Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1990 Aug 15;270(1):245–249. doi: 10.1042/bj2700245

Glucose utilization in heart, diaphragm and skeletal muscle during the fed-to-starved transition.

M J Holness 1, M C Sugden 1
PMCID: PMC1131705  PMID: 2396984

Abstract

The progressive effects of starvation on muscle glucose utilization were studied in the conscious resting rat. High rates of glucose uptake and phosphorylation in constantly working cardiothoracic (heart, diaphragm) and postural skeletal muscles (soleus, adductor longus) were maintained for at least 9 h of starvation. A rapid decline in cardiac glucose utilization was observed during the period 9-24 h of starvation, but for the other muscles the decline was more gradual. Consequently, even after 24 h, rates of glucose utilization in these muscles remained quantitatively significant. In both cardiothoracic and working (postural) skeletal muscle, glucose uptake and phosphorylation and activity of the active form of pyruvate dehydrogenase exhibited differential sensitivities to starvation and also to acute elevation of fatty acid concentrations during acute (4-9 h) starvation, such that pyruvate oxidation was more rapidly suppressed than glucose uptake and phosphorylation. The results are discussed in relation to the role of the glucose/fatty acid cycle in glucose conservation during the fed-to-starved transition.

Full text

PDF
247

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ariano M. A., Armstrong R. B., Edgerton V. R. Hindlimb muscle fiber populations of five mammals. J Histochem Cytochem. 1973 Jan;21(1):51–55. doi: 10.1177/21.1.51. [DOI] [PubMed] [Google Scholar]
  2. Bonadonna R. C., Zych K., Boni C., Ferrannini E., DeFronzo R. A. Time dependence of the interaction between lipid and glucose in humans. Am J Physiol. 1989 Jul;257(1 Pt 1):E49–E56. doi: 10.1152/ajpendo.1989.257.1.E49. [DOI] [PubMed] [Google Scholar]
  3. Caterson I. D., Fuller S. J., Randle P. J. Effect of the fatty acid oxidation inhibitor 2-tetradecylglycidic acid on pyruvate dehydrogenase complex activity in starved and alloxan-diabetic rats. Biochem J. 1982 Oct 15;208(1):53–60. doi: 10.1042/bj2080053. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Denyer G. S., Lam D., Cooney G. J., Caterson I. D. Effect of starvation and insulin in vivo on the activity of the pyruvate dehydrogenase complex in rat skeletal muscles. FEBS Lett. 1989 Jul 3;250(2):464–468. doi: 10.1016/0014-5793(89)80777-x. [DOI] [PubMed] [Google Scholar]
  5. Ferré P., Leturque A., Burnol A. F., Penicaud L., Girard J. A method to quantify glucose utilization in vivo in skeletal muscle and white adipose tissue of the anaesthetized rat. Biochem J. 1985 May 15;228(1):103–110. doi: 10.1042/bj2280103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. French T. J., Holness M. J., MacLennan P. A., Sugden M. C. Effects of nutritional status and acute variation in substrate supply on cardiac and skeletal-muscle fructose 2,6-bisphosphate concentrations. Biochem J. 1988 Mar 15;250(3):773–779. doi: 10.1042/bj2500773. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Fuller S. J., Randle P. J. Reversible phosphorylation of pyruvate dehydrogenase in rat skeletal-muscle mitochondria. Effects of starvation and diabetes. Biochem J. 1984 Apr 15;219(2):635–646. doi: 10.1042/bj2190635. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Holness M. J., Liu Y. L., Sugden M. C. Time courses of the responses of pyruvate dehydrogenase activities to short-term starvation in diaphragm and selected skeletal muscles of the rat. Biochem J. 1989 Dec 15;264(3):771–776. doi: 10.1042/bj2640771. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Holness M. J., MacLennan P. A., Palmer T. N., Sugden M. C. The disposition of carbohydrate between glycogenesis, lipogenesis and oxidation in liver during the starved-to-fed transition. Biochem J. 1988 Jun 1;252(2):325–330. doi: 10.1042/bj2520325. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Holness M. J., Sugden M. C. Pyruvate dehydrogenase activities and rates of lipogenesis during the fed-to-starved transition in liver and brown adipose tissue of the rat. Biochem J. 1990 May 15;268(1):77–81. doi: 10.1042/bj2680077. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Holness M. J., Sugden M. C. Pyruvate dehydrogenase activities during the fed-to-starved transition and on re-feeding after acute or prolonged starvation. Biochem J. 1989 Mar 1;258(2):529–533. doi: 10.1042/bj2580529. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Issad T., Pénicaud L., Ferré P., Kandé J., Baudon M. A., Girard J. Effects of fasting on tissue glucose utilization in conscious resting rats. Major glucose-sparing effect in working muscles. Biochem J. 1987 Aug 15;246(1):241–244. doi: 10.1042/bj2460241. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Jenkins A. B., Storlien L. H., Chisholm D. J., Kraegen E. W. Effects of nonesterified fatty acid availability on tissue-specific glucose utilization in rats in vivo. J Clin Invest. 1988 Jul;82(1):293–299. doi: 10.1172/JCI113586. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kruszynska Y. T., McCormack J. G. Effect of nutritional status on insulin sensitivity in vivo and tissue enzyme activities in the rat. Biochem J. 1989 Mar 15;258(3):699–707. doi: 10.1042/bj2580699. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Randle P. J., Newsholme E. A., Garland P. B. Regulation of glucose uptake by muscle. 8. Effects of fatty acids, ketone bodies and pyruvate, and of alloxan-diabetes and starvation, on the uptake and metabolic fate of glucose in rat heart and diaphragm muscles. Biochem J. 1964 Dec;93(3):652–665. doi: 10.1042/bj0930652. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Rennie M. J., Winder W. W., Holloszy J. O. A sparing effect of increased plasma fatty acids on muscle and liver glycogen content in the exercising rat. Biochem J. 1976 Jun 15;156(3):647–655. doi: 10.1042/bj1560647. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Sugden M. C., Holness M. J. Effects of re-feeding after prolonged starvation on pyruvate dehydrogenase activities in heart, diaphragm and selected skeletal muscles of the rat. Biochem J. 1989 Sep 1;262(2):669–672. doi: 10.1042/bj2620669. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Sugden M. C., Holness M. J., Palmer T. N. Fuel selection and carbon flux during the starved-to-fed transition. Biochem J. 1989 Oct 15;263(2):313–323. doi: 10.1042/bj2630313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. WILLIAMSON D. H., MELLANBY J., KREBS H. A. Enzymic determination of D(-)-beta-hydroxybutyric acid and acetoacetic acid in blood. Biochem J. 1962 Jan;82:90–96. doi: 10.1042/bj0820090. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES