Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1990 Jun 15;268(3):627–632. doi: 10.1042/bj2680627

Inhibitors of protein kinase C prolong the falling phase of each free-calcium transient in a hormone-stimulated hepatocyte.

A Sanchez-Bueno 1, C J Dixon 1, N M Woods 1, K S Cuthbertson 1, P H Cobbold 1
PMCID: PMC1131485  PMID: 2363701

Abstract

Many cells generate oscillations in cytoplasmic free Ca2+ concentration ('free Ca') when stimulated with Ca-mobilizing hormones. The frequency of repetitive free-Ca transients in a rat hepatocyte is a function of hormone concentration and can be depressed by phorbol esters. We show here that the protein kinase C (PKC) inhibitors staurosporine and sphingosine can reverse the effects of phorbol dibutyrate on the frequency of free-Ca transients induced by phenylephrine or vasopressin. An important feature of the hepatocyte free-Ca oscillator is that the transient's time course, particularly the rate of fall of free Ca from peak to resting, depends on the species of agonist, and is measurably different for phenylephrine, vasopressin, angiotensin II or ATP. We show here that the rate of fall of free Ca in transients induced by phenylephrine or vasopressin is markedly decreased after treatment of the cells with a PKC inhibitor. A receptor-controlled oscillator model is discussed, in which PKC provides negative feedback during the falling phase of free-Ca transients.

Full text

PDF
628

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bazzi M. D., Nelsestuen G. L. Mechanism of protein kinase C inhibition by sphingosine. Biochem Biophys Res Commun. 1987 Jul 15;146(1):203–207. doi: 10.1016/0006-291x(87)90711-x. [DOI] [PubMed] [Google Scholar]
  2. Berridge M. J., Cobbold P. H., Cuthbertson K. S. Spatial and temporal aspects of cell signalling. Philos Trans R Soc Lond B Biol Sci. 1988 Jul 26;320(1199):325–343. doi: 10.1098/rstb.1988.0080. [DOI] [PubMed] [Google Scholar]
  3. Berridge M. J. Inositol trisphosphate-induced membrane potential oscillations in Xenopus oocytes. J Physiol. 1988 Sep;403:589–599. doi: 10.1113/jphysiol.1988.sp017266. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Biden T. J., Altin J. G., Karjalainen A., Bygrave F. L. Stimulation of hepatic inositol 1,4,5-trisphosphate kinase activity by Ca2+-dependent and -independent mechanisms. Biochem J. 1988 Dec 15;256(3):697–701. doi: 10.1042/bj2560697. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Biden T. J., Vallar L., Wollheim C. B. Regulation of inositol 1,4,5-trisphosphate metabolism in insulin-secreting RINm5F cells. Biochem J. 1988 Apr 15;251(2):435–440. doi: 10.1042/bj2510435. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Brooks R. C., Morell P., DeGeorge J. J., McCarthy K. D., Lapetina E. G. Differential effects of phorbol ester and diacylglycerols on inositol phosphate formation in C62B glioma cells. Biochem Biophys Res Commun. 1987 Oct 29;148(2):701–708. doi: 10.1016/0006-291x(87)90933-8. [DOI] [PubMed] [Google Scholar]
  7. Cobbold P., Woods N., Wainwright J., Cuthbertson R. Single cell measurements in research on calcium-mobilising purinoceptors. J Recept Res. 1988;8(1-4):481–491. doi: 10.3109/10799898809049006. [DOI] [PubMed] [Google Scholar]
  8. Connolly T. M., Lawing W. J., Jr, Majerus P. W. Protein kinase C phosphorylates human platelet inositol trisphosphate 5'-phosphomonoesterase, increasing the phosphatase activity. Cell. 1986 Sep 12;46(6):951–958. doi: 10.1016/0092-8674(86)90077-2. [DOI] [PubMed] [Google Scholar]
  9. Crouch M. F., Lapetina E. G. A role for Gi in control of thrombin receptor-phospholipase C coupling in human platelets. J Biol Chem. 1988 Mar 5;263(7):3363–3371. [PubMed] [Google Scholar]
  10. Exton J. H. Mechanisms of action of calcium-mobilizing agonists: some variations on a young theme. FASEB J. 1988 Aug;2(11):2670–2676. doi: 10.1096/fasebj.2.11.2456243. [DOI] [PubMed] [Google Scholar]
  11. Faucher M., Gironès N., Hannun Y. A., Bell R. M., Davis R. J. Regulation of the epidermal growth factor receptor phosphorylation state by sphingosine in A431 human epidermoid carcinoma cells. J Biol Chem. 1988 Apr 15;263(11):5319–5327. [PubMed] [Google Scholar]
  12. Furukawa K., Tawada Y., Shigekawa M. Protein kinase C activation stimulates plasma membrane Ca2+ pump in cultured vascular smooth muscle cells. J Biol Chem. 1989 Mar 25;264(9):4844–4849. [PubMed] [Google Scholar]
  13. Hepler J. R., Earp H. S., Harden T. K. Long-term phorbol ester treatment down-regulates protein kinase C and sensitizes the phosphoinositide signaling pathway to hormone and growth factor stimulation. Evidence for a role of protein kinase C in agonist-induced desensitization. J Biol Chem. 1988 Jun 5;263(16):7610–7619. [PubMed] [Google Scholar]
  14. Hoek J. B., Rubin R., Thomas A. P. Ethanol-induced phospholipase C activation is inhibited by phorbol esters in isolated hepatocytes. Biochem J. 1988 May 1;251(3):865–871. doi: 10.1042/bj2510865. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. King W. G., Rittenhouse S. E. Inhibition of protein kinase C by staurosporine promotes elevated accumulations of inositol trisphosphates and tetrakisphosphate in human platelets exposed to thrombin. J Biol Chem. 1989 Apr 15;264(11):6070–6074. [PubMed] [Google Scholar]
  16. Merrill A. H., Jr, Stevens V. L. Modulation of protein kinase C and diverse cell functions by sphingosine--a pharmacologically interesting compound linking sphingolipids and signal transduction. Biochim Biophys Acta. 1989 Feb 9;1010(2):131–139. doi: 10.1016/0167-4889(89)90152-3. [DOI] [PubMed] [Google Scholar]
  17. Nakadate T., Jeng A. Y., Blumberg P. M. Comparison of protein kinase C functional assays to clarify mechanisms of inhibitor action. Biochem Pharmacol. 1988 Apr 15;37(8):1541–1545. doi: 10.1016/0006-2952(88)90016-0. [DOI] [PubMed] [Google Scholar]
  18. Orellana S., Solski P. A., Brown J. H. Guanosine 5'-O-(thiotriphosphate)-dependent inositol trisphosphate formation in membranes is inhibited by phorbol ester and protein kinase C. J Biol Chem. 1987 Feb 5;262(4):1638–1643. [PubMed] [Google Scholar]
  19. Parker I., Miledi R. Changes in intracellular calcium and in membrane currents evoked by injection of inositol trisphosphate into Xenopus oocytes. Proc R Soc Lond B Biol Sci. 1986 Aug 22;228(1252):307–315. doi: 10.1098/rspb.1986.0057. [DOI] [PubMed] [Google Scholar]
  20. Pfeilschifter J. Protein kinase C from rat renal mesangial cells: its role in homologous desensitization of angiotensin II-induced polyphosphoinositide hydrolysis. Biochim Biophys Acta. 1988 May 13;969(3):263–270. doi: 10.1016/0167-4889(88)90061-4. [DOI] [PubMed] [Google Scholar]
  21. Pittet D., Krause K. H., Wollheim C. B., Bruzzone R., Lew D. P. Nonselective inhibition of neutrophil functions by sphinganine. J Biol Chem. 1987 Jul 25;262(21):10072–10076. [PubMed] [Google Scholar]
  22. Rooney T. A., Sass E. J., Thomas A. P. Characterization of cytosolic calcium oscillations induced by phenylephrine and vasopressin in single fura-2-loaded hepatocytes. J Biol Chem. 1989 Oct 15;264(29):17131–17141. [PubMed] [Google Scholar]
  23. Rüegg U. T., Burgess G. M. Staurosporine, K-252 and UCN-01: potent but nonspecific inhibitors of protein kinases. Trends Pharmacol Sci. 1989 Jun;10(6):218–220. doi: 10.1016/0165-6147(89)90263-0. [DOI] [PubMed] [Google Scholar]
  24. Smith C. D., Uhing R. J., Snyderman R. Nucleotide regulatory protein-mediated activation of phospholipase C in human polymorphonuclear leukocytes is disrupted by phorbol esters. J Biol Chem. 1987 May 5;262(13):6121–6127. [PubMed] [Google Scholar]
  25. Tamaoki T., Nomoto H., Takahashi I., Kato Y., Morimoto M., Tomita F. Staurosporine, a potent inhibitor of phospholipid/Ca++dependent protein kinase. Biochem Biophys Res Commun. 1986 Mar 13;135(2):397–402. doi: 10.1016/0006-291x(86)90008-2. [DOI] [PubMed] [Google Scholar]
  26. Wakui M., Potter B. V., Petersen O. H. Pulsatile intracellular calcium release does not depend on fluctuations in inositol trisphosphate concentration. Nature. 1989 May 25;339(6222):317–320. doi: 10.1038/339317a0. [DOI] [PubMed] [Google Scholar]
  27. Winkler J. D., Sarau H. M., Foley J. J., Crooke S. T. Phorbol 12-myristate 13-acetate inhibition of leukotriene D4-induced signal transduction was rapidly reversed by staurosporine. Biochem Biophys Res Commun. 1988 Dec 15;157(2):521–529. doi: 10.1016/s0006-291x(88)80280-8. [DOI] [PubMed] [Google Scholar]
  28. Woods N. M., Cuthbertson K. S., Cobbold P. H. Agonist-induced oscillations in cytoplasmic free calcium concentration in single rat hepatocytes. Cell Calcium. 1987 Feb;8(1):79–100. doi: 10.1016/0143-4160(87)90038-8. [DOI] [PubMed] [Google Scholar]
  29. Woods N. M., Cuthbertson K. S., Cobbold P. H. Phorbol-ester-induced alterations of free calcium ion transients in single rat hepatocytes. Biochem J. 1987 Sep 15;246(3):619–623. doi: 10.1042/bj2460619. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Woods N. M., Cuthbertson K. S., Cobbold P. H. Repetitive transient rises in cytoplasmic free calcium in hormone-stimulated hepatocytes. Nature. 1986 Feb 13;319(6054):600–602. doi: 10.1038/319600a0. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES