Abstract
OBJECTIVES: Assessment of neurophysiological functions in workers with low level exposure to lead and evaluation of the efficacy of bone lead measurements in the prediction of effects of lead. METHODS: Exposure to lead of 60 workers from a lead battery battery factory was estimated from historical blood lead measurements and analysis of lead in the tibial and calcaneal bones with x ray fluorescence. Peripheral and central nervous system functions were assessed by measuring conduction velocities, sensory distal latencies, sensory amplitudes, and vibration thresholds as well as by quantitative measurement of the absolute and relative powers and mean frequencies of different electroencephalograph (EEG) channels. RESULTS: Sensory amplitudes, and to a smaller degree sensory or motor conduction velocities, showed a negative correlation with long term exposure to lead, most clearly with integrated blood lead concentration and exposure time. Vibration thresholds measured in the arm were related to recent exposure to lead, those measured in the leg to long term exposure. The alpha and beta activities of the EEG were more abundant in subjects with higher long term exposure to lead. Calcaneal lead content reflected short term exposure, tibial lead content reflected long term exposure. Blood lead history showed a closer relation with effects of lead than the tibial or calcaneal lead concentrations. CONCLUSIONS: Vibratory thresholds, quantitative EEG, and to a smaller extent the sensory amplitude, provide sensitive measures of effects of lead in occupationally exposed adults. Most accurate estimates of health risks induced by lead can be obtained from a good history of blood lead measurements. If such a history of blood lead concentrations is not available, analysis of bone lead may be used for the assessment of health risks.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aaserud O., Juntunen J., Matikainen E. Vibration sensitivity thresholds: methodological considerations. Acta Neurol Scand. 1990 Oct;82(4):277–283. doi: 10.1111/j.1600-0404.1990.tb01619.x. [DOI] [PubMed] [Google Scholar]
- Abbate C., Buceti R., Munaò F., Giorgianni C., Ferreri G. Neurotoxicity induced by lead levels: an electrophysiological study. Int Arch Occup Environ Health. 1995;66(6):389–392. doi: 10.1007/BF00383145. [DOI] [PubMed] [Google Scholar]
- Araki S., Honma T. Relationships between lead absorption and peripheral nerve conduction velocities in lead workers. Scand J Work Environ Health. 1976 Dec;2(4):225–231. doi: 10.5271/sjweh.2800. [DOI] [PubMed] [Google Scholar]
- Araki S., Murata K., Uchida E., Aono H., Ozawa H. Radial and median nerve conduction velocities in workers exposed to lead, copper, and zinc: a follow-up study for 2 years. Environ Res. 1993 May;61(2):308–316. doi: 10.1006/enrs.1993.1075. [DOI] [PubMed] [Google Scholar]
- Baker E. L., Feldman R. G., White R. A., Harley J. P., Niles C. A., Dinse G. E., Berkey C. S. Occupational lead neurotoxicity: a behavioural and electrophysiological evaluation. Study design and year one results. Br J Ind Med. 1984 Aug;41(3):352–361. doi: 10.1136/oem.41.3.352. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Benignus V. A., Otto D. A., Muller K. E., Seiple K. J. Effects of age and body lead burden on CNS function in young children. II. EEG spectra. Electroencephalogr Clin Neurophysiol. 1981 Oct;52(4):240–248. doi: 10.1016/0013-4694(81)90053-5. [DOI] [PubMed] [Google Scholar]
- Beritić T. Lead neuropathy. Crit Rev Toxicol. 1984;12(2):149–213. doi: 10.3109/10408448409023760. [DOI] [PubMed] [Google Scholar]
- Bordo B., Massetto N., Musicco M., Filippini G., Boeri R. Electrophysiologic changes in workers with "low" blood lead levels. Am J Ind Med. 1982;3(1):23–32. doi: 10.1002/ajim.4700030106. [DOI] [PubMed] [Google Scholar]
- Chettle D. R., Scott M. C., Somervaille L. J. Improvements in the precision of in vivo bone lead measurements. Phys Med Biol. 1989 Sep;34(9):1295–1300. doi: 10.1088/0031-9155/34/9/014. [DOI] [PubMed] [Google Scholar]
- Discalzi G., Fabbro D., Meliga F., Mocellini A., Capellaro F. Effects of occupational exposure to mercury and lead on brainstem auditory evoked potentials. Int J Psychophysiol. 1993 Jan;14(1):21–25. doi: 10.1016/0167-8760(93)90080-9. [DOI] [PubMed] [Google Scholar]
- Ehle A. L. Lead neuropathy and electrophysiological studies in low level lead exposure: a critical review. Neurotoxicology. 1986 Fall;7(3):203–216. [PubMed] [Google Scholar]
- Erkkilä J., Armstrong R., Riihimäki V., Chettle D. R., Paakkari A., Scott M., Somervaille L., Starck J., Kock B., Aitio A. In vivo measurements of lead in bone at four anatomical sites: long term occupational and consequent endogenous exposure. Br J Ind Med. 1992 Sep;49(9):631–644. doi: 10.1136/oem.49.9.631. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Halonen P., Halonen J. P., Lang H. A., Karskela V. Vibratory perception thresholds in shipyard workers exposed to solvents. Acta Neurol Scand. 1986 Jun;73(6):561–565. doi: 10.1111/j.1600-0404.1986.tb04600.x. [DOI] [PubMed] [Google Scholar]
- He F. S., Zhang S. L., Li G., Zhang S. C., Huang J. X., Wu Y. Q. An electroneurographic assessment of subclinical lead neurotoxicity. Int Arch Occup Environ Health. 1988;61(1-2):141–146. doi: 10.1007/BF00381618. [DOI] [PubMed] [Google Scholar]
- Jeyaratnam J., Devathasan G., Ong C. N., Phoon W. O., Wong P. K. Neurophysiological studies on workers exposed to lead. Br J Ind Med. 1985 Mar;42(3):173–177. doi: 10.1136/oem.42.3.173. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kajiyama K., Doi R., Sawada J., Hashimoto K., Hazama T., Nakata S., Hirata M., Yoshida T., Miyajima K. Significance of subclinical entrapment of nerves in lead neuropathy. Environ Res. 1993 Feb;60(2):248–253. doi: 10.1006/enrs.1993.1033. [DOI] [PubMed] [Google Scholar]
- Landrigan P. J. Current issues in the epidemiology and toxicology of occupational exposure to lead. Environ Health Perspect. 1990 Nov;89:61–66. doi: 10.1289/ehp.908961. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Landrigan P. J. Strategies for epidemiologic studies of lead in bone in occupationally exposed populations. Environ Health Perspect. 1991 Feb;91:81–86. doi: 10.1289/ehp.919181. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lille F., Margules S., Fournier E., Dally S., Garnier R. Effects of occupational lead exposure on motor and somatosensory evoked potentials. Neurotoxicology. 1994 Fall;15(3):679–683. [PubMed] [Google Scholar]
- Matsumoto T., Fukaya Y., Yoshitomi S., Arafuka M., Kubo N., Ohno Y. Relations between lead exposure and peripheral neuromuscular functions of lead-exposed workers--results of tapping test. Environ Res. 1993 May;61(2):299–307. doi: 10.1006/enrs.1993.1074. [DOI] [PubMed] [Google Scholar]
- Murata K., Araki S., Aono H. Effects of lead, zinc and copper absorption on peripheral nerve conduction in metal workers. Int Arch Occup Environ Health. 1987;59(1):11–20. doi: 10.1007/BF00377674. [DOI] [PubMed] [Google Scholar]
- Murata K., Araki S., Yokoyama K., Uchida E., Fujimura Y. Assessment of central, peripheral, and autonomic nervous system functions in lead workers: neuroelectrophysiological studies. Environ Res. 1993 May;61(2):323–336. doi: 10.1006/enrs.1993.1077. [DOI] [PubMed] [Google Scholar]
- Nielsen C. J., Nielsen V. K., Kirkby H., Gyntelberg F. Absence of peripheral neuropathy in long-term lead-exposed subjects. Acta Neurol Scand. 1982 Apr;65(4):241–247. doi: 10.1111/j.1600-0404.1982.tb03083.x. [DOI] [PubMed] [Google Scholar]
- Rosén I., Wildt K., Gullberg B., Berlin M. Neurophysiological effects of lead exposure. Scand J Work Environ Health. 1983 Oct;9(5):431–441. doi: 10.5271/sjweh.2399. [DOI] [PubMed] [Google Scholar]
- Santamaria J., Chiappa K. H. The EEG of drowsiness in normal adults. J Clin Neurophysiol. 1987 Oct;4(4):327–382. doi: 10.1097/00004691-198710000-00002. [DOI] [PubMed] [Google Scholar]
- Sata F., Araki S., Murata K., Fujimura Y., Uchida E. Are faster or slower large myelinated nerve fibers more sensitive to chronic lead exposure? A study of the distribution of conduction velocities. Environ Res. 1993 Aug;62(2):333–338. doi: 10.1006/enrs.1993.1118. [DOI] [PubMed] [Google Scholar]
- Seppäläinen A. M., Hernberg S. Sensitive technique for detecting subclinical lead neuropathy. Br J Ind Med. 1972 Oct;29(4):443–449. doi: 10.1136/oem.29.4.443. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Seppäläinen A. M., Hernberg S. Subclinical lead neuropathy. Am J Ind Med. 1980;1(3-4):413–420. doi: 10.1002/ajim.4700010319. [DOI] [PubMed] [Google Scholar]
- Seppäläinen A. M., Tola S., Hernberg S., Kock B. Subclinical neuropathy at "safe" levels of lead exposure. Arch Environ Health. 1975 Apr;30(4):180–183. doi: 10.1080/00039896.1975.10666672. [DOI] [PubMed] [Google Scholar]
- Somervaille L. J., Chettle D. R., Scott M. C. In vivo measurement of lead in bone using x-ray fluorescence. Phys Med Biol. 1985 Sep;30(9):929–943. doi: 10.1088/0031-9155/30/9/005. [DOI] [PubMed] [Google Scholar]
- Triebig G., Weltle D., Valentin H. Investigations on neurotoxicity of chemical substances at the workplace. V. Determination of the motor and sensory nerve conduction velocity in persons occupationally exposed to lead. Int Arch Occup Environ Health. 1984;53(3):189–203. doi: 10.1007/BF00398813. [DOI] [PubMed] [Google Scholar]
- Yeh J. H., Chang Y. C., Wang J. D. Combined electroneurographic and electromyographic studies in lead workers. Occup Environ Med. 1995 Jun;52(6):415–419. doi: 10.1136/oem.52.6.415. [DOI] [PMC free article] [PubMed] [Google Scholar]