Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1992 Feb 15;282(Pt 1):299–303. doi: 10.1042/bj2820299

Stimulation of glycolysis as an activation signal in rat peritoneal macrophages. Effect of glucocorticoids on this process.

R Bustos 1, F Sobrino 1
PMCID: PMC1130922  PMID: 1311557

Abstract

1. Peritoneal macrophages were prepared from control, Escherichia coli-treated and triamcinolone acetonide-treated rats. Control and E. coli-treated rats produced resident and activated macrophages respectively. Glycolysis in these cells was studied by the fructose 2,6-bisphosphate (Fru-2,6-P2) content, lactate release and 6-phosphofructo-1-kinase (PFK-1) and 6-phosphofructo-2-kinase (PFK-2) activities. 2. In activated macrophages, lactate release and Fru-2,6-P2 content were increased several-fold compared with those in resident cells. Moreover, the response of these parameters to phorbol 12-myristate 13-acetate in activated macrophages was greater than for resident cells. 3. PFK-2 activity was moderately increased (about 3-fold), but PFK-1 activity was increased 5-fold in activated macrophages compared with resident cells. Partially purified preparations of PFK-1 were sensitive to Fru-2,6-P2, with K0.5 about 0.25 microM in both control and activated cells. However, the Vmax. of PFK-1 from activated cells was increased. In addition, AMP stimulated PFK-1, but the kinetic pattern was different from that described for Fru-2,6-P2. Moreover there was no difference in the stimulation by AMP of PFK-1 from resident and activated cells. 4. Fru-2,6-P2 content and lactate release in macrophages from triamcinolone acetonide-treated rats were decreased in both resident and activated cells. Also, the glucocorticoid inhibited PFK-1 and PFK-2 activities in both resident and activated macrophages. PFK-1 from triamcinolone acetonide-treated rats was not stimulated by Fru-2,6-P2, whereas the effect of AMP was unchanged. The effects of glucocorticoid seem to be specific for phagocytic cells, since the glucocorticoid treatment increased PFK-1 and PFK-2 activities in liver.

Full text

PDF
300

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams D. O., Hamilton T. A. The cell biology of macrophage activation. Annu Rev Immunol. 1984;2:283–318. doi: 10.1146/annurev.iy.02.040184.001435. [DOI] [PubMed] [Google Scholar]
  2. Arend W. P., Massoni R. J. Characteristics of bacterial lipopolysaccharide induction of interleukin 1 synthesis and secretion by human monocytes. Clin Exp Immunol. 1986 Jun;64(3):656–664. [PMC free article] [PubMed] [Google Scholar]
  3. Baxter J. D., Rousseau G. G. Glucocorticoid hormone action: an overview. Monogr Endocrinol. 1979;12:1–24. doi: 10.1007/978-3-642-81265-1_1. [DOI] [PubMed] [Google Scholar]
  4. Bosca L., Mojena M., Diaz-Guerra J. M., Marquez C. Phorbol 12,13-dibutyrate and mitogens increase fructose 2,6-bisphosphate in lymphocytes. Comparison of lymphocyte and rat-liver 6-phosphofructo-2-kinase. Eur J Biochem. 1988 Aug 1;175(2):317–323. doi: 10.1111/j.1432-1033.1988.tb14199.x. [DOI] [PubMed] [Google Scholar]
  5. Bustos R., Sobrino F. Control of fructose 2,6-bisphosphate levels in rat macrophages by glucose and phorbol ester. FEBS Lett. 1989 Jul 17;251(1-2):143–146. doi: 10.1016/0014-5793(89)81444-9. [DOI] [PubMed] [Google Scholar]
  6. Chiara M. D., Bedoya F., Sobrino F. Cyclosporin A inhibits phorbol ester-induced activation of superoxide production in resident mouse peritoneal macrophages. Biochem J. 1989 Nov 15;264(1):21–26. doi: 10.1042/bj2640021. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cohn Z. A. Activation of mononuclear phagocytes: fact, fancy, and future. J Immunol. 1978 Sep;121(3):813–816. [PubMed] [Google Scholar]
  8. Duke R. C., Chervenak R., Cohen J. J. Endogenous endonuclease-induced DNA fragmentation: an early event in cell-mediated cytolysis. Proc Natl Acad Sci U S A. 1983 Oct;80(20):6361–6365. doi: 10.1073/pnas.80.20.6361. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Fishel C. W., Halkias D. G., Klein T. W., Szentivanyi A. Characteristics of cells present in peritoneal fluids of mice injected intraperitoneally with Bordetella pertussis. Infect Immun. 1976 Jan;13(1):263–272. doi: 10.1128/iai.13.1.263-272.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gillis S., Crabtree G. R., Smith K. A. Glucocorticoid-induced inhibition of T cell growth factor production. I. The effect on mitogen-induced lymphocyte proliferation. J Immunol. 1979 Oct;123(4):1624–1631. [PubMed] [Google Scholar]
  11. Gualberto A., Molinero P., Sobrino F. The effect of experimental hypothyroidism on phosphofructokinase activity and fructose 2,6-bisphosphate concentrations in rat heart. Biochem J. 1987 May 15;244(1):137–142. doi: 10.1042/bj2440137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hue L., Blackmore P. F., Shikama H., Robinson-Steiner A., Exton J. H. Regulation of fructose-2,6-bisphosphate content in rat hepatocytes, perfused hearts, and perfused hindlimbs. J Biol Chem. 1982 Apr 25;257(8):4308–4313. [PubMed] [Google Scholar]
  13. Hue L. Role of fructose 2,6-bisphosphate in the stimulation of glycolysis by anoxia in isolated hepatocytes. Biochem J. 1982 Aug 15;206(2):359–365. doi: 10.1042/bj2060359. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hue L., Sobrino F., Bosca L. Difference in glucose sensitivity of liver glycolysis and glycogen synthesis. Relationship between lactate production and fructose 2,6-bisphosphate concentration. Biochem J. 1984 Dec 15;224(3):779–786. doi: 10.1042/bj2240779. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Karnovsky M. L., Lazdins J. K. Biochemical criteria for activated macrophages. J Immunol. 1978 Sep;121(3):809–813. [PubMed] [Google Scholar]
  16. Lefkowitz D. L., Hsieh T. C., Mills K., Castro A. Induction of tumor necrosis factor and cytotoxicity by macrophages exposed to lactoperoxidase and microperoxidase. Life Sci. 1990;47(8):703–709. doi: 10.1016/0024-3205(90)90625-2. [DOI] [PubMed] [Google Scholar]
  17. Marker A. J., Colosia A. D., Tauler A., Solomon D. H., Cayre Y., Lange A. J., el-Maghrabi M. R., Pilkis S. J. Glucocorticoid regulation of hepatic 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase gene expression. J Biol Chem. 1989 Apr 25;264(12):7000–7004. [PubMed] [Google Scholar]
  18. Markwell M. A., Haas S. M., Bieber L. L., Tolbert N. E. A modification of the Lowry procedure to simplify protein determination in membrane and lipoprotein samples. Anal Biochem. 1978 Jun 15;87(1):206–210. doi: 10.1016/0003-2697(78)90586-9. [DOI] [PubMed] [Google Scholar]
  19. Martín F., Gualberto A., Sobrino F., Pintado E. Thimerosal induces calcium mobilization, fructose 2,6-bisphosphate synthesis and cytoplasmic alkalinization in rat thymus lymphocytes. Biochim Biophys Acta. 1991 Jan 10;1091(1):110–114. doi: 10.1016/0167-4889(91)90229-q. [DOI] [PubMed] [Google Scholar]
  20. McCall C. E., Volk J. V., Cooper M. R., DeChatelet L. R. Effect of adrenocorticosteroid on glucose metabolism in BCG-sensitized alveolar macrophages. Infect Immun. 1971 Sep;4(3):315–317. doi: 10.1128/iai.4.3.315-317.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Moreno-Aurioles V. R., Sobrino F. Glucocorticoids inhibit fructose 2,6-bisphosphate synthesis in rat thymocytes. Opposite effect of cycloheximide. Biochim Biophys Acta. 1991 Jan 10;1091(1):96–100. doi: 10.1016/0167-4889(91)90227-o. [DOI] [PubMed] [Google Scholar]
  22. Mosier D. E. Separation of macrophages on plastic and glass surfaces. Methods Enzymol. 1984;108:294–297. doi: 10.1016/s0076-6879(84)08094-0. [DOI] [PubMed] [Google Scholar]
  23. Newsholme P., Curi R., Gordon S., Newsholme E. A. Metabolism of glucose, glutamine, long-chain fatty acids and ketone bodies by murine macrophages. Biochem J. 1986 Oct 1;239(1):121–125. doi: 10.1042/bj2390121. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Newsholme P., Newsholme E. A. Rates of utilization of glucose, glutamine and oleate and formation of end-products by mouse peritoneal macrophages in culture. Biochem J. 1989 Jul 1;261(1):211–218. doi: 10.1042/bj2610211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. North R. J. The concept of the activated macrophage. J Immunol. 1978 Sep;121(3):806–809. [PMC free article] [PubMed] [Google Scholar]
  26. Norton J. M., Munck A. In vitro actions of glucocorticoids on murine macrophages: effects on glucose transport and metabolism, growth in culture, and protein synthesis. J Immunol. 1980 Jul;125(1):259–266. [PubMed] [Google Scholar]
  27. Ralph P., Ito M., Broxmeyer H. E., Nakoinz I. Corticosteroids block newly induced but not constitutive functions of macrophage cell lines: myeloid colony-stimulating activity production, latex phagocytosis, and antibody-dependent lysis of RBC and tumor targets. J Immunol. 1978 Jul;121(1):300–303. [PubMed] [Google Scholar]
  28. Rider M. H., Hue L. Regulation of fructose 2,6-bisphosphate concentration in white adipose tissue. Biochem J. 1985 Jan 15;225(2):421–428. doi: 10.1042/bj2250421. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Snyder D. S., Unanue E. R. Corticosteroids inhibit murine macrophage Ia expression and interleukin 1 production. J Immunol. 1982 Nov;129(5):1803–1805. [PubMed] [Google Scholar]
  30. Sobrino F., Gualberto A., González-Rivero J. Regulation of fructose-2,6-bisphosphate and glycogen synthesis by dichloroacetate and phenazine methosulphate in rat adipose tissue. Biochem Int. 1986 May;12(5):767–774. [PubMed] [Google Scholar]
  31. Sobrino F., Gualberto A. Hormonal regulation of fructose 2,6-bisphosphate levels in epididymal adipose tissue of rat. FEBS Lett. 1985 Mar 25;182(2):327–330. doi: 10.1016/0014-5793(85)80326-4. [DOI] [PubMed] [Google Scholar]
  32. Taylor D. J., Evanson J. M., Woolley D. E. Comparative effects of interleukin 1 and a phorbol ester on rheumatoid synovial cell fructose 2,6-bisphosphate content and prostaglandin E production. Biochem Biophys Res Commun. 1988 Jan 15;150(1):349–354. doi: 10.1016/0006-291x(88)90527-x. [DOI] [PubMed] [Google Scholar]
  33. Tsunawaki S., Nathan C. F. Enzymatic basis of macrophage activation. Kinetic analysis of superoxide production in lysates of resident and activated mouse peritoneal macrophages and granulocytes. J Biol Chem. 1984 Apr 10;259(7):4305–4312. [PubMed] [Google Scholar]
  34. Van Schaftingen E., Jett M. F., Hue L., Hers H. G. Control of liver 6-phosphofructokinase by fructose 2,6-bisphosphate and other effectors. Proc Natl Acad Sci U S A. 1981 Jun;78(6):3483–3486. doi: 10.1073/pnas.78.6.3483. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Van Schaftingen E., Lederer B., Bartrons R., Hers H. G. A kinetic study of pyrophosphate: fructose-6-phosphate phosphotransferase from potato tubers. Application to a microassay of fructose 2,6-bisphosphate. Eur J Biochem. 1982 Dec;129(1):191–195. doi: 10.1111/j.1432-1033.1982.tb07039.x. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES