Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1990 May 15;268(1):91–98. doi: 10.1042/bj2680091

Biosynthesis of platelet-activating factor (PAF) in human polymorphonuclear leucocytes. The role of lyso-PAF disposal and free arachidonic acid.

M C Garcia 1, S Fernandez-Gallardo 1, M A Gijon 1, C Garcia 1, M L Nieto 1, M Sanchez Crespo 1
PMCID: PMC1131395  PMID: 1693077

Abstract

Theophylline and 1-methyl-3-isobutylxanthine (MIX), compounds that block eicosanoid formation and modulate phospholipase A2 activity, inhibited in a dose-dependent manner the formation of both leukotriene B4 (LTB4) and platelet-activating factor (PAF) by human polymorphonuclear leucocytes (PMN) in response to ionophore A23187. Theophylline and MIX lacked any inhibitory effect on acetyl-CoA: lyso-PAF acetyltransferase activity, which is the rate-limiting step for PAF biosynthesis in PMN. The effect of theophylline and MIX on PAF formation could be reversed by incubating the cells in the presence of 1-10 microM exogenous lyso-PAF. Incubation of PMN homogenates in the presence of unsaturated non-esterified fatty acids resulted in dose-dependent inhibition of the acetyltransferase. This effect was linked to the presence of a free carboxyl group, since both arachidonic acid methyl ester and palmitoyl-arachidonoyl phosphatidylcholine lacked inhibitory activity. This inhibitory effect was also dependent on the number of double bonds, since arachidonic acid (C20:4) and eicosapentaenoic acid (C20:5) displayed maximal effect. Kinetic analysis showed that the effect of arachidonic acid was consistent with competitive inhibition, with a Ki value of about 19 microM. Oxidative metabolites of arachidonic acid showed a lesser inhibitory effect with the following order of potency: arachidonic acid greater than 15-HETE (15-hydroxy-6,8,11,14-eicosatetraenoic acid) greater than LTB4 greater than 5-HETE (5-hydroxy-6,8,11,14-eicosatetraenoic acid) greater than lipoxin A4. Examination of enzymes involved in CoA-dependent acylation revealed a low activity of both arachidonoyl-CoA synthetase and arachidonoyl-CoA: lyso-PAF arachidonoyltransferase. These data indicate a strong influence on PAF biosynthesis of the products of the phospholipase A2 reaction, with lyso-PAF disposal being a critical event for PAF formation, and unsaturated fatty acids acting as feed-back inhibitors. The conversion of arachidonic acid via oxidative metabolism into less active inhibitors of acetyl-CoA:lyso-PAF acetyltransferase seems to be an additional mechanism of modulation of this enzyme activity, linked to the function of lipoxygenases. Finally, the enzyme activities involved in arachidonoyl-CoA-dependent acylation of lyso-PAF show a low efficiency in capturing arachidonic acid.

Full text

PDF
98

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albert D. H., Snyder F. Biosynthesis of 1-alkyl-2-acetyl-sn-glycero-3-phosphocholine (platelet-activating factor) from 1-alkyl-2-acyl-sn-glycero-3-phosphocholine by rat alveolar macrophages. Phospholipase A2 and acetyltransferase activities during phagocytosis and ionophore stimulation. J Biol Chem. 1983 Jan 10;258(1):97–102. [PubMed] [Google Scholar]
  2. Albert D. H., Snyder F. Release of arachidonic acid from 1-alkyl-2-acyl-sn-glycero-3-phosphocholine, a precursor of platelet-activating factor, in rat alveolar macrophages. Biochim Biophys Acta. 1984 Oct 24;796(1):92–101. doi: 10.1016/0005-2760(84)90242-x. [DOI] [PubMed] [Google Scholar]
  3. Alonso F., Gil M. G., Sánchez-Crespo M., Mato J. M. Activation of 1-alkyl-2-lysoglycero-3-phosphocholine. Acetyl-CoA transferase during phagocytosis in human polymorphonuclear leukocytes. J Biol Chem. 1982 Apr 10;257(7):3376–3378. [PubMed] [Google Scholar]
  4. Alonso F., Henson P. M., Leslie C. C. A cytosolic phospholipase in human neutrophils that hydrolyzes arachidonoyl-containing phosphatidylcholine. Biochim Biophys Acta. 1986 Sep 12;878(2):273–280. doi: 10.1016/0005-2760(86)90156-6. [DOI] [PubMed] [Google Scholar]
  5. Alonso F., Sánchez-Crespo M., Mato J. M. Modulatory role of cyclic AMP in the release of platelet-activating factor from human polymorphonuclear leucocytes. Immunology. 1982 Mar;45(3):493–500. [PMC free article] [PubMed] [Google Scholar]
  6. Arslan P., Corps A. N., Hesketh T. R., Metcalfe J. C., Pozzan T. cis-Unsaturated fatty acids uncouple mitochondria and stimulate glycolysis in intact lymphocytes. Biochem J. 1984 Jan 15;217(2):419–425. doi: 10.1042/bj2170419. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. BLIGH E. G., DYER W. J. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959 Aug;37(8):911–917. doi: 10.1139/o59-099. [DOI] [PubMed] [Google Scholar]
  8. Ballou L. R., Cheung W. Y. Inhibition of human platelet phospholipase A2 activity by unsaturated fatty acids. Proc Natl Acad Sci U S A. 1985 Jan;82(2):371–375. doi: 10.1073/pnas.82.2.371. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Billah M. M., Bryant R. W., Siegel M. I. Lipoxygenase products of arachidonic acid modulate biosynthesis of platelet-activating factor (1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine) by human neutrophils via phospholipase A2. J Biol Chem. 1985 Jun 10;260(11):6899–6906. [PubMed] [Google Scholar]
  10. Bills T. K., Smith J. B., Silver M. J. Selective release of archidonic acid from the phospholipids of human platelets in response to thrombin. J Clin Invest. 1977 Jul;60(1):1–6. doi: 10.1172/JCI108745. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Blank M. L., Snyder F., Byers L. W., Brooks B., Muirhead E. E. Antihypertensive activity of an alkyl ether analog of phosphatidylcholine. Biochem Biophys Res Commun. 1979 Oct 29;90(4):1194–1200. doi: 10.1016/0006-291x(79)91163-x. [DOI] [PubMed] [Google Scholar]
  12. Blank M. L., Snyder F. Improved high-performance liquid chromatographic method for isolation of platelet-activating factor from other phospholipids. J Chromatogr. 1983 Apr 8;273(2):415–420. doi: 10.1016/s0378-4347(00)80963-9. [DOI] [PubMed] [Google Scholar]
  13. Chilton F. H., Connell T. R. 1-ether-linked phosphoglycerides. Major endogenous sources of arachidonate in the human neutrophil. J Biol Chem. 1988 Apr 15;263(11):5260–5265. [PubMed] [Google Scholar]
  14. Chilton F. H., Ellis J. M., Olson S. C., Wykle R. L. 1-O-alkyl-2-arachidonoyl-sn-glycero-3-phosphocholine. A common source of platelet-activating factor and arachidonate in human polymorphonuclear leukocytes. J Biol Chem. 1984 Oct 10;259(19):12014–12019. [PubMed] [Google Scholar]
  15. Claesson H. E., Lundberg U., Malmsten C. Serum-coated zymosan stimulates the synthesis of leukotriene B4 in human polymorphonuclear leukocytes. Inhibition by cyclic AMP. Biochem Biophys Res Commun. 1981 Apr 30;99(4):1230–1237. doi: 10.1016/0006-291x(81)90751-8. [DOI] [PubMed] [Google Scholar]
  16. Coëffier E., Joseph D., Prévost M. C., Vargaftig B. B. Platelet-leukocyte interaction: activation of rabbit platelets by FMLP-stimulated neutrophils. Br J Pharmacol. 1987 Oct;92(2):393–406. doi: 10.1111/j.1476-5381.1987.tb11336.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. De Winter J. M., Vianen G. M., Van den Bosch H. Purification of rat liver mitochondrial phospholipase A2. Biochim Biophys Acta. 1982 Aug 18;712(2):332–341. doi: 10.1016/0005-2760(82)90351-4. [DOI] [PubMed] [Google Scholar]
  18. Demopoulos C. A., Pinckard R. N., Hanahan D. J. Platelet-activating factor. Evidence for 1-O-alkyl-2-acetyl-sn-glyceryl-3-phosphorylcholine as the active component (a new class of lipid chemical mediators). J Biol Chem. 1979 Oct 10;254(19):9355–9358. [PubMed] [Google Scholar]
  19. Doebber T. W., Wu M. S. Platelet-activating factor (PAF) stimulates the PAF-synthesizing enzyme acetyl-CoA:1-alkyl-sn-glycero-3-phosphocholine O2-acetyltransferase and PAF synthesis in neutrophils. Proc Natl Acad Sci U S A. 1987 Nov;84(21):7557–7561. doi: 10.1073/pnas.84.21.7557. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Domenech C., Machado-De Domenech E., Söling H. D. Regulation of acetyl-CoA:1-alkyl-sn-glycero-3-phosphocholine O2-acetyltransferase (lyso-PAF-acetyltransferase) in exocrine glands. Evidence for an activation via phosphorylation by calcium/calmodulin-dependent protein kinase. J Biol Chem. 1987 Apr 25;262(12):5671–5676. [PubMed] [Google Scholar]
  21. Fernandez-Gallardo S., Gijon M. A., Garcia M. C., Cano E., Sanchez Crespo M. Biosynthesis of platelet-activating factor in glandular gastric mucosa. Evidence for the involvement of the 'de novo' pathway and modulation by fatty acids. Biochem J. 1988 Sep 15;254(3):707–714. doi: 10.1042/bj2540707. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Ford-Hutchinson A. W., Bray M. A., Doig M. V., Shipley M. E., Smith M. J. Leukotriene B, a potent chemokinetic and aggregating substance released from polymorphonuclear leukocytes. Nature. 1980 Jul 17;286(5770):264–265. doi: 10.1038/286264a0. [DOI] [PubMed] [Google Scholar]
  23. Fuse I., Iwanaga T., Tai H. H. Phorbol ester, 1,2-diacylglycerol, and collagen induce inhibition of arachidonic acid incorporation into phospholipids in human platelets. J Biol Chem. 1989 Mar 5;264(7):3890–3895. [PubMed] [Google Scholar]
  24. Gomez-Cambronero J., Mato J. M., Vivanco F., Sanchez-Crespo M. Phosphorylation of partially purified 1-O-alkyl-2-lyso-sn-glycero-3-phosphocholine:acetyl-CoA acetyltransferase from rat spleen. Biochem J. 1987 Aug 1;245(3):893–897. doi: 10.1042/bj2450893. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Gómez-Cambronero J., Nieto M. L., Mato J. M., Sánchez-Crespo M. Modulation of lyso-platelet-activating factor: acetyl-CoA acetyltransferase from rat splenic microsomes. The role of calcium ions. Biochim Biophys Acta. 1985 Jun 30;845(3):511–515. doi: 10.1016/0167-4889(85)90218-6. [DOI] [PubMed] [Google Scholar]
  26. Gómez-Cambronero J., Velasco S., Mato J. M., Sánchez-Crespo M. Modulation of lyso-platelet activating factor: acetyl-CoA acetyltransferase from rat splenic microsomes. The role of cyclic AMP-dependent protein kinase. Biochim Biophys Acta. 1985 Jun 30;845(3):516–519. doi: 10.1016/0167-4889(85)90219-8. [DOI] [PubMed] [Google Scholar]
  27. Ham E. A., Soderman D. D., Zanetti M. E., Dougherty H. W., McCauley E., Kuehl F. A., Jr Inhibition by prostaglandins of leukotriene B4 release from activated neutrophils. Proc Natl Acad Sci U S A. 1983 Jul;80(14):4349–4353. doi: 10.1073/pnas.80.14.4349. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Hong S. L. Inhibition of prostacyclin synthesis in endothelial cells by methylisobutylxanthine is not mediated through elevated cAMP level. Biochim Biophys Acta. 1983 Dec 20;754(3):258–263. doi: 10.1016/0005-2760(83)90140-6. [DOI] [PubMed] [Google Scholar]
  29. Hosaka K., Mishina M., Tanaka T., Kamiryo T., Numa S. Acyl-coenzyme-A synthetase I from Candida lipolytica. Purification, properties and immunochemical studies. Eur J Biochem. 1979 Jan 2;93(1):197–203. doi: 10.1111/j.1432-1033.1979.tb12811.x. [DOI] [PubMed] [Google Scholar]
  30. Irvine R. F. How is the level of free arachidonic acid controlled in mammalian cells? Biochem J. 1982 Apr 15;204(1):3–16. doi: 10.1042/bj2040003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Kramer R. M., Pritzker C. R., Deykin D. Coenzyme A-mediated arachidonic acid transacylation in human platelets. J Biol Chem. 1984 Feb 25;259(4):2403–2406. [PubMed] [Google Scholar]
  32. Kyger E. M., Franson R. C. Nonspecific inhibition of enzymes by p-bromophenacyl bromide. Inhibition of human platelet phospholipase C and modification of sulfhydryl groups. Biochim Biophys Acta. 1984 Jun 6;794(1):96–103. doi: 10.1016/0005-2760(84)90302-3. [DOI] [PubMed] [Google Scholar]
  33. Lands W. E., Inoue M., Sugiura Y., Okuyama H. Selective incorporation of polyunsaturated fatty acids into phosphatidylcholine by rat liver microsomes. J Biol Chem. 1982 Dec 25;257(24):14968–14972. [PubMed] [Google Scholar]
  34. Lee T. H., Mencia-Huerta J. M., Shih C., Corey E. J., Lewis R. A., Austen K. F. Effects of exogenous arachidonic, eicosapentaenoic, and docosahexaenoic acids on the generation of 5-lipoxygenase pathway products by ionophore-activated human neutrophils. J Clin Invest. 1984 Dec;74(6):1922–1933. doi: 10.1172/JCI111612. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Lister M. D., Deems R. A., Watanabe Y., Ulevitch R. J., Dennis E. A. Kinetic analysis of the Ca2+-dependent, membrane-bound, macrophage phospholipase A2 and the effects of arachidonic acid. J Biol Chem. 1988 Jun 5;263(16):7506–7513. [PubMed] [Google Scholar]
  36. Marcus A. J., Broekman M. J., Safier L. B., Ullman H. L., Islam N., Sherhan C. N., Rutherford L. E., Korchak H. M., Weissmann G. Formation of leukotrienes and other hydroxy acids during platelet-neutrophil interactions in vitro. Biochem Biophys Res Commun. 1982 Nov 16;109(1):130–137. doi: 10.1016/0006-291x(82)91575-3. [DOI] [PubMed] [Google Scholar]
  37. McPhail L. C., Clayton C. C., Snyderman R. A potential second messenger role for unsaturated fatty acids: activation of Ca2+-dependent protein kinase. Science. 1984 May 11;224(4649):622–625. doi: 10.1126/science.6231726. [DOI] [PubMed] [Google Scholar]
  38. Nieto M. L., Velasco S., Sanchez Crespo M. Modulation of acetyl-CoA:1-alkyl-2-lyso-sn-glycero-3-phosphocholine (lyso-PAF) acetyltransferase in human polymorphonuclears. The role of cyclic AMP-dependent and phospholipid sensitive, calcium-dependent protein kinases. J Biol Chem. 1988 Apr 5;263(10):4607–4611. [PubMed] [Google Scholar]
  39. Ninio E., Mencia-Huerta J. M., Benveniste J. Biosynthesis of platelet-activating factor (PAF-acether). V. Enhancement of acetyltransferase activity in murine peritoneal cells by calcium ionophore A23187. Biochim Biophys Acta. 1983 May 16;751(3):298–304. doi: 10.1016/0005-2760(83)90287-4. [DOI] [PubMed] [Google Scholar]
  40. Peters-Golden M., Shelly C. Inhibitory effect of exogenous arachidonic acid on alveolar macrophage 5-lipoxygenase metabolism. Role of ATP depletion. J Immunol. 1988 Mar 15;140(6):1958–1966. [PubMed] [Google Scholar]
  41. Prescott S. M. The effect of eicosapentaenoic acid on leukotriene B production by human neutrophils. J Biol Chem. 1984 Jun 25;259(12):7615–7621. [PubMed] [Google Scholar]
  42. Ramesha C. S., Pickett W. C. Platelet-activating factor and leukotriene biosynthesis is inhibited in polymorphonuclear leukocytes depleted of arachidonic acid. J Biol Chem. 1986 Jun 15;261(17):7592–7595. [PubMed] [Google Scholar]
  43. Robinson M., Blank M. L., Snyder F. Acylation of lysophospholipids by rabbit alveolar macrophages. Specificities of CoA-dependent and CoA-independent reactions. J Biol Chem. 1985 Jul 5;260(13):7889–7895. [PubMed] [Google Scholar]
  44. Rouzer C. A., Kargman S. Translocation of 5-lipoxygenase to the membrane in human leukocytes challenged with ionophore A23187. J Biol Chem. 1988 Aug 5;263(22):10980–10988. [PubMed] [Google Scholar]
  45. Rouzer C. A., Samuelsson B. On the nature of the 5-lipoxygenase reaction in human leukocytes: enzyme purification and requirement for multiple stimulatory factors. Proc Natl Acad Sci U S A. 1985 Sep;82(18):6040–6044. doi: 10.1073/pnas.82.18.6040. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Saito H., Hirai A., Tamura Y., Yoshida S. The 5-lipoxygenase products can modulate the synthesis of platelet-activating factor (alkyl-acetyl GPC) in Ca-ionophore A23187-stimulated rat peritoneal macrophages. Prostaglandins Leukot Med. 1985 Jun;18(3):271–286. doi: 10.1016/0262-1746(85)90059-9. [DOI] [PubMed] [Google Scholar]
  47. Sperling R. I., Robin J. L., Kylander K. A., Lee T. H., Lewis R. A., Austen K. F. The effects of N-3 polyunsaturated fatty acids on the generation of platelet-activating factor-acether by human monocytes. J Immunol. 1987 Dec 15;139(12):4186–4191. [PubMed] [Google Scholar]
  48. Takenawa T., Ishitoya J., Nagai Y. Inhibitory effect of prostaglandin E2, forskolin, and dibutyryl cAMP on arachidonic acid release and inositol phospholipid metabolism in guinea pig neutrophils. J Biol Chem. 1986 Jan 25;261(3):1092–1098. [PubMed] [Google Scholar]
  49. Whorton A. R., Collawn J. B., Montgomery M. E., Young S. L., Kent R. S. Arachidonic acid metabolism in cultured aortic endothelial cells. Effect of cAMP and 3-isobutyl-1-methylxanthine. Biochem Pharmacol. 1985 Jan 1;34(1):119–123. doi: 10.1016/0006-2952(85)90109-1. [DOI] [PubMed] [Google Scholar]
  50. Wilson D. B., Prescott S. M., Majerus P. W. Discovery of an arachidonoyl coenzyme A synthetase in human platelets. J Biol Chem. 1982 Apr 10;257(7):3510–3515. [PubMed] [Google Scholar]
  51. Wykle R. L., Malone B., Snyder F. Enzymatic synthesis of 1-alkyl-2-acetyl-sn-glycero-3-phosphocholine, a hypotensive and platelet-aggregating lipid. J Biol Chem. 1980 Nov 10;255(21):10256–10260. [PubMed] [Google Scholar]
  52. de Winter J. M., Lenting H. B., Neys F. W., van den Bosch H. Hydrolysis of membrane-associated phosphoglycerides by mitochondrial phospholipase A2. Biochim Biophys Acta. 1987 Jan 13;917(1):169–177. doi: 10.1016/0005-2760(87)90297-9. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES