous cells with tiny denticles. Based on molecular and morphological evidence, we propose A.gongcheniae as a new species.

Table 2.

Synopsis of morphological characteristics of related Apiospora species. Notes: ND = Not determined.

Strains Apiosporagarethjonesii (D.Q. Dai & H.B. Jiang) Pintos & P. Alvarado (2021) A.neogarethjonesii (D.Q. Dai & K.D. Hyde) Pintos & P. Alvarado (2021) A.subrosea (M. Wang & L. Cai) Pintos & P. Alvarado (2021) A.neobambusae Pintos & P. Alvarado (2021) (=Arthriniumbambusae M. Wang & L. Cai (2018)) A.gongcheniae A.paragongcheniae A.neogongcheniae
Host / Substrate Dead culms of bamboo Dead culms of bamboo Leaves of bamboo Leaves of bamboo Stems of Oryzameyerianasubsp.granulata Stems of unidentified Poaceae plant Stems of unidentified Poaceae plant
Known lifestyle Saprobe Saprobe Endophyte Endophyte Endophyte Endophyte Endophyte
Asci 125–154 × 35–42 μm (x– = 139 × 38 μm, n = 20), 8-spored 95–125 × 20–25 μm (x– = 97.6 × 21.3 μm, n = 20), 8-spored ND ND ND ND ND
Ascospores 30–42 × 11–16 μm (x– = 39 × 13 μm, n = 20), 2-seriate, 1-septate, ellipsoidal 25–30 × 9.5–11 μm (x– = 29.1 × 10.3 μm, n = 20), 2-seriate, overlapping, 1-septate, ellipsoidal, 3–10 µm wide ND ND ND ND ND
Conidiomata Black, with hair-like setae Black, ellipsoid to irregular, coriaceous Black, irregular Black, irregular Black, globose, abundant, attach to the surface of the substrate Black, globose to irregular shape, sparse, semi-immersed in the substrate ND
Conidiophores Reduced to conidiogenous cells 4.5–6 × 3.5–4.5 µm (x– = 5.4 × 4.3 µm, n = 20), cylindrical, aseptate Hyaline to pale brown, smooth, erect or ascending, simple, flexuous, subcylindrical, clustered in groups, aggregated in brown sporodochia, up to 20 µm long, 2–4.5 µm width Reduced to conidiogenous cells Reduced to conidiogenous cells Hyaline, erect, basauxic, doliiform, subspherical to barrel-shaped, aggregated in clusters on pale brown sporodochia, sometimes reduced to conidiogenous cells, 12.2–35.1 × 2.1–8.8 μm (x– = 24.5 × 4.3 μm, n = 30) ND
Conidiogenous cells Hyaline to pale brown, smooth, ampulliform, aggregated in black sporodochia, (5−) 6–19 (−20) µm × (2−) 3–5 (−7) µm (x– = 11 µm × 4 µm, n = 20) Basauxic, cylindrical, discrete, smooth-walled, 10–48 × 4–5.5 µm (x– = 35.4 × 4.3 µm, n = 20) Pale brown, smooth, doliiform to subcylindrical, 3.0–6.5 × 2.0–5.0 µm (x– = 4.7 ± 1.2 × 3.7 ± 0.9, n = 30) Hyaline to pale brown, erect, aggregated in clusters on hyphae, smooth, doliiform to ampulliform, or lageni-form, 4.0–12.0 × 3.0–7.0 µm (x– = 6.6 ± 1.8 × 4.8 ± 0.9, n = 30) Hyaline to pale brown, erect, verrucose, cylindrical with tiny denticles, clustered in groups, sometimes aggregated in clusters on hyphae or sporodochia, 3.5–9.4 × 1.9–5.2 μm (x– = 5.6 × 3.1 μm, n = 30) Hyaline, ampulliform, doliiform to clavate, verrucose, 5.0–13.1 × 2.1–6.0 μm (x– = 8.2 × 3.9 μm, n = 30) ND
Conidia (14–)16–19 (–20) µm diam, brown, smooth, granular, globose to subglobose in surface view, and (16−) 17–22 (−23) µm diam, with pale equatorial slit in side view Dark brown, globose to subglobose, smooth-walled, with a truncate basal scar, 20–35 × 15–30 µm (x– = 28.5 × 25.6 µm, n = 20) Pale brown to dark brown, smooth, globose to subglobose or ellipsoidal, 12.0–17.5 × 9.0–16.0 µm (x– = 14.9 ± 1.4 × 11.8 ± 1.8, n = 50) Olivaceous to brown, smooth to finely roughened, subglobose to ellipsoid, 11.5–15.5 × 7.0–14.0 µm (x– = 13.2 ± 0.8 × 11.4 ± 1.2, n = 50) Pale brown to dark brown, smooth, granular, globose to subglobose in surface view, lenticular to side view with a pale longitudinal germ slit, with obvious central basal scar, 8.0–17.0 × 6.8–16.1 μm (x– = 13.6 × 11.6 μm, n = 50) Pale brown to dark brown, smooth to granular, subglobose to oval, occasionally swollen into pyriform to reniform, with a pale longitudinal germ slit in side view, 8.2–18.7 × 6.4–13.4 μm (x– = 12.4 × 10.0 μm, n = 50) ND
References (Dai et al. 2016; Feng et al. 2021) (Hyde et al. 2020) (Wang et al. 2018) (Wang et al. 2018) This study This study This study

. Apiospora paragongcheniae

C. L. Zhang sp. nov.

4B35590E-B30E-5BC6-8608-CEE8CD1E6423

Fungal Names: FN 571886

Fig. 3

Figure 3.

Figure 3.

Apiosporaparagongcheniae (YNE00992, ex-type culture) a colonies after 7 d at 25 °C on PDAb colonies after 6 d at 25 °C on MEAc conidioma on MEAd–i conidiogenous cells giving rise to conidia j–o conidia. Scale bars: 500 μm (c); 10 μm (d–o).

Etymology.

Named after its phylogenetic close related to A.gongcheniae.

Type.

China, Yunnan Province: Xishuangbanna, Naban River Watershed National Nature Reserve, 22°04'N, 100°32'E, on the stems of unidentified Poaceae plant, Sep 2016, J.J. Chen, YNE00992 (Holotype GDMCC 3.1046, stored in a metabolically inactive state); ex-type culture YNE00992.

Description.

Asexual morph: Hyphae hyaline, branched, septate, smooth, 1.1–2.2 μm diameter (mean = 1.6 μm, n = 30). Conidiophores hyaline, erect, basauxic, doliiform, subspherical to barrel-shaped, aggregated in clusters on pale brown sporodochia, sometimes reduced to conidiogenous cells, 12.2–35.1 × 2.1–8.8 μm (mean = 24.5 × 4.3 μm, n = 30). Conidiogenous cells hyaline, ampulliform, doliiform to clavate, verrucose, 5.0–13.1 × 2.1–6.0 μm (mean = 8.2 × 3.9 μm, n = 30). Conidia pale brown to dark brown, smooth to granular, subglobose to oval, occasionally swollen into pyriform to reniform, with a pale longitudinal germ slit in side view, 8.2–18.7 × 6.4–13.4 μm (mean = 12.4 × 10.0 μm, n = 50). Sexual morph: Undetermined.

Culture characteristics.

On PDA, colonies flat, rounded, initially white, becoming yellowish-white, with sparse aerial mycelia, mycelium partly immersed in the medium, covering the 90 mm plate after 6 days at 25 °C. On MEA, colonies white, more abundant aerial mycelia, covering the 90 mm plate after 6 days at 25 °C. Conidiomata black, globose to irregular shape, sparse, solitary, semi-immersed in the substrate, observed on MEA after 21–30 days.

Additional specimens examined.

China, Yunnan Province: Xishuangbanna, Naban River Watershed National Nature Reserve, 21°10'N, 99°55'E, on the stems of unidentified Poaceae plant, Oct 2018, X.X. Feng, YNE001259.

Note.

Phylogenetic analyses confirmed that A.paragongcheniae formed an independent clade, exhibiting a close evolutionary relationship with A.subrosea, A.neobambusae and A.neogarethjonesii. Based on a BLASTN search of the GenBank database, it was found that A.paragongcheniae shares high similarities to the following strains: A.subrosea strain CGMCC 3.18337 (98.05% in ITS, 99.23% in LSU, 95.93% in tef1, 93.63% in tub2), strain LC7291 (98.05% in ITS, 99.22% in LSU, 95.93% in tef1, 93.63% in tub2); A.neobambusae strain CGMCC 3.18335 (98.05% in ITS, 100% in LSU, 97.13% in tef1, 93.48% in tub2), strain LC7107 (98.03% in ITS, 100% in LSU, 94.44% in tef1, 93.48% in tub2), strain LC7124 (98.05% in ITS, 100% in LSU, 96.82% in tef1, 93.47% in tub2); and A.neogarethjonesii strain HKAS 102408 (95.43% in ITS, 99.63% in LSU). The tef1 and tub2 sequence data are currently unavailable for A.neogarethjonesii to compare with A.paragongcheniae.

As a synopsis of morphological characteristics presented in Table 2, A.paragongcheniae distinguishes itself from A.neobambusae, A.neogarethjonesii, and A.subrosea in the shapes and sizes of its conidia. The conidia of A.paragongcheniae range from subglobose to oval, occasionally swollen into pyriform to reniform shapes, measuring 8.2–18.7 × 6.4–13.4 μm. This contrasts with A.neobambusae (subglobose to ellipsoid, 11.5–15.5 × 7.0–14.0 µm), A.neogarethjonesii (globose to subglobose, 20–35 × 15–30 µm), and A.subrosea (globose to subglobose or ellipsoidal, 12.0–17.5 × 9.0–16.0 µm). Furthermore, A.paragongcheniae exhibits elongated conidiogenous cells (5.0–13.1 × 2.1–6.0 μm, mean = 8.2 × 3.9 μm) compared to A.neobambusae (4.0–12.0 × 3.0–7.0 µm, mean = 6.6 × 4.8 μm) and A.subrosea (3.0–6.5 × 2.0–5.0 µm, mean = 4.7 × 3.7 μm). Additionally, A.paragongcheniae exhibits shorter conidiogenous cells (5.0–13.1 × 2.1–6.0 μm) compared to A.neogarethjonesii (10–48 × 4–5.5 µm). Moreover, these species differ in the morphology of their conidiophores. A.paragongcheniae displays hyaline, basauxic, doliiform, subspherical to barrel-shaped conidiophores, whereas A.neogarethjonesii has shorter conidiophores, and A.subrosea has hyaline to pale brown, simple, subcylindrical conidiophores. Notably, the conidiophores of A.neobambusae have reduced to conidiogenous cells.

. Apiospora neogongcheniae

C. L. Zhang sp. nov.

658C79C8-D19C-517C-BED6-D851C9B7EDF9

Fungal Names: FN 571887

Fig. 4

Figure 4.

Figure 4.

Apiosporaneogongcheniae (YNE01248, ex-type culture) a colonies after 7 d at 25 °C on PDAb colonies after 7 d at 25 °C on MEAc colonies after 7 d at 25 °C on SNA d colonies after 7 d at 25 °C on PDA with rice leaves e colonies after 7 d at 25 °C on MEA with rice leaves f colonies after 7 d at 25 °C on SNA with rice leaves g–h chlamydospores. Scale bars: 20 μm.

Etymology.

Named after its phylogenetic close related to A.gongcheniae.

Type.

China, Yunnan Province: Xishuangbanna, Naban River Watershed National Nature Reserve, 21°10'N, 99°55'E, on the stems of unidentified Poaceae plant, Oct 2018, X.X. Feng, YNE01248 (holotype GDMCC 3.1047, stored in a metabolically inactive state); ex-type culture YNE01248.

Description.

Asexual morph: Hyphae hyaline, branched, septate, smooth, 1.0–2.5 μm diameter (mean = 1.5 μm, n = 30). Conidia not observed. Chlamydospores single, terminal, globose, rare. Sexual morph: Undetermined.

Culture characteristics.

On PDA, colonies flat, rounded, initially white, becoming yellowish-white, cottony, with moderate aerial mycelia, covering the 90 mm plate after 7 days at 25 °C. On MEA, colonies white, dense aerial mycelia, forming multiple circles around the center, covering the 90 mm plate after 7 days at 25 °C. Conidiomata were not observed.

Additional specimens examined.

China, Yunnan Province: Xishuangbanna, Naban River Watershed National Nature Reserve, 21°10'N, 99°55'E, on the stems of unidentified Poaceae plant, Oct 2018, X.X. Feng, YNE001260.

Note.

Phylogenetic analyses confirmed that A.neogongcheniae formed an independent clade, exhibiting a close evolutionary relationship with A.garethjonesii, A.neogarethjonesii and A.subrosea. Based on a BLASTN search of the GenBank database, it was found that A.neogongcheniae shares high similarities with the following strains: A.garethjonesii strain HKAS 96289 (94.88% in ITS, 100% in LSU), strain GZCC 20-0115 (94.88% in ITS, 99.41% in LSU, 96.67% in tef1), strain SICAUCC 22-0027 (94.88% in ITS, 100% in LSU, 96.69% in tub2), strain SICAUCC 22-0028 (94.88% in ITS, 100% in LSU; 96.79% in tub2); A.subrosea strain CGMCC 3.18337 (98.35% in ITS, 99.80% in LSU, 94.61% in tef1, 94.99% in tub2), strain LC7291 (91.41% in ITS, 99.80% in LSU, 94.38% in tef1, 94.99% in tub2); and A.neogarethjonesii strain HKAS 102408 (93.97% in ITS, 100% in LSU). The tef1 and tub2 sequence data are currently unavailable for A.neogarethjonesii to compare with A.neogongcheniae.

Due to the absence of sexual and asexual sporulation characters in A.neogongcheniae, a comparison of its culture characteristics with those of A.garethjonesii, A.neogarethjonesii and A.subrosea was conducted. On PDA, A.neogongcheniae exhibits a yellowish-white surface and reverse color, whereas A.garethjonesii displays a white surface with a reddish reverse, A.neogarethjonesii shows a white to black surface coloration, and A.subrosea presents a light pink surface with a peach-puff reverse. Phylogenetically, A.neogongcheniae strains YNE01248 and YNE01260 form a distinct branch with 99% MLBP and 0.95 BIPP. Therefore, we propose A.neogongcheniae as a novel species.

Discussion

In the present study, three new species of endophytic Apiospora were examined: A.gongcheniae, A.paragongcheniae, and A.neogongcheniae, all of them isolated from the stems of Poaceae plants in Yunnan province of China. According to morphological and molecular identification, the taxonomic position of the three new species was verified.

The generic circumscription of Apiospora was primarily defined through phylogenetic analysis, given the limited morphological characteristics of Apiospora and Arthrinium. The results of a multi-locus phylogenetic analysis in this study, utilizing a combined dataset of ITS, LSU, tef1, and tub2 sequences, supported the previous classification that Apiospora and Arthrinium are distinct lineages rather than synonyms (Pintos and Alvarado 2021). Unlike the six major clades identified in a previous study (Pintos and Alvarado 2022), the current study revealed twelve major clades with robust support through the phylogenetic analysis of 114 Apiospora species, including all known species with available sequences. Apiosporaminutispora (Das et al. 2020) and Apiosporamarianiae AP18219 (Pintos and Alvarado 2022) were not classified within these twelve major clades due to their representation by a single record. The delineation of most Apiospora species into major clades remained consistent across both studies. Notably, A.garethjonesii, A.neogarethjonesii, A.neobambusae, A.mytilomorpha, A.subrosea, and A.setostroma clustered together in a strongly supported major clade H, aligning with findings from previous studies (Crous et al. 2021; Monkai et al. 2022; Pintos and Alvarado 2022; Liao et al. 2023; Liu et al. 2024). Within this major clade, three distinct clades representing three new species were identified (Fig. 1). A.gongcheniae is distinguished from A.garethjonesii by 34/545 nucleotides in the ITS sequences, from A.neogarethjonesii by 39/546, and from A.subrosea by 13/425. A.paragongcheniae is distinguished from A.subrosea by 10/512, from A.neobambusae by 10/512, and from A.neogarethjonesii by 24/525 nucleotides in the ITS sequences. A.neogongcheniae is distinguished from A.garethjonesii by 28/547, from A.neogarethjonesii by 34/547, and from A.subrosea by 7/425 nucleotides in the ITS sequences.

Apiospora exhibits ecological diversity, as evidenced by its wide host ranges. Most reported Apiospora species show a host preference within the Poaceae family, as noted by Monkai et al. (Monkai et al. 2022). Our new species were also found growing on plant hosts of the Poaceae family. Specifically, A.gongcheniae was discovered on the stems of Oryzameyerianasubsp.granulata, a member of the plant family Poaceae. The other two new species, A.paragongcheniae and A.neogongcheniae, were found on the stems of unidentified Poaceae plants. Their close relatives, A.garethjonesii, A.neogarethjonesii, A.neobambusae, and A.subrosea, were found on bamboo plants. Most Apiospora species exhibit saprobic and endophytic lifestyles, which are likely associated with the prevalence of Apiospora (Liao et al. 2023). Our new species occurred as endophytic fungi. Further investigation into endophytic Apiospora species will significantly enhance the diversity within the Apiospora genus.

Morphological characteristics, including asexual and sexual structures, serve as a fundamental basis for fungal systematics and phylogenetic studies, playing a vital role in the comprehensive examination of fungi. However, many endophytes do not form distinct asexual and sexual structures, as observed in A.neogongcheniae in this study, posing challenges in determining their taxonomic status based on morphological features. Recent advances in fungal taxonomy and phylogeny have provided new insights into many species with limited morphological features. Future taxonomic efforts necessitate the integration of morphological traits with molecular evidence to elucidate the natural and stable phylogenetic relationships among Apiospora species and their related Arthrinium species.

Supplementary Material

XML Treatment for Apiospora gongcheniae
XML Treatment for Apiospora paragongcheniae
XML Treatment for Apiospora neogongcheniae

Citation

Yan X-N, Zhang C-L (2024) Three new endophytic Apiospora species (Apiosporaceae, Amphisphaeriales) from China. MycoKeys 105: 295–316. https://doi.org/10.3897/mycokeys.105.122583

Additional information

Conflict of interest

The authors have declared that no competing interests exist.

Ethical statement

No ethical statement was reported.

Funding

This work was financed by the National Natural Science Foundation of China (Grant No. 31870010).

Author contributions

Xiao-Ni Yan: Investigation, data curation, formal analysis and writing-original draft. Chu-Long Zhang: Conceptualization, methodology, validaiton, formal analysis, supervision, writing-review & editing, funding acquistition.

Author ORCIDs

Xiao-Ni Yan https://orcid.org/0009-0009-9984-3617

Chu-Long Zhang https://orcid.org/0000-0001-5180-0348

Data availability

All of the data that support the findings of this study are available in the main text.

References

  1. Carbone I, Kohn LM. (1999) A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia 91(3): 553–556. 10.1080/00275514.1999.12061051 [DOI] [Google Scholar]
  2. Chen K, Wu XQ, Huang MX, Han YY. (2014) First report of brown culm streak of Phyllostachyspraecox caused by Arthriniumarundinis in Nanjing, China. Plant Disease 98(9): 1274. 10.1094/PDIS-02-14-0165-PDN [DOI] [PubMed] [Google Scholar]
  3. Chi M, Park S, Lee Y. (2009) A quick and safe method for fungal DNA extraction. The Plant Pathology Journal 25(1): 108–111. 10.5423/PPJ.2009.25.1.108 [DOI] [Google Scholar]
  4. Crous PW, Groenewald JZ. (2013) A phylogenetic re-evaluation of Arthrinium. IMA Fungus 4(1): 133–154. 10.5598/imafungus.2013.04.01.13 [DOI] [PMC free article] [PubMed]
  5. Crous PW, Hernández-Restrepo M, Schumacher RK, Cowan DA, Maggs-Kölling G, Marais E, Wingfield MJ, Yilmaz N, Adan OCG, Akulov A, Duarte EÁ, Berraf-Tebbal A, Bulgakov TS, Carnegie AJ, de Beer ZW, Decock C, Dijksterhuis J, Duong TA, Eichmeier A, Hien LT, Houbraken JAMP, Khanh TN, Liem NV, Lombard L, Lutzoni FM, Miadlikowska JM, Nel WJ, Pascoe IG, Roets F, Roux J, Samson RA, Shen M, Spetik M, Thangavel R, Thanh HM, Thao LD, van Nieuwenhuijzen EJ, Zhang JQ, Zhang Y, Zhao LL, Groenewald JZ. (2021) New and Interesting Fungi. 4. Fungal Systematics and Evolution 7(1): 255–343. 10.3114/fuse.2021.07.13 [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dai DQ, Jiang HB, Tang LZ, Bhat DJ. (2016) Two new species of Arthrinium (Apiosporaceae, Xylariales) associated with bamboo from Yunnan, China. Mycosphere : Journal of Fungal Biology 7(9): 1332–1345. 10.5943/mycosphere/7/9/7 [DOI] [Google Scholar]
  7. Dai DQ, Phookamsak R, Wijayawardene NN, Li WJ, Bhat DJ, Xu JC, Taylor JE, Hyde KD, Chukeatirote E. (2017) Bambusicolous fungi. Fungal Diversity 82(1): 1–105. 10.1007/s13225-016-0367-8 [DOI] [Google Scholar]
  8. Das K, Lee SY, Choi HW, Eom AH, Cho YJ, Jung HY. (2020) Taxonomy of Arthriniumminutisporum sp. nov., Peziculaneosporulosa, and Acrocalymmapterocarpi: New Records from Soil in Korea. Mycobiology 48(6): 450–463. 10.1080/12298093.2020.1830741 [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Ellis MB. (1965) Dematiaceous Hyphomycetes. VI. Mycological Papers 103(29): 1–46. [Google Scholar]
  10. Feng Y, Liu JK, Lin CG, Chen YY, Xiang MM, Liu ZY. (2021) Additions to the genus Arthrinium (Apiosporaceae) from bamboos in China. Frontiers in Microbiology 12: 661281. 10.3389/fmicb.2021.661281 [DOI] [PMC free article] [PubMed]
  11. Gerin D, Nigro F, Faretra F, Pollastro S. (2020) Identification of Arthriniummarii as causal agent of olive tree dieback in Apulia (Southern Italy). Plant Disease 104(3): 694–701. 10.1094/PDIS-03-19-0569-RE [DOI] [PubMed] [Google Scholar]
  12. Glass NL, Donaldson GC. (1995) Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Applied and Environmental Microbiology 61(4): 1323–1330. 10.1128/aem.61.4.1323-1330.1995 [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Gong Z, Yang Y, Zhang L, Luo Q, Luo J, Zhang Y. (2023) First report of Apiosporaarundinis causing leaf spot on Polygonatumcyrtonema in China. Plant Disease 108(2): 524. 10.1094/PDIS-08-23-1580-PDN [DOI] [Google Scholar]
  14. Hyde KD, Fröhlich J, Taylor JE. (1998) Fungi from palms. XXXVI. Reflections on unitunicate ascomycetes with apiospores. Sydowia 50(1): 21–80. [Google Scholar]
  15. Hyde KD, Norphanphoun C, Maharachchikumbura S, Bhat DJ, Jones E, Bundhun D, Chen YJ, Bao DF, Boonmee S, Calabon MS, Chaiwan N, Chethana K, Dai DQ, Dayarathne MC, Devadatha B, Dissanayake AJ, Dissanayake LS, Doilom M, Dong W, Fan XL, Goonasekara ID, Hongsanan S, Huang SK, Jayawardena RS, Jeewon R, Karunarathna A, Konta S, Kumar, Lin CG, Liu JK, Liu NG, Luangsaard J, Lumyong S, Luo ZL, Marasinghe DS, McKenzie E, Niego A, Niranjan M, Perera RH, Phukhamsakda C, Rathnayaka AR, Samarakoon MC, Samarakoon S, Sarma VV, Senanayake IC, Shang QJ, Stadler M, Tibpromma S, Wanasinghe DN, Wei DP, Wijayawardene NN, Xiao YP, Yang J, Zeng XY, Zhang SN, Xiang MM. (2020) Refined families of Sordariomycetes. Mycosphere 11(1): 305–1059. 10.5943/mycosphere/11/1/7 [DOI] [Google Scholar]
  16. Jiang N, Li J, Tian CM. (2018) Arthrinium species associated with bamboo and reed plants in China. Fungal Systematics and Evolution 2: 1–9. 10.3114/fuse.2018.02.01 [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Jiang HB, Hyde KD, Doilom M, Karunarathna SC, Xu JC, Phookamsak R. (2019) Arthriniumsetostromum (Apiosporaceae, Xylariales), a novel species associated with dead bamboo from Yunnan, China. Asian Journal of Mycology 2(1): 254–268. 10.5943/ajom/2/1/16 [DOI] [Google Scholar]
  18. Jiang N, Voglmayr H, Ma CY, Xue H, Piao CG, Li Y. (2022) A new Arthrinium-like genus of Amphisphaeriales in China. MycoKeys 92: 27–43. 10.3897/mycokeys.92.86521 [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kalyaanamoorthy S, Minh BQ, Wong T, von Haeseler A, Jermiin LS. (2017) ModelFinder: Fast model selection for accurate phylogenetic estimates. Nature Methods 14(6): 587–589. 10.1038/nmeth.4285 [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Katoh K, Standley DM. (2013) MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Molecular Biology and Evolution 30(4): 772–780. 10.1093/molbev/mst010 [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kwon SL, Cho M, Lee YM, Lee H, Kim C, Kim GH, Kim JJ. (2022) Diversity of the bambusicolous fungus Apiospora in Korea: Discovery of new Apiospora species. Mycobiology 50(5): 302–316. 10.1080/12298093.2022.2133808 [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Li S, Peng C, Yuan R, Tian C. (2023) Morphological and phylogenetic analyses reveal three new species of Apiospora in China. MycoKeys 99: 297–317. 10.3897/mycokeys.99.108384 [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Liao J, Jiang W, Wu X, He J, Li H, Wang T, Cheng L, Chen W, Mo L. (2022) First report of Apiospora Mold on sugarcane in China caused by Apiosporaarundinis (Arthriniumarundinis). Plant Disease 106(3): 1058. 10.1094/PDIS-02-21-0386-PDN [DOI] [PubMed] [Google Scholar]
  24. Liao C, Senanayake IC, Dong W, Thilini Chethana KW, Tangtrakulwanich K, Zhang Y, Doilom M. (2023) Taxonomic and phylogenetic updates on Apiospora: Introducing four new species from Wurfbainiavillosa and grasses in China. Journal of Fungi (Basel, Switzerland) 9(11): 1087. 10.3390/jof9111087 [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Liu WT, Chen JJ, Feng JW, Xia CY, Shao YX, Zhu YX, Liu F, Cai HM, Yang KB, Zhang CL. (2021) Diversity of endophytic fungi associated with plants of Poaceae from Yunnan, Zhejiang and Inner Mongolia. Mycosystema 40(3): 502–513. 10.13346/j.mycosystema.200240 [DOI] [Google Scholar]
  26. Liu X, Zhang Z, Wang S, Zhang X. (2024) Three new species of Apiospora (Amphisphaeriales, Apiosporaceae) on Indocalamuslongiauritus, Adinandraglischroloma and Machilusnanmu from Hainan and Fujian, China. Journal of Fungi (Basel, Switzerland) 10(1): 74. 10.3390/jof10010074 [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Martínez-Cano C, Grey WE, Sands DC. (1992) First report of Arthriniumarundinis causing kernel blight on barley. Plant Disease 76(10): 1077B. 10.1094/PD-76-1077B [DOI]
  28. Minh BQ, Nguyen MA, von Haeseler A. (2013) Ultrafast approximation for phylogenetic bootstrap. Molecular Biology and Evolution 30(5): 1188–1195. 10.1093/molbev/mst024 [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Minter DW, Cannon PF. (2018) Arthrinium minus. Descriptions of Fungi and Bacteria 2155. 10.1079/DFB/20183347366 [Descriptions of Fungi and Bacteria] [DOI]
  30. Monkai J, Phookamsak R, Tennakoon DS, Bhat DJ, Xu S, Li Q, Xu J, Mortimer PE, Kumla J, Lumyong S. (2022) Insight into the taxonomic Resolution of Apiospora: Introducing novel species and records from bamboo in China and Thailand. Diversity 14(11): 918. 10.3390/d14110918 [DOI] [Google Scholar]
  31. Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ. (2015) IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution 32(1): 268–274. 10.1093/molbev/msu300 [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. O’Donnell K, Cigelnik E. (1997) Two divergent intragenomic rDNA ITS2 types within a monophyletic lineage of the fungus Fusarium are nonorthologous. Molecular Phylogenetics and Evolution 7(1): 103–116. 10.1006/mpev.1996.0376 [DOI] [PubMed] [Google Scholar]
  33. O’Donnell K, Kistler HC, Cigelnik E, Ploetz RC. (1998) Multiple evolutionary origins of the fungus causing Panama disease of banana: Concordant evidence from nuclear and mitochondrial gene genealogies. Proceedings of the National Academy of Sciences of the United States of America 95(5): 2044–2049. 10.1073/pnas.95.5.2044 [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Pintos Á, Alvarado P. (2021) Phylogenetic delimitation of Apiospora and Arthrinium. Fungal Systematics and Evolution 7(1): 197–221. 10.3114/fuse.2021.07.10 [DOI] [PMC free article] [PubMed]
  35. Pintos Á, Alvarado P. (2022) New studies on Apiospora (Amphisphaeriales, Apiosporaceae): Epitypification of Sphaeriaapiospora, proposal of Ap.marianiae sp. nov. and description of the asexual morph of Ap.sichuanensis. MycoKeys 92: 63–78. 10.3897/mycokeys.92.87593 [DOI] [PMC free article] [PubMed]
  36. Réblová M, Miller AN, Rossman AY, Seifert KA, Crous PW, Hawksworth DL, Abdel-Wahab MA, Cannon PF, Daranagama DA, De Beer ZW, Huang S-K, Hyde KD, Jayawardena R, Jaklitsch W, Jones EBG, Ju Y-M, Judith C, Maharachchikumbura SSN, Pang K-L, Petrini LE, Raja HA, Romero AI, Shearer C, Senanayake IC, Voglmayr H, Weir BS, Wijayawarden NN. (2016) Recommendations for competing sexual-asexually typified generic names in Sordariomycetes (except Diaporthales, Hypocreales, and Magnaporthales). IMA Fungus 7(1): 131–153. 10.5598/imafungus.2016.07.01.08 [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Rehner SA, Samuels GJ. (1995) Molecular systematics of the Hypocreales: A teleomorph gene phylogeny and the status of their anamorphs. Canadian Journal of Botany 73(S1): 816–823. 10.1139/b95-327 [DOI]
  38. Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Hohna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP. (2012) MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61(3): 539–542. 10.1093/sysbio/sys029 [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Senanayake IC, Bhat JD, Cheewangkoon R, Xie N. (2020) Bambusicolous Arthrinium species in Guangdong Province, China. Frontiers in Microbiology 11: 602773. 10.3389/fmicb.2020.602773 [DOI] [PMC free article] [PubMed]
  40. Tian X, Karunarathna SC, Mapook A, Promputtha I, Xu J, Bao D, Tibpromma S. (2021) One new species and two new host records of Apiospora from bamboo and maize in northern Thailand with thirteen new combinations. Life 11(10): 1071. 10.3390/life11101071 [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Wang M, Liu F, Crous PW, Cai L. (2017) Phylogenetic reassessment of Nigrospora: Ubiquitous endophytes, plant and human pathogens. Persoonia 39(1): 118–142. 10.3767/persoonia.2017.39.06 [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Wang M, Tan XM, Liu F, Cai L. (2018) Eight new Arthrinium species from China. MycoKeys 34: 1–24. 10.3897/mycokeys.34.24221 [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. White T, Bruns T, Lee S, Taylor J, Innis M, Gelfand D, Sninsky J. (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR Protocols: A guide to Methods and Applications 18: 315–322. 10.1016/B978-0-12-372180-8.50042-1 [DOI] [Google Scholar]
  44. Yin C, Luo F, Zhang H, Fang X, Zhu T, Li S. (2020) First report of Arthriniumkogelbergense causing blight disease of bambusa intermedia in Sichuan province, China. Plant Disease 105(1): 214. 10.1094/PDIS-06-20-1159-PDN [DOI] [PubMed] [Google Scholar]
  45. Zhang D, Gao F, Jakovlić I, Zou H, Zhang J, Li WX, Wang GT. (2020) PhyloSuite: An integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies. Molecular Ecology Resources 20(1): 348–355. 10.1111/1755-0998.13096 [DOI] [PubMed] [Google Scholar]
  46. Zhao YZ, Zhang ZF, Cai L, Peng WJ, Liu F. (2018) Four new filamentous fungal species from newly-collected and hivestored bee pollen. Mycosphere : Journal of Fungal Biology 9(6): 1089–1116. 10.5943/mycosphere/9/6/3 [DOI] [Google Scholar]
  47. Zhao HJ, Dong W, Shu YX, Mapook A, Manawasinghe IS, Doilom M, Luo M. (2023) Bambusicolous fungi in Guangdong, China: Establishing Apiosporamagnispora sp. nov. (Apiosporaceae, Amphisphaeriales) based on morphological and molecular evidence. Current Research in Environmental & Applied Mycology 13(1): 1–15. 10.5943/cream/13/1/1 [DOI] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

XML Treatment for Apiospora gongcheniae
XML Treatment for Apiospora paragongcheniae
XML Treatment for Apiospora neogongcheniae

Data Availability Statement

All of the data that support the findings of this study are available in the main text.


Articles from MycoKeys are provided here courtesy of Pensoft Publishers

RESOURCES