Abstract
OBJECTIVES: Irregular working hours severely disturb sleep and wakefulness. This paper presents a modification of the quantitative (computerised) three process model of regulation of alertness to predict duration of sleep in connection with irregular sleep patterns. METHODS: The model uses a circadian "C" (sinusoidal) and homeostatic "S" (exponential) component (the duration of previous periods awake and asleep), which are summed to yield predicted alertness (on a scale of 1-16). It assumes that waking from sleep will occur at a given alertness level (S' + C') when recuperation is complete. Variables of electroencephalographic duration of sleep from two studies of irregular sleep were used to model the S and C variables in a regression approach to maximise prediction. The model performance was cross validated against published field and laboratory data. RESULTS: The model parameters were defined with a high degree of precision R2 = 0.99 and the validation yielded similar values R2 = 0.98-0.95, depending on the acrophase. The paper also describes a simplified graphical version of the computation model seen as a two dimensional duration of sleep nomogram. CONCLUSION: The model seems to predict group means for duration of sleep with high precision and may serve as a tool for evaluating work and rest schedules to reduce risks of sleep disturbances.
Full text
PDF![136](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f367/1128427/27f593c611a0/oenvmed00074-0064.png)
![137](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f367/1128427/a61200ae8117/oenvmed00074-0065.png)
![138](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f367/1128427/abf3501456d7/oenvmed00074-0066.png)
![139](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f367/1128427/35531e44832c/oenvmed00074-0067.png)
![140](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f367/1128427/f4231ab0b48e/oenvmed00074-0068.png)
![141](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f367/1128427/3741cfaa8201/oenvmed00074-0069.png)
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Akerstedt T., Folkard S. Validation of the S and C components of the three-process model of alertness regulation. Sleep. 1995 Jan;18(1):1–6. doi: 10.1093/sleep/18.1.1. [DOI] [PubMed] [Google Scholar]
- Akerstedt T., Gillberg M. A dose-response study of sleep loss and spontaneous sleep termination. Psychophysiology. 1986 May;23(3):293–297. doi: 10.1111/j.1469-8986.1986.tb00635.x. [DOI] [PubMed] [Google Scholar]
- Akerstedt T., Gillberg M. The circadian variation of experimentally displaced sleep. Sleep. 1981;4(2):159–169. doi: 10.1093/sleep/4.2.159. [DOI] [PubMed] [Google Scholar]
- Akerstedt T., Kecklund G., Knutsson A. Spectral analysis of sleep electroencephalography in rotating three-shift work. Scand J Work Environ Health. 1991 Oct;17(5):330–336. doi: 10.5271/sjweh.1694. [DOI] [PubMed] [Google Scholar]
- Borbély A. A. A two process model of sleep regulation. Hum Neurobiol. 1982;1(3):195–204. [PubMed] [Google Scholar]
- Carskadon M. A., Dement W. C. Effects of total sleep loss on sleep tendency. Percept Mot Skills. 1979 Apr;48(2):495–506. doi: 10.2466/pms.1979.48.2.495. [DOI] [PubMed] [Google Scholar]
- Carskadon M. A., Dement W. C. Sleepiness and sleep state on a 90-min schedule. Psychophysiology. 1977 Mar;14(2):127–133. doi: 10.1111/j.1469-8986.1977.tb03362.x. [DOI] [PubMed] [Google Scholar]
- Daan S., Beersma D. G., Borbély A. A. Timing of human sleep: recovery process gated by a circadian pacemaker. Am J Physiol. 1984 Feb;246(2 Pt 2):R161–R183. doi: 10.1152/ajpregu.1984.246.2.R161. [DOI] [PubMed] [Google Scholar]
- Gillberg M., Anderzén I., Akerstedt T. Recovery within day-time sleep after slow wave sleep suppression. Electroencephalogr Clin Neurophysiol. 1991 Apr;78(4):267–273. doi: 10.1016/0013-4694(91)90180-c. [DOI] [PubMed] [Google Scholar]
- Kecklund G., Akerstedt T. Sleepiness in long distance truck driving: an ambulatory EEG study of night driving. Ergonomics. 1993 Sep;36(9):1007–1017. doi: 10.1080/00140139308967973. [DOI] [PubMed] [Google Scholar]
- Lavie P., Zvuluni A. The 24-hour sleep propensity function: experimental bases for somnotypology. Psychophysiology. 1992 Sep;29(5):566–575. doi: 10.1111/j.1469-8986.1992.tb02032.x. [DOI] [PubMed] [Google Scholar]
- Mitler M. M., Carskadon M. A., Czeisler C. A., Dement W. C., Dinges D. F., Graeber R. C. Catastrophes, sleep, and public policy: consensus report. Sleep. 1988 Feb;11(1):100–109. doi: 10.1093/sleep/11.1.100. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Naitoh P., Kelly T., Babkoff H. Sleep inertia: best time not to wake up? Chronobiol Int. 1993 Apr;10(2):109–118. doi: 10.1080/07420529309059699. [DOI] [PubMed] [Google Scholar]
- Torsvall L., Akerstedt T. A diurnal type scale. Construction, consistency and validation in shift work. Scand J Work Environ Health. 1980 Dec;6(4):283–290. doi: 10.5271/sjweh.2608. [DOI] [PubMed] [Google Scholar]
- Torsvall L., Akerstedt T., Gillander K., Knutsson A. Sleep on the night shift: 24-hour EEG monitoring of spontaneous sleep/wake behavior. Psychophysiology. 1989 May;26(3):352–358. doi: 10.1111/j.1469-8986.1989.tb01934.x. [DOI] [PubMed] [Google Scholar]
- Torsvall L., Akerstedt T. Sleepiness on the job: continuously measured EEG changes in train drivers. Electroencephalogr Clin Neurophysiol. 1987 Jun;66(6):502–511. doi: 10.1016/0013-4694(87)90096-4. [DOI] [PubMed] [Google Scholar]
- Webb W. B., Agnew H. W., Jr Sleep stage characteristics of long and short sleepers. Science. 1970 Apr 3;168(3927):146–147. doi: 10.1126/science.168.3927.146. [DOI] [PubMed] [Google Scholar]