Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1991 Nov 15;280(Pt 1):51–55. doi: 10.1042/bj2800051

Comparison of the domain-level organization of starch hydrolases and related enzymes.

H M Jespersen 1, E A MacGregor 1, M R Sierks 1, B Svensson 1
PMCID: PMC1130598  PMID: 1741756

Abstract

Structure-prediction and hydrophobic-cluster analysis of several starch hydrolases and related enzymes indicated the organization of eleven domain types. Most enzymes possess a catalytic (beta/alpha)8-barrel and a smaller C-terminal domain as seen in crystal structures of alpha-amylase and cyclodextrin glucanotransferase. Some also have a starch-granule-binding domain. Enzymes breaking or forming endo-alpha-1,6 linkages contain domains N-terminal to the (beta/alpha)8-barrel.

Full text

PDF
52

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amemura A., Chakraborty R., Fujita M., Noumi T., Futai M. Cloning and nucleotide sequence of the isoamylase gene from Pseudomonas amyloderamosa SB-15. J Biol Chem. 1988 Jul 5;263(19):9271–9275. [PubMed] [Google Scholar]
  2. Baecker P. A., Greenberg E., Preiss J. Biosynthesis of bacterial glycogen. Primary structure of Escherichia coli 1,4-alpha-D-glucan:1,4-alpha-D-glucan 6-alpha-D-(1, 4-alpha-D-glucano)-transferase as deduced from the nucleotide sequence of the glg B gene. J Biol Chem. 1986 Jul 5;261(19):8738–8743. [PubMed] [Google Scholar]
  3. Binder F., Huber O., Böck A. Cyclodextrin-glycosyltransferase from Klebsiella pneumoniae M5a1: cloning, nucleotide sequence and expression. Gene. 1986;47(2-3):269–277. doi: 10.1016/0378-1119(86)90070-3. [DOI] [PubMed] [Google Scholar]
  4. Boel E., Brady L., Brzozowski A. M., Derewenda Z., Dodson G. G., Jensen V. J., Petersen S. B., Swift H., Thim L., Woldike H. F. Calcium binding in alpha-amylases: an X-ray diffraction study at 2.1-A resolution of two enzymes from Aspergillus. Biochemistry. 1990 Jul 3;29(26):6244–6249. doi: 10.1021/bi00478a019. [DOI] [PubMed] [Google Scholar]
  5. Buisson G., Duée E., Haser R., Payan F. Three dimensional structure of porcine pancreatic alpha-amylase at 2.9 A resolution. Role of calcium in structure and activity. EMBO J. 1987 Dec 20;6(13):3909–3916. doi: 10.1002/j.1460-2075.1987.tb02731.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Candussio A., Schmid G., Böck A. Biochemical and genetic analysis of a maltopentaose-producing amylase from an alkaliphilic gram-positive bacterium. Eur J Biochem. 1990 Jul 20;191(1):177–185. doi: 10.1111/j.1432-1033.1990.tb19108.x. [DOI] [PubMed] [Google Scholar]
  7. Dayhoff M. O., Barker W. C., Hunt L. T. Establishing homologies in protein sequences. Methods Enzymol. 1983;91:524–545. doi: 10.1016/s0076-6879(83)91049-2. [DOI] [PubMed] [Google Scholar]
  8. Dohmen R. J., Strasser A. W., Dahlems U. M., Hollenberg C. P. Cloning of the Schwanniomyces occidentalis glucoamylase gene (GAM1) and its expression in Saccharomyces cerevisiae. Gene. 1990 Oct 30;95(1):111–121. doi: 10.1016/0378-1119(90)90421-m. [DOI] [PubMed] [Google Scholar]
  9. Farber G. K., Petsko G. A. The evolution of alpha/beta barrel enzymes. Trends Biochem Sci. 1990 Jun;15(6):228–234. doi: 10.1016/0968-0004(90)90035-a. [DOI] [PubMed] [Google Scholar]
  10. Friedberg F., Rhodes C. Segments of amino acid sequence similarity in beta-amylases. Protein Seq Data Anal. 1988;1(6):499–501. [PubMed] [Google Scholar]
  11. Gaboriaud C., Bissery V., Benchetrit T., Mornon J. P. Hydrophobic cluster analysis: an efficient new way to compare and analyse amino acid sequences. FEBS Lett. 1987 Nov 16;224(1):149–155. doi: 10.1016/0014-5793(87)80439-8. [DOI] [PubMed] [Google Scholar]
  12. Garnier J., Osguthorpe D. J., Robson B. Analysis of the accuracy and implications of simple methods for predicting the secondary structure of globular proteins. J Mol Biol. 1978 Mar 25;120(1):97–120. doi: 10.1016/0022-2836(78)90297-8. [DOI] [PubMed] [Google Scholar]
  13. Hoefsloot L. H., Hoogeveen-Westerveld M., Kroos M. A., van Beeumen J., Reuser A. J., Oostra B. A. Primary structure and processing of lysosomal alpha-glucosidase; homology with the intestinal sucrase-isomaltase complex. EMBO J. 1988 Jun;7(6):1697–1704. doi: 10.1002/j.1460-2075.1988.tb02998.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hofmann B. E., Bender H., Schulz G. E. Three-dimensional structure of cyclodextrin glycosyltransferase from Bacillus circulans at 3.4 A resolution. J Mol Biol. 1989 Oct 20;209(4):793–800. doi: 10.1016/0022-2836(89)90607-4. [DOI] [PubMed] [Google Scholar]
  15. Holm L., Koivula A. K., Lehtovaara P. M., Hemminki A., Knowles J. K. Random mutagenesis used to probe the structure and function of Bacillus stearothermophilus alpha-amylase. Protein Eng. 1990 Jan;3(3):181–191. doi: 10.1093/protein/3.3.181. [DOI] [PubMed] [Google Scholar]
  16. Hong S. H., Marmur J. Primary structure of the maltase gene of the MAL6 locus of Saccharomyces carlsbergensis. Gene. 1986;41(1):75–84. doi: 10.1016/0378-1119(86)90269-6. [DOI] [PubMed] [Google Scholar]
  17. Hunziker W., Spiess M., Semenza G., Lodish H. F. The sucrase-isomaltase complex: primary structure, membrane-orientation, and evolution of a stalked, intrinsic brush border protein. Cell. 1986 Jul 18;46(2):227–234. doi: 10.1016/0092-8674(86)90739-7. [DOI] [PubMed] [Google Scholar]
  18. Katsuragi N., Takizawa N., Murooka Y. Entire nucleotide sequence of the pullulanase gene of Klebsiella aerogenes W70. J Bacteriol. 1987 May;169(5):2301–2306. doi: 10.1128/jb.169.5.2301-2306.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kawazu T., Nakanishi Y., Uozumi N., Sasaki T., Yamagata H., Tsukagoshi N., Udaka S. Cloning and nucleotide sequence of the gene coding for enzymatically active fragments of the Bacillus polymyxa beta-amylase. J Bacteriol. 1987 Apr;169(4):1564–1570. doi: 10.1128/jb.169.4.1564-1570.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kimura K., Kataoka S., Ishii Y., Takano T., Yamane K. Nucleotide sequence of the beta-cyclodextrin glucanotransferase gene of alkalophilic Bacillus sp. strain 1011 and similarity of its amino acid sequence to those of alpha-amylases. J Bacteriol. 1987 Sep;169(9):4399–4402. doi: 10.1128/jb.169.9.4399-4402.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kitamoto N., Yamagata H., Kato T., Tsukagoshi N., Udaka S. Cloning and sequencing of the gene encoding thermophilic beta-amylase of Clostridium thermosulfurogenes. J Bacteriol. 1988 Dec;170(12):5848–5854. doi: 10.1128/jb.170.12.5848-5854.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Klein C., Schulz G. E. Structure of cyclodextrin glycosyltransferase refined at 2.0 A resolution. J Mol Biol. 1991 Feb 20;217(4):737–750. doi: 10.1016/0022-2836(91)90530-j. [DOI] [PubMed] [Google Scholar]
  23. Kuriki T., Imanaka T. Nucleotide sequence of the neopullulanase gene from Bacillus stearothermophilus. J Gen Microbiol. 1989 Jun;135(6):1521–1528. doi: 10.1099/00221287-135-6-1521. [DOI] [PubMed] [Google Scholar]
  24. Lacks S. A., Dunn J. J., Greenberg B. Identification of base mismatches recognized by the heteroduplex-DNA-repair system of Streptococcus pneumoniae. Cell. 1982 Dec;31(2 Pt 1):327–336. doi: 10.1016/0092-8674(82)90126-x. [DOI] [PubMed] [Google Scholar]
  25. Lemesle-Varloot L., Henrissat B., Gaboriaud C., Bissery V., Morgat A., Mornon J. P. Hydrophobic cluster analysis: procedures to derive structural and functional information from 2-D-representation of protein sequences. Biochimie. 1990 Aug;72(8):555–574. doi: 10.1016/0300-9084(90)90120-6. [DOI] [PubMed] [Google Scholar]
  26. Long C. M., Virolle M. J., Chang S. Y., Chang S., Bibb M. J. alpha-Amylase gene of Streptomyces limosus: nucleotide sequence, expression motifs, and amino acid sequence homology to mammalian and invertebrate alpha-amylases. J Bacteriol. 1987 Dec;169(12):5745–5754. doi: 10.1128/jb.169.12.5745-5754.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. MacGregor E. A. Alpha-amylase structure and activity. J Protein Chem. 1988 Aug;7(4):399–415. doi: 10.1007/BF01024888. [DOI] [PubMed] [Google Scholar]
  28. MacGregor E. A., Svensson B. A super-secondary structure predicted to be common to several alpha-1,4-D-glucan-cleaving enzymes. Biochem J. 1989 Apr 1;259(1):145–152. doi: 10.1042/bj2590145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Matsuura Y., Kusunoki M., Harada W., Kakudo M. Structure and possible catalytic residues of Taka-amylase A. J Biochem. 1984 Mar;95(3):697–702. doi: 10.1093/oxfordjournals.jbchem.a134659. [DOI] [PubMed] [Google Scholar]
  30. Melasniemi H., Paloheimo M., Hemiö L. Nucleotide sequence of the alpha-amylase-pullulanase gene from Clostridium thermohydrosulfuricum. J Gen Microbiol. 1990 Mar;136(3):447–454. doi: 10.1099/00221287-136-3-447. [DOI] [PubMed] [Google Scholar]
  31. Mikami B., Morita Y., Fukazawa C. [Primary structure and function of beta-amylase]. Seikagaku. 1988 Mar;60(3):211–216. [PubMed] [Google Scholar]
  32. Raimbaud E., Buleon A., Perez S., Henrissat B. Hydrophobic cluster analysis of the primary sequences of alpha-amylases. Int J Biol Macromol. 1989 Aug;11(4):217–225. doi: 10.1016/0141-8130(89)90072-x. [DOI] [PubMed] [Google Scholar]
  33. Russell R. R., Ferretti J. J. Nucleotide sequence of the dextran glucosidase (dexB) gene of Streptococcus mutans. J Gen Microbiol. 1990 May;136(5):803–810. doi: 10.1099/00221287-136-5-803. [DOI] [PubMed] [Google Scholar]
  34. Svensson B., Jespersen H., Sierks M. R., MacGregor E. A. Sequence homology between putative raw-starch binding domains from different starch-degrading enzymes. Biochem J. 1989 Nov 15;264(1):309–311. doi: 10.1042/bj2640309. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Svensson B., Larsen K., Gunnarsson A. Characterization of a glucoamylase G2 from Aspergillus niger. Eur J Biochem. 1986 Feb 3;154(3):497–502. doi: 10.1111/j.1432-1033.1986.tb09425.x. [DOI] [PubMed] [Google Scholar]
  36. Svensson B. Regional distant sequence homology between amylases, alpha-glucosidases and transglucanosylases. FEBS Lett. 1988 Mar 28;230(1-2):72–76. doi: 10.1016/0014-5793(88)80644-6. [DOI] [PubMed] [Google Scholar]
  37. Takahashi T., Kato K., Ikegami Y., Irie M. Different behavior towards raw starch of three forms of glucoamylase from a Rhizopus sp. J Biochem. 1985 Sep;98(3):663–671. doi: 10.1093/oxfordjournals.jbchem.a135323. [DOI] [PubMed] [Google Scholar]
  38. Uozumi N., Sakurai K., Sasaki T., Takekawa S., Yamagata H., Tsukagoshi N., Udaka S. A single gene directs synthesis of a precursor protein with beta- and alpha-amylase activities in Bacillus polymyxa. J Bacteriol. 1989 Jan;171(1):375–382. doi: 10.1128/jb.171.1.375-382.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Watanabe K., Kitamura K., Iha H., Suzuki Y. Primary structure of the oligo-1,6-glucosidase of Bacillus cereus ATCC7064 deduced from the nucleotide sequence of the cloned gene. Eur J Biochem. 1990 Sep 24;192(3):609–620. doi: 10.1111/j.1432-1033.1990.tb19267.x. [DOI] [PubMed] [Google Scholar]
  40. Zhou J. H., Baba T., Takano T., Kobayashi S., Arai Y. Nucleotide sequence of the maltotetraohydrolase gene from Pseudomonas saccharophila. FEBS Lett. 1989 Sep 11;255(1):37–41. doi: 10.1016/0014-5793(89)81056-7. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES