Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1992 Mar 15;282(Pt 3):675–680. doi: 10.1042/bj2820675

Bacterial metabolism of 5-aminosalicylic acid. Initial ring cleavage.

A Stolz 1, B Nörtemann 1, H J Knackmuss 1
PMCID: PMC1130840  PMID: 1554350

Abstract

The metabolism of 5-aminosalicylate (5AS) by a bacterial strain, Pseudomonas sp. BN9, was studied. Intact cells of Pseudomonas sp. BN9 grown with 5AS oxidized 5AS and 2,5-dihydroxybenzoate (gentisate), whereas cells grown with gentisate oxidized only the growth substrate of all substituted salicylates tested. Cell extracts from Pseudomonas sp. BN9 catalysed the stoichiometric reaction of 1 mol of oxygen with 1 mol of 5AS to a metabolite with an intense u.v.-absorption maximum at 352 nm (pH 8.0). This metabolite was accumulated under neutral conditions, but was rapidly destroyed at acid pH. It was identified by m.s. and acid-catalysed deamination to fumarylpyruvate (trans-2,4-dioxohept-5-enedioic acid) as cis-4-amino-6-carboxy-2-oxohexa-3,5-dienoate, thus demonstrating direct cleavage of the monohydroxylated substrate 5AS to a non-aromatic ring-fission product. The enzyme responsible for conversion of 5AS was shown to be Fe(II)-dependent and to be distinct from gentisate 1,2-dioxygenase in strain BN9.

Full text

PDF
679

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Azad Khan A. K., Piris J., Truelove S. C. An experiment to determine the active therapeutic moiety of sulphasalazine. Lancet. 1977 Oct 29;2(8044):892–895. doi: 10.1016/s0140-6736(77)90831-5. [DOI] [PubMed] [Google Scholar]
  2. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  3. Crawford R. L., Frick T. D. Rapid spectrophotometric differentiation between glutathione-dependent and glutathione-independent gentisate and homogentisate pathways. Appl Environ Microbiol. 1977 Aug;34(2):170–174. doi: 10.1128/aem.34.2.170-174.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Crawford R. L., Hutton S. W., Chapman P. J. Purification and properties of gentisate 1,2-dioxygenase from Moraxella osloensis. J Bacteriol. 1975 Mar;121(3):794–799. doi: 10.1128/jb.121.3.794-799.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Crawford R. L., Olson P. E., Frick T. D. Catabolism of 5-chlorosalicylate by a Bacillus isolated from the Mississippi River. Appl Environ Microbiol. 1979 Sep;38(3):379–384. doi: 10.1128/aem.38.3.379-384.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. DECKER R. H., KANG H. H., LEACH F. R., HENDERSON L. M. Purification and properties of 3-hydroxyanthranilic acid oxidase. J Biol Chem. 1961 Nov;236:3076–3082. [PubMed] [Google Scholar]
  7. Dagley S. A biochemical approach to some problems of environmental pollution. Essays Biochem. 1975;11:81–138. [PubMed] [Google Scholar]
  8. Dull B. J., Salata K., Van Langenhove A., Goldman P. 5-Aminosalicylate: oxidation by activated leukocytes and protection of cultured cells from oxidative damage. Biochem Pharmacol. 1987 Aug 1;36(15):2467–2472. doi: 10.1016/0006-2952(87)90518-1. [DOI] [PubMed] [Google Scholar]
  9. FLAMM W. G., CRANDALL D. I. Purification of mammalian homogentisate oxidase and evidence for the existence of ferrous mercaptans in the active center. J Biol Chem. 1963 Jan;238:389–396. [PubMed] [Google Scholar]
  10. Foster J. W., Moat A. G. Nicotinamide adenine dinucleotide biosynthesis and pyridine nucleotide cycle metabolism in microbial systems. Microbiol Rev. 1980 Mar;44(1):83–105. doi: 10.1128/mr.44.1.83-105.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Genthner B. R., Davis C. L., Bryant M. P. Features of rumen and sewage sludge strains of Eubacterium limosum, a methanol- and H2-CO2-utilizing species. Appl Environ Microbiol. 1981 Jul;42(1):12–19. doi: 10.1128/aem.42.1.12-19.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hagedorn S. R., Bradley G., Chapman P. J. Glutathione-independent isomerization of maleylpyruvate by Bacillus megaterium and other gram-positive bacteria. J Bacteriol. 1985 Aug;163(2):640–647. doi: 10.1128/jb.163.2.640-647.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hochreiter M. C., Patek D. R., Schellenberg K. A. Catalysis of -iminoglutarate formation from -ketoglutarate and ammonia by bovine glutamate dehydrogenase. J Biol Chem. 1972 Oct 10;247(19):6271–6276. [PubMed] [Google Scholar]
  14. Koontz W. A., Shiman R. Beef kidney 3-hydroxyanthranilic acid oxygenase. Purification, characterization, and analysis of the assay. J Biol Chem. 1976 Jan 25;251(2):368–377. [PubMed] [Google Scholar]
  15. Kuhm A. E., Schlömann M., Knackmuss H. J., Pieper D. H. Purification and characterization of dichloromuconate cycloisomerase from Alcaligenes eutrophus JMP 134. Biochem J. 1990 Mar 15;266(3):877–883. [PMC free article] [PubMed] [Google Scholar]
  16. LACK L. The enzymic oxidation of gentisic acid. Biochim Biophys Acta. 1959 Jul;34:117–123. doi: 10.1016/0006-3002(59)90239-2. [DOI] [PubMed] [Google Scholar]
  17. LADD J. N. Oxidation of anthranilic acid by a species of Achromobacter isolated from soil. Nature. 1962 Jun 16;194:1099–1100. doi: 10.1038/1941099b0. [DOI] [PubMed] [Google Scholar]
  18. Marcotte P., Walsh C. Sequence of reactions which follows enzymatic oxidation of propargylglycine. Biochemistry. 1978 Dec 26;17(26):5613–5619. doi: 10.1021/bi00619a005. [DOI] [PubMed] [Google Scholar]
  19. Nörtemann B., Baumgarten J., Rast H. G., Knackmuss H. J. Bacterial communities degrading amino- and hydroxynaphthalene-2-sulfonates. Appl Environ Microbiol. 1986 Nov;52(5):1195–1202. doi: 10.1128/aem.52.5.1195-1202.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Peppercorn M. A., Goldman P. The role of intestinal bacteria in the metabolism of salicylazosulfapyridine. J Pharmacol Exp Ther. 1972 Jun;181(3):555–562. [PubMed] [Google Scholar]
  21. Porter D. J., Bright H. J. The kinetics of imino acid accumulation in the D-amino acid oxidase reaction. Biochem Biophys Res Commun. 1972 Jan 31;46(2):571–577. doi: 10.1016/s0006-291x(72)80177-3. [DOI] [PubMed] [Google Scholar]
  22. STANIER R. Y., HAYAISHI O. The bacterial oxidation of tryptophan; a study in comparative biochemistry. Science. 1951 Sep 28;114(2961):326–330. doi: 10.1126/science.114.2961.326. [DOI] [PubMed] [Google Scholar]
  23. Tjørnelund J., Hansen S. H., Cornett C. New metabolites of the drug 5-aminosalicylic acid. I: N-beta-D-glucopyranosyl-5-aminosalicylic acid. Xenobiotica. 1989 Aug;19(8):891–899. doi: 10.3109/00498258909043149. [DOI] [PubMed] [Google Scholar]
  24. VESCIA A., DI PRISCO G. Studies on purified 3-hydroxyanthranilic acid oxidase. J Biol Chem. 1962 Jul;237:2318–2324. [PubMed] [Google Scholar]
  25. Wheelis M. L., Palleroni N. J., Stanier R. Y. The metabolism of aromatic acids by Pseudomonas testosteroni and P. acidovorans. Arch Mikrobiol. 1967;59(1):302–314. doi: 10.1007/BF00406344. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES