Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1990 Sep 1;270(2):363–367. doi: 10.1042/bj2700363

The poly-alpha- and -beta-1,4-glucuronic acid moiety of teichuronopeptide from the cell wall of the alkalophilic Bacillus strain C-125.

R Aono 1
PMCID: PMC1131730  PMID: 1698057

Abstract

Teichuronopeptide is a structural component of the cell wall of alkalophilic Bacillus strain C-125 and is a complex composed of polyglutamate and polyglucuronate. A structural analysis of the polyglucuronic acid moiety was carried out. Periodate oxidation and Smith degradation of the moiety, and enzymic analysis after reduction of glucuronic acid to glucose, revealed that glucuronic acid bound together with alternately alpha- and beta-1,4-linkages.

Full text

PDF
364

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aono R. Characterization of structural component of cell walls of alkalophilic strain of Bacillus sp. C-125. Preparation of poly(gamma-L-glutamate) from cell wall component. Biochem J. 1987 Jul 15;245(2):467–472. doi: 10.1042/bj2450467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Aono R., Ohtani M. Loss of alkalophily in cell-wall-component-defective mutants derived from alkalophilic Bacillus C-125. Isolation and partial characterization of the mutants. Biochem J. 1990 Mar 15;266(3):933–936. [PMC free article] [PubMed] [Google Scholar]
  3. Aono R., Uramoto M. Presence of fucosamine in teichuronic acid of the alkalophilic Bacillus strain C-125. Biochem J. 1986 Jan 1;233(1):291–294. doi: 10.1042/bj2330291. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bartnicki-Garcia S., Reyes E. Polyuronides in the cell walls of Mucor rouxii. Biochim Biophys Acta. 1968 Nov 12;170(1):54–62. doi: 10.1016/0304-4165(68)90160-8. [DOI] [PubMed] [Google Scholar]
  5. Carlson D. M., Matthews L. W. Polyuronic acids produced by Pseudomonas aeruginosa. Biochemistry. 1966 Sep;5(9):2817–2822. doi: 10.1021/bi00873a006. [DOI] [PubMed] [Google Scholar]
  6. Fujibayashi S., Habe H., Nishizawa K. Heterogeneity of alginate in special reference to the enzymatic degradation. J Biochem. 1970 Jan;67(1):37–45. doi: 10.1093/oxfordjournals.jbchem.a129232. [DOI] [PubMed] [Google Scholar]
  7. GLICK M. C., CHEN I. W., ZILLIKEN F. Formation in vitro of 3-0-beta-D-galactopyranosyl-N-acetyl-D-glucosamine, free and phosphorylated. J Biol Chem. 1962 Apr;237:981–987. [PubMed] [Google Scholar]
  8. Linker A., Jones R. S. A new polysaccharide resembling alginic acid isolated from pseudomonads. J Biol Chem. 1966 Aug 25;241(16):3845–3851. [PubMed] [Google Scholar]
  9. PARK J. T., JOHNSON M. J. A submicrodetermination of glucose. J Biol Chem. 1949 Nov;181(1):149–151. [PubMed] [Google Scholar]
  10. Skjåk-Braek G., Grasdalen H., Larsen B. Monomer sequence and acetylation pattern in some bacterial alginates. Carbohydr Res. 1986 Oct 15;154:239–250. doi: 10.1016/s0008-6215(00)90036-3. [DOI] [PubMed] [Google Scholar]
  11. Taylor R. L., Conrad H. E. Stoichiometric depolymerization of polyuronides and glycosaminoglycuronans to monosaccharides following reduction of their carbodiimide-activated carboxyl groups. Biochemistry. 1972 Apr 11;11(8):1383–1388. doi: 10.1021/bi00758a009. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES