Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1990 Aug 15;270(1):83–90. doi: 10.1042/bj2700083

Kinetics of inhibition of platelet calpain II by human kininogens.

H N Bradford 1, A H Schmaier 1, R W Colman 1
PMCID: PMC1131681  PMID: 2396995

Abstract

The plasma kininogens, high-molecular-mass and low-molecular-mass kininogens, are the most potent plasma inhibitors of platelet calpain. We explored the kinetic mechanisms for kininogen inhibition of calpain by comparing calpain inactivation by human high-molecular-mass kininogen (HK) and human low-molecular-mass kininogen (LK). With a [14C]methylated alpha-casein substrate, the inhibition of calpain by HK did not follow classic Michaelis-Menten kinetics. With the use of a fluorogenic assay with the dipeptide substrate for calpain, 3-carboxypropionyl-leucyltyrosine 7-(4-methyl)coumarylamide, the inhibition by HK and LK fitted a kinetic model of tight-binding inhibition. LK was found to be a non-competitive inhibitor of platelet calpain with a Ki of 2.7 nM. HK showed mixed non-competitive inhibition of calpain with a Ki of 2.3 nM in the absence of substrate and Ki of 0.71 nM in the presence of saturating substrate, almost 4-fold tighter than LK. Proteolysis of HK by plasma and tissue kallikreins did not influence its ability to inhibit calpain. Digestion of the HK light chain by Factor XIa also did not alter its calpain-inhibitory function. These studies indicate that the kininogens are tight-binding non-competitive inhibitors of platelet calpain, the inhibitory domain in each case being mainly on the heavy chain. The light chain of HK appears to influence its kinetic behaviour.

Full text

PDF
84

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anastasi A., Brown M. A., Kembhavi A. A., Nicklin M. J., Sayers C. A., Sunter D. C., Barrett A. J. Cystatin, a protein inhibitor of cysteine proteinases. Improved purification from egg white, characterization, and detection in chicken serum. Biochem J. 1983 Apr 1;211(1):129–138. doi: 10.1042/bj2110129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Cha S. Tight-binding inhibitors--III. A new approach for the determination of competition between tight-binding inhibitors and substrates--inhibition of adenosine deaminase by coformycin. Biochem Pharmacol. 1976 Dec 15;25(24):2695–2702. doi: 10.1016/0006-2952(76)90259-8. [DOI] [PubMed] [Google Scholar]
  3. Colman R. W., Bagdasarian A., Talamo R. C., Scott C. F., Seavey M., Guimaraes J. A., Pierce J. V., Kaplan A. P. Williams trait. Human kininogen deficiency with diminished levels of plasminogen proactivator and prekallikrein associated with abnormalities of the Hageman factor-dependent pathways. J Clin Invest. 1975 Dec;56(6):1650–1662. doi: 10.1172/JCI108247. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Crawford C. Inhibition of chicken calpain II by proteins of the cystatin superfamily and alpha 2-macroglobulin. Biochem J. 1987 Dec 1;248(2):589–594. doi: 10.1042/bj2480589. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Gigli I., Mason J. W., Colman R. W., Austen K. F. Interaction of plasma kallikrein with the C1 inhibitor. J Immunol. 1970 Mar;104(3):574–581. [PubMed] [Google Scholar]
  6. Gounaris A. D., Brown M. A., Barrett A. J. Human plasma alpha-cysteine proteinase inhibitor. Purification by affinity chromatography, characterization and isolation of an active fragment. Biochem J. 1984 Jul 15;221(2):445–452. doi: 10.1042/bj2210445. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gustafson E. J., Schmaier A. H., Wachtfogel Y. T., Kaufman N., Kucich U., Colman R. W. Human neutrophils contain and bind high molecular weight kininogen. J Clin Invest. 1989 Jul;84(1):28–35. doi: 10.1172/JCI114151. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gustafson E. J., Schutsky D., Knight L. C., Schmaier A. H. High molecular weight kininogen binds to unstimulated platelets. J Clin Invest. 1986 Jul;78(1):310–318. doi: 10.1172/JCI112567. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Henderson P. J. A linear equation that describes the steady-state kinetics of enzymes and subcellular particles interacting with tightly bound inhibitors. Biochem J. 1972 Apr;127(2):321–333. doi: 10.1042/bj1270321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Higashiyama S., Ishiguro H., Ohkubo I., Fujimoto S., Matsuda T., Sasaki M. Kinin release from kininogens by calpains. Life Sci. 1986 Nov 3;39(18):1639–1644. doi: 10.1016/0024-3205(86)90160-8. [DOI] [PubMed] [Google Scholar]
  11. Inomata M., Nomoto M., Hayashi M., Nakamura M., Imahori K., Kawashima S. Comparison of low and high calcium requiring forms of the calcium-activated neutral protease (CANP) from rabbit skeletal muscle. J Biochem. 1984 Jun;95(6):1661–1670. doi: 10.1093/oxfordjournals.jbchem.a134779. [DOI] [PubMed] [Google Scholar]
  12. Ishiguro H., Higashiyama S., Namikawa C., Kunimatsu M., Takano E., Tanaka K., Ohkubo I., Murachi T., Sasaki M. Interaction of human calpains I and II with high molecular weight and low molecular weight kininogens and their heavy chain: mechanism of interaction and the role of divalent cations. Biochemistry. 1987 May 19;26(10):2863–2870. doi: 10.1021/bi00384a030. [DOI] [PubMed] [Google Scholar]
  13. Johnson D. A., Salvesen G., Brown M. A., Barrett A. J. Rapid isolation of human kininogens. Thromb Res. 1987 Oct 15;48(2):187–193. doi: 10.1016/0049-3848(87)90415-4. [DOI] [PubMed] [Google Scholar]
  14. Kerbiriou D. M., Griffin J. H. Human high molecular weight kininogen. Studies of structure-function relationships and of proteolysis of the molecule occurring during contact activation of plasma. J Biol Chem. 1979 Dec 10;254(23):12020–12027. [PubMed] [Google Scholar]
  15. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  16. Morrison J. F., Walsh C. T. The behavior and significance of slow-binding enzyme inhibitors. Adv Enzymol Relat Areas Mol Biol. 1988;61:201–301. doi: 10.1002/9780470123072.ch5. [DOI] [PubMed] [Google Scholar]
  17. Murachi T., Tanaka K., Hatanaka M., Murakami T. Intracellular Ca2+-dependent protease (calpain) and its high-molecular-weight endogenous inhibitor (calpastatin). Adv Enzyme Regul. 1980;19:407–424. doi: 10.1016/0065-2571(81)90026-1. [DOI] [PubMed] [Google Scholar]
  18. Müller-Esterl W., Fritz H., Machleidt W., Ritonja A., Brzin J., Kotnik M., Turk V., Kellermann J., Lottspeich F. Human plasma kininogens are identical with alpha-cysteine proteinase inhibitors. Evidence from immunological, enzymological and sequence data. FEBS Lett. 1985 Mar 25;182(2):310–314. doi: 10.1016/0014-5793(85)80322-7. [DOI] [PubMed] [Google Scholar]
  19. Ohkubo I., Kurachi K., Takasawa T., Shiokawa H., Sasaki M. Isolation of a human cDNA for alpha 2-thiol proteinase inhibitor and its identity with low molecular weight kininogen. Biochemistry. 1984 Nov 20;23(24):5691–5697. doi: 10.1021/bi00319a005. [DOI] [PubMed] [Google Scholar]
  20. Ohno S., Emori Y., Imajoh S., Kawasaki H., Kisaragi M., Suzuki K. Evolutionary origin of a calcium-dependent protease by fusion of genes for a thiol protease and a calcium-binding protein? Nature. 1984 Dec 6;312(5994):566–570. doi: 10.1038/312566a0. [DOI] [PubMed] [Google Scholar]
  21. Salvesen G., Parkes C., Abrahamson M., Grubb A., Barrett A. J. Human low-Mr kininogen contains three copies of a cystatin sequence that are divergent in structure and in inhibitory activity for cysteine proteinases. Biochem J. 1986 Mar 1;234(2):429–434. doi: 10.1042/bj2340429. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Schmaier A. H., Bradford H. N., Lundberg D., Farber A., Colman R. W. Membrane expression of platelet calpain. Blood. 1990 Mar 15;75(6):1273–1281. [PubMed] [Google Scholar]
  23. Schmaier A. H., Bradford H., Silver L. D., Farber A., Scott C. F., Schutsky D., Colman R. W. High molecular weight kininogen is an inhibitor of platelet calpain. J Clin Invest. 1986 May;77(5):1565–1573. doi: 10.1172/JCI112472. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Schmaier A. H., Kuo A., Lundberg D., Murray S., Cines D. B. The expression of high molecular weight kininogen on human umbilical vein endothelial cells. J Biol Chem. 1988 Nov 5;263(31):16327–16333. [PubMed] [Google Scholar]
  25. Schmaier A. H., Schutsky D., Farber A., Silver L. D., Bradford H. N., Colman R. W. Determination of the bifunctional properties of high molecular weight kininogen by studies with monoclonal antibodies directed to each of its chains. J Biol Chem. 1987 Jan 25;262(3):1405–1411. [PubMed] [Google Scholar]
  26. Schmaier A. H., Smith P. M., Purdon A. D., White J. G., Colman R. W. High molecular weight kininogen: localization in the unstimulated and activated platelet and activation by a platelet calpain(s). Blood. 1986 Jan;67(1):119–130. [PubMed] [Google Scholar]
  27. Schmaier A. H., Zuckerberg A., Silverman C., Kuchibhotla J., Tuszynski G. P., Colman R. W. High-molecular weight kininogen. A secreted platelet protein. J Clin Invest. 1983 May;71(5):1477–1489. doi: 10.1172/JCI110901. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Scott C. F., Liu C. Y., Colman R. W. Human plasma prekallikrein: a rapid high-yield method for purification. Eur J Biochem. 1979 Oct;100(1):77–83. doi: 10.1111/j.1432-1033.1979.tb02035.x. [DOI] [PubMed] [Google Scholar]
  29. Scott C. F., Silver L. D., Purdon A. D., Colman R. W. Cleavage of human high molecular weight kininogen by factor XIa in vitro. Effect on structure and function. J Biol Chem. 1985 Sep 5;260(19):10856–10863. [PubMed] [Google Scholar]
  30. Scott C. F., Silver L. D., Schapira M., Colman R. W. Cleavage of human high molecular weight kininogen markedly enhances its coagulant activity. Evidence that this molecule exists as a procofactor. J Clin Invest. 1984 Apr;73(4):954–962. doi: 10.1172/JCI111319. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Takagaki Y., Kitamura N., Nakanishi S. Cloning and sequence analysis of cDNAs for human high molecular weight and low molecular weight prekininogens. Primary structures of two human prekininogens. J Biol Chem. 1985 Jul 15;260(14):8601–8609. [PubMed] [Google Scholar]
  32. Tsuji S., Ishiura S., Takahashi-Nakamura M., Katamoto T., Suzuki K., Imahori K. Studies on a Ca2+-activated neutral proteinase of rabbit skeletal muscle. II. Characterization of sulfhydryl groups and a role of Ca2+ ions in this enzyme. J Biochem. 1981 Nov;90(5):1405–1411. doi: 10.1093/oxfordjournals.jbchem.a133606. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES