Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1992 Mar 1;282(Pt 2):467–470. doi: 10.1042/bj2820467

Partial dehydration of phosphatidylethanolamine phosphate groups during hexagonal phase formation, as seen by i.r. spectroscopy.

J Castresana 1, J L Nieva 1, E Rivas 1, A Alonso 1
PMCID: PMC1130802  PMID: 1546961

Abstract

The gel-to-fluid and lamellar-to-HII-hexagonal thermotropic phase transitions of egg-yolk phosphatidylethanolamine have been examined by Fourier-transform infrared spectroscopy under a variety of conditions, namely excess water at pH 5.0, excess water at pH 9.5 and low hydration. The various lamellar and hexagonal phases have been characterized by X-ray diffraction. At pH 5.0, gel-fluid and lamellar-hexagonal transitions were detected at 10 and 32 degrees C respectively, in accordance with previous data. At pH 9.5, only the first of these two transitions was detected. In the partially hydrated sample a single phenomenon was observed, probably encompassing both transitions, so that, in practice, a gel-HII-hexagonal transition appears to occur. The region of the i.r. spectrum corresponding to the phospholipid phosphate group reveals that the lamellar-hexagonal, but not the gel-fluid, transition is accompanied by a weakening in the shell of hydrogen-bonded water, thus providing direct evidence that, in a pure lipid/water system, hexagonal phase formation requires partial dehydration of the phospholipid phosphate group. X-ray diffraction data support this conclusion, since, at least in the low-hydration system, the average surface area per lipid polar group decreases with the thermotropic lamellar-hexagonal transition.

Full text

PDF
470

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arrondo J. L., Goñi F. M., Macarulla J. M. Infrared spectroscopy of phosphatidylcholines in aqueous suspension. A study of the phosphate group vibrations. Biochim Biophys Acta. 1984 Jun 6;794(1):165–168. doi: 10.1016/0005-2760(84)90310-2. [DOI] [PubMed] [Google Scholar]
  2. Boggs J. M. Lipid intermolecular hydrogen bonding: influence on structural organization and membrane function. Biochim Biophys Acta. 1987 Oct 5;906(3):353–404. doi: 10.1016/0304-4157(87)90017-7. [DOI] [PubMed] [Google Scholar]
  3. Casal H. L., Mantsch H. H., Hauser H. Infrared and 31P-NMR studies of the interaction of Mg2+ with phosphatidylserines: effect of hydrocarbon chain unsaturation. Biochim Biophys Acta. 1989 Jul 10;982(2):228–236. doi: 10.1016/0005-2736(89)90059-x. [DOI] [PubMed] [Google Scholar]
  4. Casal H. L., Mantsch H. H. Polymorphic phase behaviour of phospholipid membranes studied by infrared spectroscopy. Biochim Biophys Acta. 1984 Dec 4;779(4):381–401. doi: 10.1016/0304-4157(84)90017-0. [DOI] [PubMed] [Google Scholar]
  5. Cevc G., Watts A., Marsh D. Titration of the phase transition of phosphatidylserine bilayer membranes. Effects of pH, surface electrostatics, ion binding, and head-group hydration. Biochemistry. 1981 Aug 18;20(17):4955–4965. doi: 10.1021/bi00520a023. [DOI] [PubMed] [Google Scholar]
  6. Cullis P. R., Hope M. J., Tilcock C. P. Lipid polymorphism and the roles of lipids in membranes. Chem Phys Lipids. 1986 Jun-Jul;40(2-4):127–144. doi: 10.1016/0009-3084(86)90067-8. [DOI] [PubMed] [Google Scholar]
  7. Cullis P. R., de Kruijff B. The polymorphic phase behaviour of phosphatidylethanolamines of natural and synthetic origin. A 31P NMR study. Biochim Biophys Acta. 1978 Oct 19;513(1):31–42. doi: 10.1016/0005-2736(78)90109-8. [DOI] [PubMed] [Google Scholar]
  8. Eibl H., Woolley P. Electrostatic interactions at charged lipid membranes. Hydrogen bonds in lipid membrane surfaces. Biophys Chem. 1979 Nov;10(3-4):261–271. doi: 10.1016/0301-4622(79)85015-2. [DOI] [PubMed] [Google Scholar]
  9. Fringeli U. P., Günthard H. H. Infrared membrane spectroscopy. Mol Biol Biochem Biophys. 1981;31:270–332. doi: 10.1007/978-3-642-81537-9_6. [DOI] [PubMed] [Google Scholar]
  10. Goñi F. M., Arrondo J. L. A study of phospholipid phosphate groups in model membranes by Fourier transform infrared spectroscopy. Faraday Discuss Chem Soc. 1986;(81):117–126. doi: 10.1039/dc9868100117. [DOI] [PubMed] [Google Scholar]
  11. Gruner S. M., Cullis P. R., Hope M. J., Tilcock C. P. Lipid polymorphism: the molecular basis of nonbilayer phases. Annu Rev Biophys Biophys Chem. 1985;14:211–238. doi: 10.1146/annurev.bb.14.060185.001235. [DOI] [PubMed] [Google Scholar]
  12. Gruner S. M., Tate M. W., Kirk G. L., So P. T., Turner D. C., Keane D. T., Tilcock C. P., Cullis P. R. X-ray diffraction study of the polymorphic behavior of N-methylated dioleoylphosphatidylethanolamine. Biochemistry. 1988 Apr 19;27(8):2853–2866. doi: 10.1021/bi00408a029. [DOI] [PubMed] [Google Scholar]
  13. Hardman P. D. Spin-label characterisation of the lamellar-to-hexagonal (HII) phase transition in egg phosphatidylethanolamine aqueous dispersions. Eur J Biochem. 1982 May;124(1):95–101. doi: 10.1111/j.1432-1033.1982.tb05910.x. [DOI] [PubMed] [Google Scholar]
  14. Lee D. C., Chapman D. Infrared spectroscopic studies of biomembranes and model membranes. Biosci Rep. 1986 Mar;6(3):235–256. doi: 10.1007/BF01115153. [DOI] [PubMed] [Google Scholar]
  15. Lewis R. N., Mannock D. A., McElhaney R. N., Turner D. C., Gruner S. M. Effect of fatty acyl chain length and structure on the lamellar gel to liquid-crystalline and lamellar to reversed hexagonal phase transitions of aqueous phosphatidylethanolamine dispersions. Biochemistry. 1989 Jan 24;28(2):541–548. doi: 10.1021/bi00428a020. [DOI] [PubMed] [Google Scholar]
  16. Mantsch H. H., Martin A., Cameron D. G. Characterization by infrared spectroscopy of the bilayer to nonbilayer phase transition of phosphatidylethanolamines. Biochemistry. 1981 May 26;20(11):3138–3145. doi: 10.1021/bi00514a024. [DOI] [PubMed] [Google Scholar]
  17. Marsh D., Seddon J. M. Gel-to-inverted hexagonal (L beta-HII) phase transitions in phosphatidylethanolamines and fatty acid-phosphatidylcholine mixtures, demonstrated by 31P-NMR spectroscopy and x-ray diffraction. Biochim Biophys Acta. 1982 Aug 25;690(1):117–123. doi: 10.1016/0005-2736(82)90245-0. [DOI] [PubMed] [Google Scholar]
  18. Rand R. P., Fuller N. L., Gruner S. M., Parsegian V. A. Membrane curvature, lipid segregation, and structural transitions for phospholipids under dual-solvent stress. Biochemistry. 1990 Jan 9;29(1):76–87. doi: 10.1021/bi00453a010. [DOI] [PubMed] [Google Scholar]
  19. Reiss-Husson F. Structure des phases liquide-cristallines de différents phospholipides, monoglycérides, sphingolipides, anhydres ou en présence d'eau. J Mol Biol. 1967 May 14;25(3):363–382. doi: 10.1016/0022-2836(67)90192-1. [DOI] [PubMed] [Google Scholar]
  20. Seddon J. M., Cevc G., Kaye R. D., Marsh D. X-ray diffraction study of the polymorphism of hydrated diacyl- and dialkylphosphatidylethanolamines. Biochemistry. 1984 Jun 5;23(12):2634–2644. doi: 10.1021/bi00307a015. [DOI] [PubMed] [Google Scholar]
  21. Seddon J. M., Cevc G., Marsh D. Calorimetric studies of the gel-fluid (L beta-L alpha) and lamellar-inverted hexagonal (L alpha-HII) phase transitions in dialkyl- and diacylphosphatidylethanolamines. Biochemistry. 1983 Mar 1;22(5):1280–1289. doi: 10.1021/bi00274a045. [DOI] [PubMed] [Google Scholar]
  22. Seddon J. M. Structure of the inverted hexagonal (HII) phase, and non-lamellar phase transitions of lipids. Biochim Biophys Acta. 1990 Feb 28;1031(1):1–69. doi: 10.1016/0304-4157(90)90002-t. [DOI] [PubMed] [Google Scholar]
  23. Sen A., Yang P. W., Mantsch H. H., Hui S. W. Extended hydrogen-bonded structures of phosphatidylethanolamine. Chem Phys Lipids. 1988 Jun;47(2):109–116. doi: 10.1016/0009-3084(88)90079-5. [DOI] [PubMed] [Google Scholar]
  24. Siegel D. P. Inverted micellar intermediates and the transitions between lamellar, cubic, and inverted hexagonal lipid phases. II. Implications for membrane-membrane interactions and membrane fusion. Biophys J. 1986 Jun;49(6):1171–1183. doi: 10.1016/S0006-3495(86)83745-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Tate M. W., Gruner S. M. Lipid polymorphism of mixtures of dioleoylphosphatidylethanolamine and saturated and monounsaturated phosphatidylcholines of various chain lengths. Biochemistry. 1987 Jan 13;26(1):231–236. doi: 10.1021/bi00375a031. [DOI] [PubMed] [Google Scholar]
  26. Tate M. W., Gruner S. M. Temperature dependence of the structural dimensions of the inverted hexagonal (HII) phase of phosphatidylethanolamine-containing membranes. Biochemistry. 1989 May 16;28(10):4245–4253. doi: 10.1021/bi00436a019. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES