Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1991 Dec 1;280(Pt 2):507–514. doi: 10.1042/bj2800507

Ricinoleic acid biosynthesis and triacylglycerol assembly in microsomal preparations from developing castor-bean (Ricinus communis) endosperm.

M Bafor 1, M A Smith 1, L Jonsson 1, K Stobart 1, S Stymne 1
PMCID: PMC1130577  PMID: 1747126

Abstract

Microsomal membrane preparations from the developing endosperm of castor bean (Ricinus communis) catalysed the transfer of oleate from [14C]oleoyl-CoA to phosphatidylcholine (PtdCho). In the presence of NADH, radioactive ricinoleate (12-hydroxyoctadec-9-enoate) was synthesized from [14C]oleate, and this was largely recovered in PtdCho and as free fatty acid. The addition of unlabelled ricinoleoyl-CoA to these incubation mixtures did not increase the low [14C]ricinoleate concentration found in the acyl-CoA fraction nor decrease the [14C]ricinoleate concentration in PtdCho and free fatty acid, and thus no evidence was obtained for a hydroxylation with oleoyl-CoA as a substrate. The addition of NADH, necessary for the formation of ricinoleate, caused a decrease of the total radioactivity in PtdCho with a corresponding increase in the amount of label in free ricinoleic acid. This increase was due to the action of a phospholipase A, which released ricinoleic acid but not oleic acid from PtdCho. Such a phospholipase activity, attacking ricinoleoyl-PtdCho but not oleoyl-PtdCho, was also demonstrated in microsomal preparations from developing cotyledons of safflower and oil-seed rape. An analysis of the acyl groups at different positions in microsomal PtdCho of castor bean showed that ricinoleate was almost entirely associated with position sn-2. Likewise the [14C]ricinoleate in [14C]PtdCho formed after incubations with microsomal preparations with NADH and [14C]oleoyl-CoA resided in position sn-2 with none in position sn-1. In contrast, the [14C]linoleate formed by desaturation of [14C]oleoyl-PtdCho was present at both positions. In the presence of ATP, CoA and Mg2+, the ricinoleate acid released from PtdCho was activated to ricinoleoyl-CoA. The ricinoleoyl-CoA was an efficient acyl donor in the acylation of glycerol 3-phosphate (Gro3P) to yield phosphatidic acid and triacylglycerols. In microsomal preparations incubated with an equimolar mixture of [14C]oleoyl-CoA and [14C]ricinoleoyl-CoA in the presence of Gro3P, only a minor amount of [14C]ricinoleate entered PtdCho, and this was believed to be via the exchange of phosphocholine groups between a diacylglycerol pool and the PtdCho. On the basis of our results, a scheme of ricinoleate formation and its incorporation into triacylglycerols in castor-bean endosperm is proposed.

Full text

PDF
510

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BLIGH E. G., DYER W. J. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959 Aug;37(8):911–917. doi: 10.1139/o59-099. [DOI] [PubMed] [Google Scholar]
  2. Bafor M., Jonsson L., Stobart A. K., Stymne S. Regulation of triacylglycerol biosynthesis in embryos and microsomal preparations from the developing seeds of Cuphea lanceolata. Biochem J. 1990 Nov 15;272(1):31–38. doi: 10.1042/bj2720031. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Galliard T., Stumpf P. K. Fat metabolism in higher plants. 30. Enzymatic synthesis of ricinoleic acid by a microsomal preparation from developing Ricinus communis seeds. J Biol Chem. 1966 Dec 25;241(24):5806–5812. [PubMed] [Google Scholar]
  4. Griffiths G., Stobart A. K., Stymne S. Delta 6- and delta 12-desaturase activities and phosphatidic acid formation in microsomal preparations from the developing cotyledons of common borage (Borago officinalis). Biochem J. 1988 Jun 15;252(3):641–647. doi: 10.1042/bj2520641. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Griffiths G., Stobart A. K., Stymne S. The acylation of sn-glycerol 3-phosphate and the metabolism of phosphatidate in microsomal preparations from the developing cotyledons of safflower (Carthamus tinctorius L.) seed. Biochem J. 1985 Sep 1;230(2):379–388. doi: 10.1042/bj2300379. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. KATES M. SIMPLIFIED PROCEDURES FOR HYDROLYSIS OR METHANOLYSIS OF LIPIDS. J Lipid Res. 1964 Jan;5:132–135. [PubMed] [Google Scholar]
  7. Moreau R. A., Stumpf P. K. Recent studies of the enzymic synthesis of ricinoleic Acid by developing castor beans. Plant Physiol. 1981 Apr;67(4):672–676. doi: 10.1104/pp.67.4.672. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Slack C. R., Roughan P. G., Browse J. Evidence for an oleoyl phosphatidylcholine desaturase in microsomal preparations from cotyledons of safflower (Carthamus tinctorius) seed. Biochem J. 1979 Jun 1;179(3):649–656. doi: 10.1042/bj1790649. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Stobart A. K., Stymne S. The interconversion of diacylglycerol and phosphatidylcholine during triacylglycerol production in microsomal preparations of developing cotyledons of safflower (Carthamus tinctorius L.). Biochem J. 1985 Nov 15;232(1):217–221. doi: 10.1042/bj2320217. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Stymne S., Stobart A. K. Evidence for the reversibility of the acyl-CoA:lysophosphatidylcholine acyltransferase in microsomal preparations from developing safflower (Carthamus tinctorius L.) cotyledons and rat liver. Biochem J. 1984 Oct 15;223(2):305–314. doi: 10.1042/bj2230305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Stymne S., Stobart A. K. Involvement of acyl exchange between acyl-CoA and phosphatidylcholine in the remodelling of phosphatidylcholine in microsomal preparations of rat lung. Biochim Biophys Acta. 1985 Dec 4;837(3):239–250. doi: 10.1016/0005-2760(85)90047-5. [DOI] [PubMed] [Google Scholar]
  12. Sánchez M., Nicholls D. G., Brindley D. N. [The relationship between palmitoyl-coenzyme A synthetase activity and esterification of sn-glycerol 3-phosphate in rat liver mitochondria]. Biochem J. 1973 Apr;132(4):697–706. doi: 10.1042/bj1320697. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES