Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2024 Jul 9;80(Pt 8):840–844. doi: 10.1107/S205698902400642X

Crystal structure of the 1:1 co-crystal 4-(di­methylamino)­pyridin-1-ium 8-hy­droxy­quinoline-5-sulfonate–N,N-di­methyl­pyridin-4-amine

Mami Isobe a, Yukiyasu Kashiwagi b,*, Koji Kubono c
Editor: Y Ozawad
PMCID: PMC11299747  PMID: 39108789

The asymmetric unit of the title compound consists of two independent ion pairs of 4-(di­methyl­amino)­pyridin-1-ium quinolin-8-ol-5-sulfonate (HDMAP+·HqSA) and neutral N,N-di­methyl­pyridin-4-amine (DMAP), forming a 1:1:1 cation:anion:neutral mol­ecule co-crystal. The compound has a layered structure, including cation layers of HDMAP+ with DMAP and anion layers of HqSA in the crystal. The cation and anion layers are linked by inter­molecular C—H⋯O hydrogen bonds and C—H⋯π inter­actions.

Keywords: crystal structure, co-crystal, quinolin-8-ol sulfonate, DMAP, N—H⋯N inter­actions

Abstract

The asymmetric unit of the title compound is composed of two independent ion pairs of 4-(di­methyl­amino)­pyridin-1-ium 8-hy­droxy­quinoline-5-sulfonate (HDMAP+·HqSA, C7H11N2+·C9H6NO4S) and neutral N,N-di­methyl­pyridin-4-amine mol­ecules (DMAP, C7H10N2), co-crystallized as a 1:1:1 HDMAP+:HqSA:DMAP adduct in the monoclinic system, space group Pc. The compound has a layered structure, including cation layers of HDMAP+ with DMAP and anion layers of HqSA in the crystal. In the cation layer, there are inter­molecular N—H⋯N hydrogen bonds between the protonated HDMAP+ mol­ecule and the neutral DMAP mol­ecule. In the anion layer, each HqSA is surrounded by other six HqSA, where the planar network structure is formed by inter­molecular O—H⋯O and C—H⋯O hydrogen bonds. The cation and anion layers are linked by inter­molecular C—H⋯O hydrogen bonds and C—H⋯π inter­actions.

1. Chemical context

Ionic co-crystals have much attention in pharmaceuticals for the development of improved drugs based on crystal engin­eering (Bolla et al., 2022) and in organic functional materials for achieving rare and multifunctional properties through tunable structures, morphologies, and sizes in co-crystal assemblies (Sun et al., 2019). In structural chemistry, ionic co-crystals containing pyridine-pyridinium derivatives bridged by an N—H⋯N hydrogen bond have already been proposed (Doring & Jones, 2016; Fabry et al., 2017; Zhang et al., 2018; Vladiskovic et al., 2023). In addition, the supra­molecular synthon preference of pyridinium salts to 8-hy­droxy­quinoline-5-sulfonate (HqSA) and various sulfonates has been investigated (Ganie et al., 2021). On the other hand, quinolin-8-ol and its sulfonated derivative, quinoline-8-ol sulfonic acid (H2qSA), are well-known chelating ligands and analytical reagents (Wiberley et al., 1949; Kashiwagi et al., 2020; Kubono et al., 2023). H2qSA shows higher solubility to water than quionolin-8-ol, especially under basic conditions. We report here the crystal structure of the title compound as an ionic co-crystal composed of the salt of 4-(di­methyl­amino)­pyridin-1-ium (HDMAP+) and quinolin-8-ol-5-sulfonate (HqSA) with neutral N,N-di­methyl­pyridin-4-amine (DMAP).

2. Structural commentary

The title compound is composed of two independent HDMAP+·HqSA ion pairs and neutral DMAP mol­ecules, co-crystallized in the monoclinic system, space group Pc as shown in Fig. 1. The phenolic H atoms (H6, H10) in the HqSA moieties are not dissociated.2.

Figure 1.

Figure 1

The mol­ecular structure of the title compound with atom labeling. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented by spheres of arbitrary radius.

There are intra­molecular O—H⋯N hydrogen bonds involving the hy­droxy groups and quinoline N atoms (O6—H6⋯N11 and O10—H10⋯N12; Table 1) generating S(5) ring motifs (Fig. 2). The proton of the sulfonate group in H2qSA is dissociated and bound to the pyridyl N atom of one DMAP mol­ecule, but there is also another non-protonated DMAP mol­ecule in the crystal. As a result, the co-crystal is formulated as a 1:1:1 HDMAP+:HqSA:DMAP adduct. The cations of HDMAP+ are formed through inter­molecular N14—H14⋯N15 and N18—H18⋯N19 hydrogen bonds in a linear geometry (Fig. 2, see below). Each H atom attached to the N atom of the pyridine ring in HDMAP+ could be located in a Fourier density map, and the N14—H14 and N18—H18 bond lengths are similar, 0.90 (3) Å. The N atoms of the di­methyl­amino groups (N13, N16, N17 and N20) show no pyramidalization, with deviations from the plane of the bonded three C atoms of 0.029 (7), 0.031 (3), 0.037 (8) and 0.020 (4) Å, respectively. The quinoline ring systems in HqSA are essentially planar, the dihedral angles between the mean planes of the pyridine and benzene rings N12/C34–C38 and C30—C34/C38, and N11/C25–C29 and C21–C25/C29 being 0.46 (14) and 0.78 (13)°, respectively.

Table 1. Hydrogen-bond geometry (Å, °).

Cg1, Cg2 are the centroids of the N11/C25–C29 and N12/C34–C38 rings, respectively

D—H⋯A D—H H⋯A DA D—H⋯A
O6—H6⋯O8i 0.84 (5) 2.00 (5) 2.679 (3) 137 (4)
O6—H6⋯N11 0.84 (5) 2.24 (5) 2.728 (3) 117 (4)
O10—H10⋯O4 0.89 (5) 1.90 (5) 2.674 (3) 144 (4)
O10—H10⋯N12 0.89 (5) 2.31 (5) 2.730 (3) 109 (4)
N14—H14⋯N15 0.90 (3) 1.91 (3) 2.814 (4) 174 (3)
N18—H18⋯N19 0.90 (3) 1.92 (4) 2.816 (4) 177 (7)
C27—H27⋯O6ii 0.95 2.58 3.219 (4) 125
C27—H27⋯O8iii 0.95 2.27 3.194 (4) 164
C36—H36⋯O4iv 0.95 2.33 3.244 (4) 160
C36—H36⋯O10iv 0.95 2.58 3.216 (4) 125
C39—H39⋯O3v 0.95 2.32 3.200 (4) 154
C43—H43⋯O5 0.95 2.22 3.160 (4) 169
C46—H46⋯O5 0.95 2.46 3.373 (4) 161
C50—H50⋯O3v 0.95 2.43 3.292 (4) 151
C53—H53⋯O9vi 0.95 2.22 3.146 (4) 164
C54—H54⋯O10vii 0.95 2.55 3.450 (4) 158
C57—H57⋯O7 0.95 2.22 3.143 (4) 165
C60—H60⋯O7 0.95 2.40 3.325 (4) 163
C64—H64⋯O9vi 0.95 2.35 3.267 (4) 162
C40—H40⋯Cg1v 0.95 2.63 3.498 (3) 153
C49—H49⋯Cg2viii 0.95 2.87 3.754 (3) 156
C61—H61⋯Cg2 0.95 2.70 3.571 (3) 152

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic; (vii) Inline graphic; (viii) Inline graphic.

Figure 2.

Figure 2

The layer structure of the [HDMAP·DMAP]+ cationic unit in the ab plane. The inter­molecular N—H⋯N hydrogen bonds are shown as dashed lines.

3. Supra­molecular features

In the title co-crystal, both the cation layers of [HDMAP·DMAP]+ and the anion layers of HqSA run parallel to the ab plane. The hydrogen-bond geometry is summarized in Table 1. The pyridine rings in the cation layer are stacked along the ab plane as shown in Fig. 2. In the cation layer, two independent cation units of [HDMAP·DMAP]+ are formed by inter­molecular N—H⋯N hydrogen bonds (N14—H14⋯N15 and N18—H18⋯N19). The N14—H14⋯N15 and N18—H18⋯N19 angles are 174 (3) and 177 (7)°, respectively. The dihedral angles between the two pyridine rings in the [HDMAP·DMAP]+ units are 0.21 (15)° (N14/C39–C43 and N15/C46–C50 rings) and 1.60 (15)° (N18/C53–C57 and N19/C60–C64). The quinoline ring system in the anion layer faces the ab plane as shown in Fig. 3. In the anion layer, each HqSA mol­ecule is surrounded by six HqSA mol­ecules through inter­molecular hydrogen bonds, essentially forming an sheet. Each HqSA mol­ecule binds with two HqSA mol­ecules having the same mol­ecular orientation through inter­molecular C—H⋯O hydrogen bonds [C27—H27⋯O6ii and C36—H36⋯O10iv; symmetry codes: (ii) x − 1, y, z; (iv) x + 1, y, z] and also binds with four HqSA mol­ecules having the different mol­ecular orientation through inter­molecular O—H⋯O and C—H⋯O hydrogen bonds [O6—H6⋯O8i, O10—H10⋯O4, C27—H27⋯O8iii and C36—H36⋯O4iv; symmetry codes: (i) x, y − 1, z; (iii) x − 1, y − 1, z]. The C27—H27⋯O6ii, C36—H36⋯O10iv, O6—H6⋯O8i, O10—H10⋯O4, C27—H27⋯O8iii and C36—H36⋯O4iv angles are 125, 125, 137 (4), 144 (4), 164 and 160°, respectively. The inter­planar spacing between adjacent anionic layers (the distance between the closest centroids of the mean planes through N12/C22/C23/C37 within the anionic layers, being across the cationic layer from each other) is 9.562 Å. The inter­actions between the cationic and anionic layers are attributed to the extended 3D hydrogen-bonding linkages, three C—H⋯π inter­actions [C40—H40⋯Cg1i, C49—H49⋯Cg2viii, C61—H61⋯Cg2; Cg1 and Cg2 are the centroids of the N11/C25–C29 and N12/C34–C38 rings, respectively; symmetry code: (viii) x − 1, 1 − y, z + Inline graphic] and five C—H⋯O inter­actions [C39—H39⋯O3v, C50—H50⋯O3v, C53—H53⋯O9vi, C54—H54⋯O10vii, C64—H64⋯O9vi; symmetry code: (v) x, 1 − y, z + Inline graphic; (vi) x, 2 − y, z + Inline graphic; (vii) x + 1, 2 − y, z + Inline graphic] as shown in Fig. 4 and Table 1. In addition, each independent ion pair forms Inline graphic(8) motif by one inter­molecular N—H⋯N hydrogen bond and two inter­molecular C—H⋯O hydrogen bonds (N14—H14⋯N15, C39—H39⋯O3v and C50—H50⋯O3v; N18—H18⋯N19, C53—H53⋯O9vi and C64—H64⋯O9vi).

Figure 3.

Figure 3

The S(5) ring motifs formed by intra­molecular O—H⋯N hydrogen bonds involving the hy­droxy groups and quinoline N atoms of the HqSA anionic units. The intra­molecular O—H⋯N hydrogen bonds are shown as dashed lines. The sheet structure of the HqSA anionic units is formed by the planar inter­molecular hydrogen-bond networks in the ab plane. The inter­molecular O—H⋯O, C—H⋯O, O—H⋯N hydrogen bonds are also shown as dashed lines. [Symmetry codes: (i) x, y − 1, z; (ii) x − 1, y, z; (iii) x − 1, y − 1, z; (iv) x + 1, y, z.].

Figure 4.

Figure 4

The network structure between [HDMAP·DMAP]+ cationic layers and HqSA anion layers. The inter­molecular C—H⋯O hydrogen bonds and C—H⋯π inter­actions are shown as dashed lines. The Inline graphic(8) motifs of independent ion pairs formed by an inter­molecular N—H⋯N hydrogen bond and two inter­molecular C—H⋯O hydrogen bonds are also shown as dashed lines. [Symmetry codes: (v) x, −y + 1, z + Inline graphic; (vi) x, −y + 2, z + Inline graphic; (vii) x + 1, −y + 2, z + Inline graphic; (viii) x − 1, −y + 1, z + Inline graphic.].

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 2024.1.0, update of March 2024; Groom et al., 2016) for compounds containing the 4-amino­pyridine skeleton with hydrogen atom bound at the 2, 3, 5, 6-positions of the pyridine ring gave 5687 hits. Among those, a search for the containing DMAP mol­ecule gave 1794 hits and for those of protonated DMAP gave 360 hits. A search for compounds containing a pyridine-protonated pyridine skeleton gave 15 hits. In these compounds, the dihedral angles between two pyridine rings are close to 0° in seven structures, which are essentially co-planar due to unique hydrogen-bonding networks stemming from the substituents on the pyridine rings (BAYBIN; Kobayashi et al., 2003; BECHOG; Glidewell et al., 1982; KIFBIO; Vladiskovic et al., 2023; WAZNET; Lackova et al., 2014; WEVHOX; Zhang et al., 2018; XACFOW; Mautner & Goher, 1998; XOHWAT; Santra et al., 2008). In single crystals of salts of the mellitate anion, which is obtained by deprotonation of mellitic acid (benzene hexa­carb­oxy­lic acid), with substituted pyridinium derivatives, the triangular hydrogen-bonded unit between the anions induces a two-dimensional sheet self-organizing structure (BAYBIN, Kobayashi et al., 2003). On the other hand, ferrocene derivatives substituted with pyridine form cationic dimers via a hydrogen bond between two pyridine rings (WOFGII; Braga et al., 2008). A search for containing both of protonated DMAP and the other neutral DMAP gave 14 hits. There are five hits having the proton between two N-(4-pyrid­yl)di­methyl­amine skeletons (2, 3, 5, 6-carbon atoms are bound to hydrogen atoms). In these compounds, the dihedral angles between two pyridine rings are close to 0° in three structures, which are essentially co-planar structures [1.3 (1)° in FETDEO, Aakeroy et al., 2005; 3.47 (7)° in GOFRUQ, Wagler et al., 2014; 3.8 (4)° in ZAPNIN, Biradha et al., 1995]. A fragment search for the 8-hy­droxy­quinoline-5-sulfonic acid skeleton gave 84 hits, which include two hydrate co-crystals composed of the 8-hy­droxy­quinoline-5-sulfonicin anion and 4-phenyl­pyridine (EMEDUY; Ganie et al., 2021), 4,4′-bipyrydine (INEMAP; Baskar Raj et al., 2003) cations and three hydrate co-crystals composed of the 8-hy­droxy-7-iodo­quinoline-5-sulfonic anion and various pyridine derivative cations (EFAQUZ, Smith et al., 2012; EYIYOA, Smith et al., 2004; ISUTAR, Hemamalini et al., 2004). According to the crystal structures of BAYBIN, EFAQUZ, EYIYOA and ISUTAR, these compounds form layered structures by constructing 2D layers of the cationic and anionic moieties with these layers arranged sterically.

5. Synthesis and crystallization

To a solution of DMAP (611 mg, 5.0 mmol) in H2O (5 mL) at 353 K, an ethanol (1 mL) solution of H2qSA (450 mg, 2.0 mmol) was added and then stirred for 30 min. Orange single crystals of the title compound suitable for X-ray diffraction were grown by slow evaporation of the aqueous ethanol solution mentioned above for a week at ambient temperature.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. The title compound was refined as an inversion twin in Pc whose twin component mass ratio refined to 0.522 (18):0.478 (18). The hy­droxy H atoms, H6 and H10, were located in a difference-Fourier map and freely refined. The N-bound H atoms, H14 and H18, were located in difference-Fourier maps but were refined with a distance restraint of N—H = 0.86 ± 0.02 Å. All H atoms bound to carbon were positioned geometrically and refined using a riding model, with C—H = 0.95 or 0.98 Å and Uiso(H) = 1.2 or 1.5Ueq(C).

Table 2. Experimental details.

Crystal data
Chemical formula C7H11N2+·C9H6NO4S·C7H10N2
M r 469.55
Crystal system, space group Monoclinic, Pc
Temperature (K) 100
a, b, c (Å) 8.00032 (10), 15.14469 (18), 18.9141 (2)
β (°) 100.6050 (12)
V3) 2252.53 (5)
Z 4
Radiation type Cu Kα
μ (mm−1) 1.62
Crystal size (mm) 0.4 × 0.30 × 0.11
 
Data collection
Diffractometer XtaLAB Synergy, Dualflex, HyPix
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2023)
Tmin, Tmax 0.731, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 16358, 6813, 6608
R int 0.030
(sin θ/λ)max−1) 0.632
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.085, 1.04
No. of reflections 6813
No. of parameters 620
No. of restraints 4
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.30, −0.39
Absolute structure Refined as an inversion twin
Absolute structure parameter 0.478 (18)

Computer programs: CrysAlis PRO (Rigaku OD, 2023), SHELXT2018/2 (Sheldrick, 2015a), SHELXL2018/3 (Sheldrick, 2015b) and OLEX2 1.5 (Dolomanov et al., 2009).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S205698902400642X/ox2006sup1.cif

e-80-00840-sup1.cif (527.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S205698902400642X/ox2006Isup3.hkl

e-80-00840-Isup3.hkl (541.3KB, hkl)

Supporting information file. DOI: 10.1107/S205698902400642X/ox2006Isup3.cml

CCDC reference: 2366836

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

4-(Dimethylamino)pyridin-1-ium 8-hydroxyquinoline-5-sulfonate; N,N-dimethylpyridin-4-amine . Crystal data

C7H11N2+·C9H6NO4S·C7H10N2 F(000) = 992
Mr = 469.55 Dx = 1.385 Mg m3
Monoclinic, Pc Cu Kα radiation, λ = 1.54184 Å
a = 8.00032 (10) Å Cell parameters from 11719 reflections
b = 15.14469 (18) Å θ = 3.8–76.8°
c = 18.9141 (2) Å µ = 1.62 mm1
β = 100.6050 (12)° T = 100 K
V = 2252.53 (5) Å3 Block, colourless
Z = 4 0.4 × 0.30 × 0.11 mm

4-(Dimethylamino)pyridin-1-ium 8-hydroxyquinoline-5-sulfonate; N,N-dimethylpyridin-4-amine . Data collection

XtaLAB Synergy, Dualflex, HyPix diffractometer 6813 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source 6608 reflections with I > 2σ(I)
Mirror monochromator Rint = 0.030
Detector resolution: 10.0000 pixels mm-1 θmax = 77.2°, θmin = 3.8°
ω scans h = −10→9
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2023) k = −17→19
Tmin = 0.731, Tmax = 1.000 l = −22→23
16358 measured reflections

4-(Dimethylamino)pyridin-1-ium 8-hydroxyquinoline-5-sulfonate; N,N-dimethylpyridin-4-amine . Refinement

Refinement on F2 Hydrogen site location: mixed
Least-squares matrix: full H atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.033 w = 1/[σ2(Fo2) + (0.0463P)2 + 0.5548P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.085 (Δ/σ)max < 0.001
S = 1.04 Δρmax = 0.30 e Å3
6813 reflections Δρmin = −0.39 e Å3
620 parameters Absolute structure: Refined as an inversion twin
4 restraints Absolute structure parameter: 0.478 (18)
Primary atom site location: dual

4-(Dimethylamino)pyridin-1-ium 8-hydroxyquinoline-5-sulfonate; N,N-dimethylpyridin-4-amine . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refined as a 2-component inversion twin.1. Twinned data refinement Scales: 0.522 (18) 0.478 (18) 2. Fixed Uiso At 1.2 times of: All C(H) groups At 1.5 times of: All C(H,H,H) groups 3. Restrained distances H18-N18 0.86 with sigma of 0.02 H14-N14 0.86 with sigma of 0.02 4.a Aromatic/amide H refined with riding coordinates: C35(H35), C23(H23), C27(H27), C26(H26), C49(H49), C31(H31), C28(H28), C61(H61), C54(H54), C36(H36), C60(H60), C50(H50), C22(H22), C40(H40), C53(H53), C37(H37), C42(H42), C47(H47), C64(H64), C63(H63), C46(H46), C43(H43), C39(H39), C32(H32), C56(H56), C57(H57) 4.b Idealised Me refined as rotating group: C52(H52A,H52B,H52C), C44(H44A,H44B,H44C), C58(H58A,H58B,H58C), C66(H66A,H66B, H66C), C51(H51A,H51B,H51C), C45(H45A,H45B,H45C), C65(H65A,H65B,H65C), C59(H59A, H59B,H59C)

4-(Dimethylamino)pyridin-1-ium 8-hydroxyquinoline-5-sulfonate; N,N-dimethylpyridin-4-amine . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.17772 (8) 0.49921 (4) 0.37557 (4) 0.01431 (15)
S2 0.88938 (8) 0.99725 (4) 0.36763 (4) 0.01686 (16)
O5 0.0868 (3) 0.46728 (13) 0.43037 (11) 0.0198 (4)
O10 0.3080 (3) 0.75413 (13) 0.36853 (12) 0.0189 (4)
O4 0.2618 (3) 0.58342 (12) 0.39552 (12) 0.0222 (4)
O7 1.0147 (3) 0.97468 (16) 0.43079 (12) 0.0274 (5)
O6 0.7498 (3) 0.25632 (14) 0.35776 (12) 0.0191 (4)
N11 0.4365 (3) 0.18427 (15) 0.35601 (13) 0.0168 (5)
O3 0.0728 (3) 0.49865 (13) 0.30454 (12) 0.0251 (5)
N14 0.0994 (3) 0.57921 (17) 0.61872 (14) 0.0228 (5)
O9 0.9547 (3) 0.98318 (15) 0.30206 (12) 0.0253 (5)
N18 1.0806 (4) 1.06837 (18) 0.62048 (15) 0.0283 (6)
N12 0.6186 (3) 0.68257 (14) 0.36322 (13) 0.0153 (5)
N17 1.3114 (3) 1.31360 (18) 0.63022 (14) 0.0268 (6)
N13 0.3275 (3) 0.82252 (17) 0.60874 (14) 0.0248 (6)
C25 0.3141 (4) 0.33136 (18) 0.36637 (15) 0.0132 (5)
N16 −0.3146 (4) 0.16966 (18) 0.60144 (14) 0.0300 (6)
N15 −0.0827 (3) 0.41978 (17) 0.61461 (14) 0.0258 (6)
C30 0.4422 (3) 0.80852 (18) 0.36639 (15) 0.0152 (6)
N20 0.6851 (4) 0.65381 (18) 0.61189 (15) 0.0297 (6)
C29 0.4524 (4) 0.27401 (18) 0.36172 (15) 0.0141 (5)
N19 0.9083 (4) 0.90581 (18) 0.61654 (15) 0.0271 (6)
C35 0.9054 (4) 0.79031 (19) 0.36300 (15) 0.0157 (5)
H35 1.003375 0.825760 0.363038 0.019*
O8 0.8170 (3) 1.08342 (14) 0.37345 (18) 0.0427 (7)
C48 −0.2420 (4) 0.25088 (19) 0.60531 (16) 0.0222 (6)
C23 0.5063 (4) 0.45581 (18) 0.37350 (16) 0.0165 (6)
H23 0.525964 0.517580 0.378068 0.020*
C24 0.3458 (4) 0.42408 (18) 0.37218 (15) 0.0156 (6)
C27 0.1385 (4) 0.20164 (19) 0.35746 (16) 0.0195 (6)
H27 0.031056 0.173969 0.355266 0.023*
C26 0.1533 (4) 0.29119 (19) 0.36372 (15) 0.0162 (6)
H26 0.056312 0.326366 0.366290 0.019*
C34 0.7451 (3) 0.82997 (18) 0.36388 (15) 0.0137 (5)
C49 −0.2102 (4) 0.29987 (19) 0.66961 (16) 0.0224 (6)
H49 −0.243039 0.277078 0.711817 0.027*
C31 0.4187 (4) 0.89824 (19) 0.36710 (17) 0.0192 (6)
H31 0.309000 0.921934 0.367659 0.023*
C38 0.6054 (4) 0.77244 (17) 0.36430 (15) 0.0130 (5)
C28 0.2840 (4) 0.15080 (18) 0.35428 (16) 0.0197 (6)
H28 0.271473 0.088498 0.350666 0.024*
C33 0.7176 (4) 0.92240 (18) 0.36554 (15) 0.0152 (5)
C61 0.8018 (4) 0.7746 (2) 0.55202 (16) 0.0215 (6)
H61 0.781003 0.744043 0.507393 0.026*
C54 1.1908 (4) 1.1940 (2) 0.68862 (16) 0.0220 (6)
H54 1.212304 1.223795 0.733567 0.026*
C36 0.9166 (4) 0.70039 (19) 0.36211 (16) 0.0184 (6)
H36 1.022730 0.672608 0.361413 0.022*
C62 0.7562 (4) 0.7356 (2) 0.61344 (17) 0.0237 (6)
C60 0.8763 (4) 0.8566 (2) 0.55657 (17) 0.0257 (7)
H60 0.907308 0.880142 0.514258 0.031*
C50 −0.1315 (4) 0.3809 (2) 0.67126 (17) 0.0247 (6)
H50 −0.110204 0.411581 0.715822 0.030*
C22 0.6432 (4) 0.39925 (19) 0.36825 (17) 0.0193 (6)
H22 0.753237 0.423009 0.368649 0.023*
C40 0.2142 (4) 0.7096 (2) 0.67653 (16) 0.0209 (6)
H40 0.240263 0.743534 0.719363 0.025*
C53 1.1159 (4) 1.1131 (2) 0.68335 (18) 0.0257 (7)
H53 1.087382 1.087116 0.725275 0.031*
C37 0.7696 (4) 0.64896 (18) 0.36221 (17) 0.0183 (6)
H37 0.780438 0.586507 0.361522 0.022*
C42 0.2165 (4) 0.6872 (2) 0.55097 (16) 0.0229 (6)
H42 0.243782 0.705189 0.506333 0.027*
C41 0.2560 (4) 0.74334 (19) 0.61167 (16) 0.0200 (6)
C21 0.6173 (4) 0.30979 (18) 0.36257 (15) 0.0145 (5)
C47 −0.1930 (4) 0.2920 (2) 0.54526 (16) 0.0237 (6)
H47 −0.212812 0.263269 0.499838 0.028*
C64 0.8639 (4) 0.8686 (2) 0.67528 (18) 0.0296 (7)
H64 0.885457 0.901387 0.718843 0.036*
C55 1.2371 (4) 1.23419 (19) 0.62685 (16) 0.0218 (6)
C52 −0.3516 (5) 0.1263 (2) 0.66566 (19) 0.0318 (7)
H52A −0.246320 0.120190 0.701170 0.048*
H52B −0.399916 0.067773 0.652889 0.048*
H52C −0.433271 0.161935 0.686096 0.048*
C63 0.7900 (4) 0.7873 (2) 0.67674 (17) 0.0282 (7)
H63 0.761539 0.765609 0.720146 0.034*
C44 0.3650 (5) 0.8790 (2) 0.67269 (19) 0.0302 (7)
H44A 0.258673 0.894730 0.688314 0.045*
H44B 0.422323 0.932840 0.661072 0.045*
H44C 0.439097 0.847174 0.711421 0.045*
C46 −0.1165 (4) 0.3737 (2) 0.55256 (17) 0.0250 (6)
H46 −0.085302 0.399369 0.511048 0.030*
C43 0.1398 (4) 0.6079 (2) 0.55592 (17) 0.0238 (6)
H43 0.113795 0.571602 0.514381 0.029*
C39 0.1381 (4) 0.6302 (2) 0.67832 (17) 0.0230 (6)
H39 0.111083 0.609654 0.722336 0.028*
C32 0.5578 (4) 0.95491 (19) 0.36698 (17) 0.0202 (6)
H32 0.541065 1.016967 0.367926 0.024*
C56 1.2007 (4) 1.1840 (2) 0.56237 (17) 0.0252 (6)
H56 1.230849 1.206924 0.519661 0.030*
C58 1.3420 (5) 1.3650 (2) 0.69703 (19) 0.0322 (7)
H58A 1.233475 1.377047 0.712141 0.048*
H58B 1.397149 1.420969 0.688945 0.048*
H58C 1.415965 1.331447 0.734677 0.048*
C57 1.1241 (4) 1.1046 (2) 0.56067 (18) 0.0292 (7)
H57 1.100001 1.073059 0.516531 0.035*
C66 0.6549 (5) 0.6125 (2) 0.6777 (2) 0.0355 (8)
H66A 0.761279 0.610761 0.712932 0.053*
H66B 0.613111 0.552185 0.667276 0.053*
H66C 0.569870 0.646643 0.697307 0.053*
C51 −0.3476 (5) 0.1193 (2) 0.53443 (18) 0.0345 (8)
H51A −0.429289 0.151412 0.498551 0.052*
H51B −0.394504 0.061445 0.543216 0.052*
H51C −0.241090 0.111422 0.516567 0.052*
C45 0.3605 (5) 0.8585 (2) 0.54079 (18) 0.0316 (7)
H45A 0.434078 0.817948 0.520221 0.047*
H45B 0.416725 0.916003 0.549571 0.047*
H45C 0.252586 0.865738 0.507093 0.047*
C65 0.6452 (5) 0.6043 (2) 0.54515 (19) 0.0320 (7)
H65A 0.569908 0.639435 0.509079 0.048*
H65B 0.588361 0.549017 0.553627 0.048*
H65C 0.750475 0.591031 0.527717 0.048*
C59 1.3515 (5) 1.3552 (2) 0.5656 (2) 0.0355 (8)
H59A 1.429459 1.317305 0.545016 0.053*
H59B 1.405242 1.412637 0.578214 0.053*
H59C 1.246532 1.363609 0.530309 0.053*
H14 0.047 (5) 0.5262 (17) 0.616 (2) 0.029 (9)*
H10 0.336 (6) 0.697 (3) 0.372 (2) 0.037 (11)*
H18 1.027 (6) 1.016 (2) 0.618 (3) 0.057 (15)*
H6 0.714 (6) 0.204 (3) 0.357 (2) 0.039 (12)*

4-(Dimethylamino)pyridin-1-ium 8-hydroxyquinoline-5-sulfonate; N,N-dimethylpyridin-4-amine . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0135 (3) 0.0121 (3) 0.0179 (3) 0.0021 (2) 0.0043 (2) 0.0012 (2)
S2 0.0140 (3) 0.0113 (3) 0.0270 (4) −0.0012 (2) 0.0083 (3) −0.0004 (2)
O5 0.0221 (10) 0.0170 (9) 0.0228 (11) 0.0007 (8) 0.0104 (8) −0.0003 (8)
O10 0.0124 (10) 0.0129 (10) 0.0327 (12) −0.0020 (8) 0.0079 (8) 0.0022 (8)
O4 0.0193 (10) 0.0115 (9) 0.0376 (12) 0.0007 (8) 0.0100 (9) −0.0005 (8)
O7 0.0270 (12) 0.0331 (11) 0.0216 (11) −0.0145 (10) 0.0027 (9) −0.0034 (9)
O6 0.0117 (10) 0.0142 (10) 0.0321 (12) 0.0006 (8) 0.0054 (8) 0.0000 (8)
N11 0.0166 (11) 0.0136 (11) 0.0202 (12) 0.0000 (9) 0.0030 (9) 0.0005 (9)
O3 0.0270 (12) 0.0286 (12) 0.0185 (11) 0.0128 (9) 0.0012 (9) 0.0007 (8)
N14 0.0237 (13) 0.0207 (12) 0.0239 (14) −0.0030 (10) 0.0041 (10) −0.0013 (10)
O9 0.0251 (11) 0.0316 (11) 0.0205 (11) −0.0083 (9) 0.0076 (9) 0.0026 (9)
N18 0.0251 (14) 0.0240 (14) 0.0335 (16) 0.0010 (11) −0.0006 (11) −0.0050 (11)
N12 0.0142 (11) 0.0127 (11) 0.0188 (12) −0.0001 (9) 0.0029 (9) −0.0001 (9)
N17 0.0303 (14) 0.0248 (13) 0.0229 (13) −0.0001 (11) −0.0010 (11) 0.0038 (10)
N13 0.0297 (14) 0.0218 (13) 0.0231 (14) −0.0044 (10) 0.0052 (11) 0.0012 (10)
C25 0.0125 (12) 0.0147 (13) 0.0128 (12) −0.0001 (10) 0.0035 (10) 0.0009 (10)
N16 0.0447 (17) 0.0249 (13) 0.0179 (13) −0.0064 (12) −0.0008 (12) −0.0001 (10)
N15 0.0263 (14) 0.0231 (13) 0.0275 (14) −0.0001 (11) 0.0036 (11) −0.0002 (10)
C30 0.0120 (13) 0.0159 (13) 0.0178 (14) −0.0007 (11) 0.0029 (10) 0.0012 (11)
N20 0.0382 (16) 0.0294 (14) 0.0225 (14) −0.0068 (12) 0.0081 (12) 0.0030 (10)
C29 0.0135 (13) 0.0158 (13) 0.0132 (13) 0.0016 (10) 0.0029 (10) 0.0012 (10)
N19 0.0289 (15) 0.0246 (13) 0.0264 (14) −0.0010 (11) 0.0014 (11) −0.0038 (10)
C35 0.0134 (13) 0.0174 (13) 0.0165 (14) −0.0010 (11) 0.0035 (10) 0.0008 (10)
O8 0.0219 (12) 0.0115 (10) 0.100 (2) −0.0016 (9) 0.0251 (13) −0.0010 (12)
C48 0.0210 (15) 0.0243 (15) 0.0199 (15) 0.0037 (12) −0.0001 (12) 0.0005 (12)
C23 0.0158 (12) 0.0119 (13) 0.0220 (14) −0.0004 (11) 0.0037 (11) 0.0004 (10)
C24 0.0167 (14) 0.0138 (13) 0.0167 (14) 0.0028 (11) 0.0039 (11) 0.0014 (10)
C27 0.0133 (13) 0.0160 (13) 0.0295 (16) −0.0032 (11) 0.0045 (11) 0.0022 (11)
C26 0.0157 (14) 0.0149 (13) 0.0190 (14) 0.0032 (10) 0.0057 (11) −0.0009 (10)
C34 0.0128 (13) 0.0163 (13) 0.0119 (12) −0.0005 (11) 0.0023 (10) −0.0003 (10)
C49 0.0241 (15) 0.0249 (15) 0.0182 (14) 0.0009 (12) 0.0039 (11) 0.0013 (11)
C31 0.0110 (14) 0.0170 (13) 0.0308 (17) 0.0032 (11) 0.0070 (11) 0.0025 (11)
C38 0.0131 (13) 0.0130 (12) 0.0129 (12) −0.0002 (10) 0.0026 (10) 0.0004 (10)
C28 0.0178 (14) 0.0130 (13) 0.0274 (16) −0.0008 (10) 0.0017 (12) 0.0014 (11)
C33 0.0144 (13) 0.0148 (13) 0.0172 (14) −0.0010 (11) 0.0048 (10) 0.0006 (10)
C61 0.0237 (15) 0.0239 (15) 0.0160 (14) −0.0009 (12) 0.0015 (11) −0.0010 (11)
C54 0.0199 (14) 0.0267 (15) 0.0185 (14) 0.0022 (12) 0.0016 (11) −0.0023 (11)
C36 0.0139 (14) 0.0169 (13) 0.0248 (15) 0.0034 (11) 0.0050 (11) 0.0003 (11)
C62 0.0217 (15) 0.0281 (15) 0.0212 (15) 0.0027 (12) 0.0039 (12) 0.0021 (12)
C60 0.0259 (16) 0.0286 (16) 0.0219 (15) 0.0012 (13) 0.0028 (12) 0.0012 (13)
C50 0.0241 (15) 0.0269 (15) 0.0218 (15) 0.0011 (12) 0.0006 (12) −0.0047 (12)
C22 0.0143 (14) 0.0179 (14) 0.0272 (16) −0.0007 (11) 0.0075 (12) −0.0005 (11)
C40 0.0195 (14) 0.0254 (15) 0.0172 (14) 0.0003 (11) 0.0021 (11) −0.0011 (11)
C53 0.0211 (15) 0.0280 (16) 0.0270 (17) 0.0036 (12) 0.0019 (12) 0.0001 (12)
C37 0.0158 (13) 0.0102 (12) 0.0295 (16) 0.0012 (10) 0.0054 (11) 0.0003 (11)
C42 0.0231 (15) 0.0290 (16) 0.0176 (14) 0.0013 (12) 0.0064 (11) 0.0005 (12)
C41 0.0191 (14) 0.0202 (14) 0.0206 (15) 0.0024 (11) 0.0030 (11) 0.0029 (11)
C21 0.0129 (13) 0.0157 (13) 0.0154 (13) 0.0024 (11) 0.0038 (10) 0.0006 (11)
C47 0.0239 (15) 0.0266 (15) 0.0198 (15) 0.0037 (12) 0.0020 (11) −0.0034 (11)
C64 0.0304 (17) 0.0340 (17) 0.0237 (16) 0.0047 (14) 0.0033 (13) −0.0076 (13)
C55 0.0187 (14) 0.0223 (14) 0.0229 (16) 0.0049 (11) −0.0001 (12) −0.0012 (11)
C52 0.0371 (19) 0.0279 (17) 0.0296 (18) −0.0070 (14) 0.0044 (14) 0.0041 (13)
C63 0.0316 (17) 0.0341 (17) 0.0196 (16) 0.0034 (14) 0.0070 (13) −0.0004 (13)
C44 0.0347 (18) 0.0234 (15) 0.0319 (18) −0.0074 (13) 0.0052 (14) −0.0007 (13)
C46 0.0219 (15) 0.0311 (16) 0.0218 (15) 0.0003 (13) 0.0034 (12) 0.0040 (12)
C43 0.0228 (15) 0.0260 (15) 0.0222 (15) −0.0002 (12) 0.0035 (12) −0.0037 (12)
C39 0.0256 (16) 0.0233 (15) 0.0205 (15) 0.0013 (12) 0.0053 (12) 0.0007 (12)
C32 0.0200 (14) 0.0115 (13) 0.0309 (17) 0.0023 (11) 0.0096 (12) 0.0016 (11)
C56 0.0258 (16) 0.0296 (16) 0.0194 (15) 0.0044 (13) 0.0023 (12) −0.0015 (12)
C58 0.0369 (19) 0.0261 (16) 0.0303 (18) −0.0032 (14) −0.0025 (14) −0.0027 (13)
C57 0.0275 (16) 0.0318 (17) 0.0254 (16) 0.0057 (13) −0.0024 (13) −0.0090 (13)
C66 0.038 (2) 0.0373 (19) 0.0331 (19) −0.0040 (15) 0.0117 (15) 0.0101 (15)
C51 0.042 (2) 0.0318 (18) 0.0269 (18) −0.0040 (15) −0.0022 (15) −0.0051 (14)
C45 0.0344 (18) 0.0333 (17) 0.0287 (18) −0.0062 (14) 0.0100 (14) 0.0082 (13)
C65 0.0346 (19) 0.0261 (16) 0.0348 (19) −0.0073 (13) 0.0054 (15) −0.0003 (13)
C59 0.0352 (19) 0.0381 (19) 0.0317 (19) −0.0014 (15) 0.0023 (14) 0.0119 (15)

4-(Dimethylamino)pyridin-1-ium 8-hydroxyquinoline-5-sulfonate; N,N-dimethylpyridin-4-amine . Geometric parameters (Å, º)

S1—O5 1.455 (2) C31—C32 1.406 (4)
S1—O4 1.459 (2) C28—H28 0.9500
S1—O3 1.447 (2) C33—C32 1.375 (4)
S1—C24 1.772 (3) C61—H61 0.9500
S2—O7 1.452 (2) C61—C62 1.409 (4)
S2—O9 1.448 (2) C61—C60 1.373 (4)
S2—O8 1.440 (2) C54—H54 0.9500
S2—C33 1.776 (3) C54—C53 1.359 (4)
O10—C30 1.359 (3) C54—C55 1.426 (4)
O10—H10 0.90 (4) C36—H36 0.9500
O6—C21 1.350 (3) C36—C37 1.410 (4)
O6—H6 0.84 (4) C62—C63 1.414 (4)
N11—C29 1.367 (4) C60—H60 0.9500
N11—C28 1.316 (4) C50—H50 0.9500
N14—C43 1.358 (4) C22—H22 0.9500
N14—C39 1.354 (4) C22—C21 1.372 (4)
N14—H14 0.90 (2) C40—H40 0.9500
N18—C53 1.353 (4) C40—C41 1.425 (4)
N18—C57 1.359 (5) C40—C39 1.351 (4)
N18—H18 0.90 (2) C53—H53 0.9500
N12—C38 1.366 (3) C37—H37 0.9500
N12—C37 1.315 (4) C42—H42 0.9500
N17—C55 1.338 (4) C42—C41 1.417 (4)
N17—C58 1.466 (4) C42—C43 1.360 (4)
N17—C59 1.462 (4) C47—H47 0.9500
N13—C41 1.334 (4) C47—C46 1.375 (4)
N13—C44 1.467 (4) C64—H64 0.9500
N13—C45 1.464 (4) C64—C63 1.369 (5)
C25—C29 1.422 (4) C55—C56 1.421 (4)
C25—C24 1.428 (4) C52—H52A 0.9800
C25—C26 1.415 (4) C52—H52B 0.9800
N16—C48 1.356 (4) C52—H52C 0.9800
N16—C52 1.458 (4) C63—H63 0.9500
N16—C51 1.461 (4) C44—H44A 0.9800
N15—C50 1.342 (4) C44—H44B 0.9800
N15—C46 1.350 (4) C44—H44C 0.9800
C30—C31 1.372 (4) C46—H46 0.9500
C30—C38 1.423 (4) C43—H43 0.9500
N20—C62 1.362 (4) C39—H39 0.9500
N20—C66 1.453 (4) C32—H32 0.9500
N20—C65 1.452 (4) C56—H56 0.9500
C29—C21 1.424 (4) C56—C57 1.348 (5)
N19—C60 1.342 (4) C58—H58A 0.9800
N19—C64 1.350 (4) C58—H58B 0.9800
C35—H35 0.9500 C58—H58C 0.9800
C35—C34 1.419 (4) C57—H57 0.9500
C35—C36 1.365 (4) C66—H66A 0.9800
C48—C49 1.407 (4) C66—H66B 0.9800
C48—C47 1.413 (4) C66—H66C 0.9800
C23—H23 0.9500 C51—H51A 0.9800
C23—C24 1.367 (4) C51—H51B 0.9800
C23—C22 1.408 (4) C51—H51C 0.9800
C27—H27 0.9500 C45—H45A 0.9800
C27—C26 1.365 (4) C45—H45B 0.9800
C27—C28 1.407 (4) C45—H45C 0.9800
C26—H26 0.9500 C65—H65A 0.9800
C34—C38 1.419 (4) C65—H65B 0.9800
C34—C33 1.418 (4) C65—H65C 0.9800
C49—H49 0.9500 C59—H59A 0.9800
C49—C50 1.377 (4) C59—H59B 0.9800
C31—H31 0.9500 C59—H59C 0.9800
N14···H14 0.84
O5—S1—O4 111.94 (13) C23—C22—H22 120.1
O5—S1—C24 107.15 (12) C21—C22—C23 119.9 (3)
O4—S1—C24 104.71 (13) C21—C22—H22 120.1
O3—S1—O5 112.26 (14) C41—C40—H40 119.3
O3—S1—O4 113.97 (13) C39—C40—H40 119.3
O3—S1—C24 106.09 (13) C39—C40—C41 121.3 (3)
O7—S2—C33 106.42 (13) N18—C53—C54 122.3 (3)
O9—S2—O7 111.50 (14) N18—C53—H53 118.9
O9—S2—C33 106.67 (13) C54—C53—H53 118.9
O8—S2—O7 112.15 (17) N12—C37—C36 123.7 (2)
O8—S2—O9 114.36 (16) N12—C37—H37 118.2
O8—S2—C33 105.04 (14) C36—C37—H37 118.2
C30—O10—H10 114 (3) C41—C42—H42 119.6
C21—O6—H6 107 (3) C43—C42—H42 119.6
C28—N11—C29 117.2 (2) C43—C42—C41 120.7 (3)
C43—N14—H14 115 (2) N13—C41—C40 121.9 (3)
C39—N14—C43 119.4 (3) N13—C41—C42 122.6 (3)
C39—N14—H14 125 (2) C42—C41—C40 115.4 (3)
C53—N18—C57 119.1 (3) O6—C21—C29 120.6 (2)
C53—N18—H18 121 (3) O6—C21—C22 119.3 (3)
C57—N18—H18 120 (3) C22—C21—C29 120.2 (3)
C37—N12—C38 117.4 (2) C48—C47—H47 120.0
C55—N17—C58 121.4 (3) C46—C47—C48 120.0 (3)
C55—N17—C59 120.8 (3) C46—C47—H47 120.0
C59—N17—C58 117.6 (3) N19—C64—H64 117.6
C41—N13—C44 120.9 (3) N19—C64—C63 124.9 (3)
C41—N13—C45 121.3 (3) C63—C64—H64 117.6
C45—N13—C44 117.7 (3) N17—C55—C54 121.7 (3)
C29—C25—C24 118.4 (2) N17—C55—C56 122.7 (3)
C26—C25—C29 116.6 (2) C56—C55—C54 115.6 (3)
C26—C25—C24 125.0 (2) N16—C52—H52A 109.5
C48—N16—C52 120.9 (3) N16—C52—H52B 109.5
C48—N16—C51 121.8 (3) N16—C52—H52C 109.5
C52—N16—C51 117.1 (3) H52A—C52—H52B 109.5
C50—N15—C46 115.2 (3) H52A—C52—H52C 109.5
O10—C30—C31 119.3 (2) H52B—C52—H52C 109.5
O10—C30—C38 120.1 (2) C62—C63—H63 120.1
C31—C30—C38 120.6 (2) C64—C63—C62 119.8 (3)
C62—N20—C66 120.6 (3) C64—C63—H63 120.1
C62—N20—C65 120.8 (3) N13—C44—H44A 109.5
C65—N20—C66 118.5 (3) N13—C44—H44B 109.5
N11—C29—C25 123.4 (3) N13—C44—H44C 109.5
N11—C29—C21 116.8 (2) H44A—C44—H44B 109.5
C25—C29—C21 119.8 (2) H44A—C44—H44C 109.5
C60—N19—C64 115.2 (3) H44B—C44—H44C 109.5
C34—C35—H35 120.5 N15—C46—C47 124.5 (3)
C36—C35—H35 120.5 N15—C46—H46 117.7
C36—C35—C34 118.9 (3) C47—C46—H46 117.7
N16—C48—C49 122.2 (3) N14—C43—C42 121.7 (3)
N16—C48—C47 122.4 (3) N14—C43—H43 119.1
C49—C48—C47 115.4 (3) C42—C43—H43 119.1
C24—C23—H23 119.2 N14—C39—H39 119.3
C24—C23—C22 121.7 (2) C40—C39—N14 121.4 (3)
C22—C23—H23 119.2 C40—C39—H39 119.3
C25—C24—S1 120.6 (2) C31—C32—H32 119.3
C23—C24—S1 119.4 (2) C33—C32—C31 121.4 (2)
C23—C24—C25 120.0 (2) C33—C32—H32 119.3
C26—C27—H27 120.4 C55—C56—H56 119.4
C26—C27—C28 119.2 (3) C57—C56—C55 121.2 (3)
C28—C27—H27 120.4 C57—C56—H56 119.4
C25—C26—H26 120.2 N17—C58—H58A 109.5
C27—C26—C25 119.6 (3) N17—C58—H58B 109.5
C27—C26—H26 120.2 N17—C58—H58C 109.5
C35—C34—C38 117.1 (2) H58A—C58—H58B 109.5
C33—C34—C35 124.2 (2) H58A—C58—H58C 109.5
C33—C34—C38 118.7 (2) H58B—C58—H58C 109.5
C48—C49—H49 120.0 N18—C57—H57 119.2
C50—C49—C48 119.9 (3) C56—C57—N18 121.7 (3)
C50—C49—H49 120.0 C56—C57—H57 119.2
C30—C31—H31 120.2 N20—C66—H66A 109.5
C30—C31—C32 119.7 (3) N20—C66—H66B 109.5
C32—C31—H31 120.2 N20—C66—H66C 109.5
N12—C38—C30 117.2 (2) H66A—C66—H66B 109.5
N12—C38—C34 123.3 (3) H66A—C66—H66C 109.5
C34—C38—C30 119.5 (2) H66B—C66—H66C 109.5
N11—C28—C27 124.0 (3) N16—C51—H51A 109.5
N11—C28—H28 118.0 N16—C51—H51B 109.5
C27—C28—H28 118.0 N16—C51—H51C 109.5
C34—C33—S2 120.5 (2) H51A—C51—H51B 109.5
C32—C33—S2 119.3 (2) H51A—C51—H51C 109.5
C32—C33—C34 120.2 (3) H51B—C51—H51C 109.5
C62—C61—H61 119.9 N13—C45—H45A 109.5
C60—C61—H61 119.9 N13—C45—H45B 109.5
C60—C61—C62 120.1 (3) N13—C45—H45C 109.5
C53—C54—H54 119.9 H45A—C45—H45B 109.5
C53—C54—C55 120.2 (3) H45A—C45—H45C 109.5
C55—C54—H54 119.9 H45B—C45—H45C 109.5
C35—C36—H36 120.2 N20—C65—H65A 109.5
C35—C36—C37 119.6 (3) N20—C65—H65B 109.5
C37—C36—H36 120.2 N20—C65—H65C 109.5
N20—C62—C61 122.2 (3) H65A—C65—H65B 109.5
N20—C62—C63 122.4 (3) H65A—C65—H65C 109.5
C61—C62—C63 115.4 (3) H65B—C65—H65C 109.5
N19—C60—C61 124.6 (3) N17—C59—H59A 109.5
N19—C60—H60 117.7 N17—C59—H59B 109.5
C61—C60—H60 117.7 N17—C59—H59C 109.5
N15—C50—C49 124.9 (3) H59A—C59—H59B 109.5
N15—C50—H50 117.6 H59A—C59—H59C 109.5
C49—C50—H50 117.6 H59B—C59—H59C 109.5
S2—C33—C32—C31 −178.5 (2) C38—C30—C31—C32 −1.1 (4)
O5—S1—C24—C25 50.1 (3) C38—C34—C33—S2 178.2 (2)
O5—S1—C24—C23 −131.4 (2) C38—C34—C33—C32 −0.5 (4)
O10—C30—C31—C32 178.2 (3) C28—N11—C29—C25 0.5 (4)
O10—C30—C38—N12 1.2 (4) C28—N11—C29—C21 −179.2 (3)
O10—C30—C38—C34 −178.4 (2) C28—C27—C26—C25 0.5 (4)
O4—S1—C24—C25 169.1 (2) C33—C34—C38—N12 −179.6 (3)
O4—S1—C24—C23 −12.4 (3) C33—C34—C38—C30 0.0 (4)
O7—S2—C33—C34 −57.5 (3) C61—C62—C63—C64 −0.7 (5)
O7—S2—C33—C32 121.2 (3) C54—C55—C56—C57 1.3 (4)
N11—C29—C21—O6 0.1 (4) C36—C35—C34—C38 0.5 (4)
N11—C29—C21—C22 −179.9 (3) C36—C35—C34—C33 179.4 (3)
O3—S1—C24—C25 −70.0 (3) C62—C61—C60—N19 −1.2 (5)
O3—S1—C24—C23 108.5 (2) C60—N19—C64—C63 −0.5 (5)
O9—S2—C33—C34 61.6 (3) C60—C61—C62—N20 −178.7 (3)
O9—S2—C33—C32 −119.6 (3) C60—C61—C62—C63 1.1 (5)
N17—C55—C56—C57 −179.3 (3) C50—N15—C46—C47 −0.9 (5)
C25—C29—C21—O6 −179.6 (3) C22—C23—C24—S1 −177.6 (2)
C25—C29—C21—C22 0.4 (4) C22—C23—C24—C25 0.9 (4)
N16—C48—C49—C50 178.0 (3) C53—N18—C57—C56 −0.4 (5)
N16—C48—C47—C46 −178.6 (3) C53—C54—C55—N17 −179.8 (3)
C30—C31—C32—C33 0.6 (5) C53—C54—C55—C56 −0.4 (4)
N20—C62—C63—C64 179.1 (3) C37—N12—C38—C30 −179.2 (3)
C29—N11—C28—C27 0.4 (4) C37—N12—C38—C34 0.5 (4)
C29—C25—C24—S1 178.2 (2) C41—C40—C39—N14 0.4 (5)
C29—C25—C24—C23 −0.3 (4) C41—C42—C43—N14 −0.4 (5)
C29—C25—C26—C27 0.4 (4) C47—C48—C49—C50 −1.9 (4)
N19—C64—C63—C62 0.4 (5) C64—N19—C60—C61 0.9 (5)
C35—C34—C38—N12 −0.7 (4) C55—C54—C53—N18 −0.8 (5)
C35—C34—C38—C30 179.0 (3) C55—C56—C57—N18 −0.9 (5)
C35—C34—C33—S2 −0.7 (4) C52—N16—C48—C49 −4.7 (5)
C35—C34—C33—C32 −179.4 (3) C52—N16—C48—C47 175.2 (3)
C35—C36—C37—N12 −0.1 (5) C44—N13—C41—C40 −0.5 (5)
O8—S2—C33—C34 −176.6 (2) C44—N13—C41—C42 179.4 (3)
O8—S2—C33—C32 2.1 (3) C46—N15—C50—C49 0.3 (5)
C48—C49—C50—N15 1.2 (5) C43—N14—C39—C40 0.8 (5)
C48—C47—C46—N15 0.1 (5) C43—C42—C41—N13 −178.4 (3)
C23—C22—C21—O6 −179.8 (3) C43—C42—C41—C40 1.6 (4)
C23—C22—C21—C29 0.2 (4) C39—N14—C43—C42 −0.8 (5)
C24—C25—C29—N11 180.0 (3) C39—C40—C41—N13 178.4 (3)
C24—C25—C29—C21 −0.3 (4) C39—C40—C41—C42 −1.6 (4)
C24—C25—C26—C27 179.4 (3) C58—N17—C55—C54 −2.7 (4)
C24—C23—C22—C21 −0.8 (4) C58—N17—C55—C56 177.9 (3)
C26—C25—C29—N11 −0.9 (4) C57—N18—C53—C54 1.2 (5)
C26—C25—C29—C21 178.7 (3) C66—N20—C62—C61 174.1 (3)
C26—C25—C24—S1 −0.8 (4) C66—N20—C62—C63 −5.7 (5)
C26—C25—C24—C23 −179.3 (3) C51—N16—C48—C49 179.8 (3)
C26—C27—C28—N11 −0.9 (5) C51—N16—C48—C47 −0.3 (5)
C34—C35—C36—C37 −0.1 (4) C45—N13—C41—C40 −176.3 (3)
C34—C33—C32—C31 0.2 (5) C45—N13—C41—C42 3.7 (5)
C49—C48—C47—C46 1.3 (4) C65—N20—C62—C61 −3.0 (5)
C31—C30—C38—N12 −179.6 (3) C65—N20—C62—C63 177.2 (3)
C31—C30—C38—C34 0.8 (4) C59—N17—C55—C54 −177.4 (3)
C38—N12—C37—C36 −0.1 (4) C59—N17—C55—C56 3.2 (5)

4-(Dimethylamino)pyridin-1-ium 8-hydroxyquinoline-5-sulfonate; N,N-dimethylpyridin-4-amine . Hydrogen-bond geometry (Å, º)

Cg1, Cg2 are the centroids of the N11/C25–C29 and N12/C34–C38 rings, respectively

D—H···A D—H H···A D···A D—H···A
O6—H6···O8i 0.84 (5) 2.00 (5) 2.679 (3) 137 (4)
O6—H6···N11 0.84 (5) 2.24 (5) 2.728 (3) 117 (4)
O10—H10···O4 0.89 (5) 1.90 (5) 2.674 (3) 144 (4)
O10—H10···N12 0.89 (5) 2.31 (5) 2.730 (3) 109 (4)
N14—H14···N15 0.90 (3) 1.91 (3) 2.814 (4) 174 (3)
N18—H18···N19 0.90 (3) 1.92 (4) 2.816 (4) 177 (7)
C27—H27···O6ii 0.95 2.58 3.219 (4) 125
C27—H27···O8iii 0.95 2.27 3.194 (4) 164
C36—H36···O4iv 0.95 2.33 3.244 (4) 160
C36—H36···O10iv 0.95 2.58 3.216 (4) 125
C39—H39···O3v 0.95 2.32 3.200 (4) 154
C43—H43···O5 0.95 2.22 3.160 (4) 169
C46—H46···O5 0.95 2.46 3.373 (4) 161
C50—H50···O3v 0.95 2.43 3.292 (4) 151
C53—H53···O9vi 0.95 2.22 3.146 (4) 164
C54—H54···O10vii 0.95 2.55 3.450 (4) 158
C57—H57···O7 0.95 2.22 3.143 (4) 165
C60—H60···O7 0.95 2.40 3.325 (4) 163
C64—H64···O9vi 0.95 2.35 3.267 (4) 162
C40—H40···Cg1v 0.95 2.63 3.498 (3) 153
C49—H49···Cg2viii 0.95 2.87 3.754 (3) 156
C61—H61···Cg2 0.95 2.70 3.571 (3) 152

Symmetry codes: (i) x, y−1, z; (ii) x−1, y, z; (iii) x−1, y−1, z; (iv) x+1, y, z; (v) x, −y+1, z+1/2; (vi) x, −y+2, z+1/2; (vii) x+1, −y+2, z+1/2; (viii) x−1, −y+1, z+1/2.

Funding Statement

This work was funded by Japan Society for the Promotion of Science grant JP23 KJ1830 to M. Isobe.

References

  1. Aakeröy, C. B., Desper, J. & Levin, B. (2005). CrystEngComm, 7, 102–107.
  2. Baskar Raj, S., Muthiah, P. T., Bocelli, G. & Cantoni, A. (2003). Acta Cryst. E59, o1980–o1983.
  3. Biradha, H., Edwards, R. E., Foulds, G. J., Robinson, W. T. & Desiraju, G. R. (1995). Chem. Commun. pp. 1705–1707.
  4. Bolla, G., Sarma, B. & Nangia, A. K. (2022). Chem. Rev.122, 11514–11603. [DOI] [PubMed]
  5. Braga, D., Giaffreda, S. L., Grepioni, F., Palladino, G. & Polito, M. (2008). New J. Chem.32, 820–828.
  6. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst.42, 339–341.
  7. Döring, C. & Jones, P. G. (2016). Z. Anorg. Allge Chem.642, 930–936.
  8. Fábry, J. (2017). Acta Cryst. E73, 1344–1347. [DOI] [PMC free article] [PubMed]
  9. Ganie, A. A., Ismail, T. M., Sajith, P. K. & Dar, A. A. (2021). New J. Chem.45, 4780–4790.
  10. Glidewell, C. & Holden, H. D. (1982). Acta Cryst. B38, 667–669.
  11. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  12. Hemamalini, M., Muthiah, P. T., Bocelli, G. & Cantoni, A. (2004). Acta Cryst. C60, o284–o286. [DOI] [PubMed]
  13. Kashiwagi, Y., Kubono, K. & Tamai, T. (2020). Acta Cryst. E76, 1271–1274. [DOI] [PMC free article] [PubMed]
  14. Kobayashi, N., Naito, T. & Inabe, T. (2003). Bull. Chem. Soc. Jpn, 76, 1351–1362.
  15. Kubono, K., Tanaka, R., Kashiwagi, Y., Tani, K. & Yokoi, K. (2023). Acta Cryst. E79, 726–729. [DOI] [PMC free article] [PubMed]
  16. Lacková, D., Ondrejkovičová, I., Padělková, Z. & Koman, M. (2014). J. Coord. Chem.67, 1652–1663.
  17. Mautner, F. A. & Goher, M. A. S. (1998). Polyhedron, 18, 553–559.
  18. Rigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.
  19. Santra, R., Ghosh, N. & Biradha, K. (2008). New J. Chem.32, 1673–1676.
  20. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  21. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  22. Smith, G. (2012). Acta Cryst. E68, o3349. [DOI] [PMC free article] [PubMed]
  23. Smith, G., Wermuth, U. D. & Healy, P. C. (2004). Acta Cryst. C60, o600–o603. [DOI] [PubMed]
  24. Sun, L., Wang, Y., Yang, F., Zhang, X. & Hu, W. (2019). Adv. Mater.31, 1902328. [DOI] [PubMed]
  25. Vladiskovic, C., Mantegazza, S., Razzetti, G. & Masciocchi, N. (2023). Cryst. Growth Des.23, 1119–1126.
  26. Wagler, J. & Kronstein, M. (2014). CSD Communication.
  27. Wiberley, S. E. & Bassett, L. G. (1949). Anal. Chem.21, 609–612.
  28. Zhang, K., Shen, Y., Liu, J., Spingler, B. & Duttwyler, S. (2018). Chem. Commun.54, 1698–1701. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S205698902400642X/ox2006sup1.cif

e-80-00840-sup1.cif (527.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S205698902400642X/ox2006Isup3.hkl

e-80-00840-Isup3.hkl (541.3KB, hkl)

Supporting information file. DOI: 10.1107/S205698902400642X/ox2006Isup3.cml

CCDC reference: 2366836

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES