Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1992 Feb 1;281(Pt 3):753–759. doi: 10.1042/bj2810753

Anomeric preference of fluoroglucose exchange across human red-cell membranes. 19F-n.m.r. studies.

J R Potts 1, P W Kuchel 1
PMCID: PMC1130755  PMID: 1536653

Abstract

The rates of exchange across the human red-cell membrane of the alpha- and beta-anomers of the glucose derivative 3-fluoro-3-deoxy-D-glucose (3FG) were measured, under equilibrium-exchange conditions, using a 19F-n.m.r.-magnetization-exchange procedure. In experiments carried out over a range of 3FG concentrations (3.4-113 mM), the alpha-anomer was found to be transported with a smaller Km (greater apparent affinity) than the beta-anomer. In two experiments carried out at 34 and 37 degrees C the ratio (alpha/beta) of the Michaelis constants for exchange was 0.75 +/- 0.07 and 0.83 +/- 0.07 respectively and the Vmax for 3FG exchange was 28 +/- 3 and 33 +/- 3 mmol.s-1.litre of cells-1 respectively. In several experiments carried out at a single 3FG concentration (17 mM) and at 37 degrees C, using red cells from four individuals, the rate of exchange of the alpha-anomer across the membrane was significantly higher than that of the beta-anomer. The weighted mean value of the above-mentioned ratio was 0.79 +/- 0.07 for the four donors.

Full text

PDF
754

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Appleman J. R., Lienhard G. E. Kinetics of the purified glucose transporter. Direct measurement of the rates of interconversion of transporter conformers. Biochemistry. 1989 Oct 3;28(20):8221–8227. doi: 10.1021/bi00446a038. [DOI] [PubMed] [Google Scholar]
  2. Baker G. F., Naftalin R. J. The effects of replacement of water with D2O on D-glucose transfer in human erythrocytes [proceedings]. J Physiol. 1978 Jul;280:25P–25P. [PubMed] [Google Scholar]
  3. Baldwin S. A., Baldwin J. M., Lienhard G. E. Monosaccharide transporter of the human erythrocyte. Characterization of an improved preparation. Biochemistry. 1982 Aug 3;21(16):3836–3842. doi: 10.1021/bi00259a018. [DOI] [PubMed] [Google Scholar]
  4. Barnett J. E., Holman G. D., Munday K. A. Structural requirements for binding to the sugar-transport system of the human erythrocyte. Biochem J. 1973 Feb;131(2):211–221. doi: 10.1042/bj1310211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bobo C. M. Nonsolvent water in human erythrocytes and hemoglobin solutions. J Gen Physiol. 1967 Dec;50(11):2547–2564. doi: 10.1085/jgp.50.11.2547. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Carruthers A., Melchior D. L. Transport of alpha- and beta-D-glucose by the intact human red cell. Biochemistry. 1985 Jul 16;24(15):4244–4250. doi: 10.1021/bi00336a065. [DOI] [PubMed] [Google Scholar]
  7. FAUST R. G. Monosaccharide penetration into human red blood cells by an altered diffusion mechanism. J Cell Comp Physiol. 1960 Oct;56:103–121. doi: 10.1002/jcp.1030560205. [DOI] [PubMed] [Google Scholar]
  8. Fujii H., Miwa I., Okuda J., Tamura A., Fujii T. Glucose transport into human erythrocytes treated with phospholipase A2 or C. Biochim Biophys Acta. 1986 Aug 6;883(1):77–82. doi: 10.1016/0304-4165(86)90137-6. [DOI] [PubMed] [Google Scholar]
  9. Gasbjerg P. K., Brahm J. Glucose transport kinetics in human red blood cells. Biochim Biophys Acta. 1991 Feb 11;1062(1):83–93. doi: 10.1016/0005-2736(91)90338-9. [DOI] [PubMed] [Google Scholar]
  10. Gorga F. R., Lienhard G. E. Equilibria and kinetics of ligand binding to the human erythrocyte glucose transporter. Evidence for an alternating conformation model for transport. Biochemistry. 1981 Sep 1;20(18):5108–5113. doi: 10.1021/bi00521a003. [DOI] [PubMed] [Google Scholar]
  11. Krupka R. M. Expression of substrate specificity in facilitated transport systems. J Membr Biol. 1990 Jul;117(1):69–78. doi: 10.1007/BF01871566. [DOI] [PubMed] [Google Scholar]
  12. Kuchel P. W., Chapman B. E. NMR spin exchange kinetics at equilibrium in membrane transport and enzyme systems. J Theor Biol. 1983 Dec 21;105(4):569–589. doi: 10.1016/0022-5193(83)90220-5. [DOI] [PubMed] [Google Scholar]
  13. Kuchel P. W. Steady-state parameters of an enzyme from n.m.r. spin transfer with thermal variation. Biochem J. 1987 May 15;244(1):247–248. doi: 10.1042/bj2440247. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. LEFEVRE P. G., MARSHALL J. K. Conformational specificity in a biological sugar transport system. Am J Physiol. 1958 Aug;194(2):333–337. doi: 10.1152/ajplegacy.1958.194.2.333. [DOI] [PubMed] [Google Scholar]
  15. Lowe A. G., Walmsley A. R. The kinetics of glucose transport in human red blood cells. Biochim Biophys Acta. 1986 May 28;857(2):146–154. doi: 10.1016/0005-2736(86)90342-1. [DOI] [PubMed] [Google Scholar]
  16. Potts J. R., Hounslow A. M., Kuchel P. W. Exchange of fluorinated glucose across the red-cell membrane measured by 19F-n.m.r. magnetization transfer. Biochem J. 1990 Mar 15;266(3):925–928. [PMC free article] [PubMed] [Google Scholar]
  17. Price W. S., Kuchel P. W. Hypophosphite transport in human erythrocytes studied by overdetermined one-dimensional NMR exchange analysis. NMR Biomed. 1990 Apr;3(2):59–63. doi: 10.1002/nbm.1940030203. [DOI] [PubMed] [Google Scholar]
  18. Riley G. J., Taylor N. F. The interaction of 3-deoxy-3-fluoro-D-glucose with the hexose-transport system of the human erythrocyte. Biochem J. 1973 Dec;135(4):773–777. doi: 10.1042/bj1350773. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. SAVITZ D., SIDEL V. W., SOLOMON A. K. OSMOTIC PROPERTIES OF HUMAN RED CELLS. J Gen Physiol. 1964 Sep;48:79–94. doi: 10.1085/jgp.48.1.79. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES